//: Phase 3: Start running a loaded and transformed recipe.
//:
//: So far we've seen recipes as lists of instructions, and instructions point
//: at other recipes. To kick things off mu needs to know how to run certain
//: 'primitive' recipes. That will then give the ability to run recipes
//: containing these primitives.
//:
//: This layer defines a skeleton with just two primitive recipes: IDLE which
//: does nothing, and COPY, which can copy numbers from one memory location to
//: another. Later layers will add more primitives.

:(scenario copy_literal)
recipe main [
  1:number <- copy 23:literal
]
+run: 1:number <- copy 23:literal
+mem: storing 23 in location 1

:(scenario copy)
recipe main [
  1:number <- copy 23:literal
  2:number <- copy 1:number
]
+run: 2:number <- copy 1:number
+mem: location 1 is 23
+mem: storing 23 in location 2

:(scenario copy_multiple)
recipe main [
  1:number, 2:number <- copy 23:literal, 24:literal
]
+mem: storing 23 in location 1
+mem: storing 24 in location 2

:(before "End Types")
// Book-keeping while running a recipe.
//: Later layers will change this.
struct routine {
  recipe_number running_recipe;
  long long int running_step_index;
  routine(recipe_number r) :running_recipe(r), running_step_index(0) {}
  bool completed() const;
};

:(before "End Globals")
routine* Current_routine = NULL;

:(code)
void run(recipe_number r) {
  routine rr(r);
  Current_routine = &rr;
  run_current_routine();
}

void run_current_routine()
{  // curly on a separate line, because later layers will modify header
//?   cerr << "AAA 6\n"; //? 3
  while (!Current_routine->completed())  // later layers will modify condition
  {
//?     cerr << "AAA 7: " << current_step_index() << '\n'; //? 1
    // Running One Instruction
    if (current_instruction().is_label) { ++current_step_index(); continue; }
    trace(Initial_callstack_depth+Callstack_depth, "run") << current_instruction().to_string();
    assert(Memory[0] == 0);
    // Read all ingredients from memory.
    // Each ingredient loads a vector of values rather than a single value; mu
    // permits operating on reagents spanning multiple locations.
    vector<vector<double> > ingredients;
    for (long long int i = 0; i < SIZE(current_instruction().ingredients); ++i) {
      ingredients.push_back(read_memory(current_instruction().ingredients.at(i)));
    }
    // Instructions below will write to 'products'.
    vector<vector<double> > products;
//?     cerr << "AAA 8: " << current_instruction().operation << " ^" << Recipe[current_instruction().operation].name << "$\n"; //? 1
//?     cerr << "% " << current_recipe_name() << "/" << current_step_index() << ": " << Memory[1013] << ' ' << Memory[1014] << '\n'; //? 1
    switch (current_instruction().operation) {
      // Primitive Recipe Implementations
      case COPY: {
        copy(ingredients.begin(), ingredients.end(), inserter(products, products.begin()));
        break;
      }
      // End Primitive Recipe Implementations
      default: {
        cout << "not a primitive op: " << current_instruction().operation << '\n';
      }
    }
    if (SIZE(products) < SIZE(current_instruction().products))
      raise << "failed to write to all products! " << current_instruction().to_string();
    for (long long int i = 0; i < SIZE(current_instruction().products); ++i) {
      write_memory(current_instruction().products.at(i), products.at(i));
    }
    // End of Instruction
    ++current_step_index();
  }
//?   cerr << "AAA 9\n"; //? 2
  stop_running_current_routine:;
}

//: Some helpers.
//: We'll need to override these later as we change the definition of routine.
//: Important that they return referrences into the routine.

inline long long int& current_step_index() {
  return Current_routine->running_step_index;
}

inline const string& current_recipe_name() {
  return Recipe[Current_routine->running_recipe].name;
}

inline const instruction& current_instruction() {
  return Recipe[Current_routine->running_recipe].steps.at(Current_routine->running_step_index);
}

inline bool routine::completed() const {
  return running_step_index >= SIZE
/*
Copyright (c) 2019 Ben Morrison (gbmor)

This file is part of Getwtxt.

Getwtxt is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Getwtxt is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Getwtxt.  If not, see <https://www.gnu.org/licenses/>.
*/

package svc // import "github.com/getwtxt/getwtxt/svc"

import (
	"crypto/tls"
	"fmt"
	"log"
	"net/http"
	"time"

	"github.com/gorilla/handlers"
	"github.com/gorilla/mux"
)

// Start is the initialization function for getwtxt
func Start() {
	before := time.Now()
	initSvc()

	// StrictSlash(true) allows /api and /api/
	// to serve the same content without duplicating
	// handlers/paths
	index := mux.NewRouter().StrictSlash(true)
	setIndexRouting(index)
	api := index.PathPrefix("/api").Subrouter()
	setEndpointRouting(api)

	confObj.Mu.RLock()
	portnum := fmt.Sprintf(":%v", confObj.Port)
	if !confObj.IsProxied {
		index.Host(confObj.Instance.URL)
	}
	TLS := confObj.TLS.Use
	TLSCert := confObj.TLS.Cert
	TLSKey := confObj.TLS.Key
	confObj.Mu.RUnlock()

	server := newServer(portnum, index)

	if TLS {
		cert, err := tls.LoadX509KeyPair(TLSCert, TLSKey)
		errFatal("", err)

		cfg := &tls.Config{Certificates: []tls.Certificate{cert}}
		lstnr, err := tls.Listen("tcp", portnum, cfg)
		errFatal("", err)

		server.TLSConfig = cfg
		startAnnounce(portnum, before)
		errLog("", server.ServeTLS(lstnr, "", ""))

	} else {
		startAnnounce(portnum, before)
		errLog("", server.ListenAndServe())
	}

	closeLog <- struct{}{}
	killTickers()
	killDB()
	close(dbChan)
	close