:(before "End Mu Types Initialization")
type_ordinal point = put(Type_ordinal, "point", Next_type_ordinal++);
get_or_insert(Type, point);
get(Type, point).kind = CONTAINER;
get(Type, point).name = "point";
get(Type, point).elements.push_back(reagent("x:number"));
get(Type, point).elements.push_back(reagent("y:number"));
:(scenario copy_multiple_locations)
def main [
1:num <- copy 34
2:num <- copy 35
3:point <- copy 1:point/unsafe
]
+mem: storing 34 in location 3
+mem: storing 35 in location 4
:(scenario copy_checks_size)
% Hide_errors = true;
def main [
2:point <- copy 1:num
]
+error: main: can't copy '1:num' to '2:point'; types don't match
:(before "End Mu Types Initialization")
type_ordinal point_number = put(Type_ordinal, "point-number", Next_type_ordinal++);
get_or_insert(Type, point_number);
get(Type, point_number).kind = CONTAINER;
get(Type, point_number).name = "point-number";
get(Type, point_number).elements.push_back(reagent("xy:point"));
get(Type, point_number).elements.push_back(reagent("z:number"));
:(scenario copy_handles_nested_container_elements)
def main [
12:num <- copy 34
13:num <- copy 35
14:num <- copy 36
15:point-number <- copy 12:point-number/unsafe
]
+mem: storing 36 in location 17
:(scenario return_container)
def main [
3:point <- f 2
]
def f [
12:num <- next-ingredient
13:num <- copy 35
return 12:point/raw
]
+run: result 0 is [2, 35]
+mem: storing 2 in location 3
+mem: storing 35 in location 4
:(scenario compare_multiple_locations)
def main [
1:num <- copy 34
2:num <- copy 35
3:num <- copy 36
4:num <- copy 34
5:num <- copy 35
6:num <- copy 36
7:bool <- equal 1:point-number/raw, 4:point-number/unsafe
]
+mem: storing 1 in location 7
:(scenario compare_multiple_locations_2)
def main [
1:num <- copy 34
2:num <- copy 35
3:num <- copy 36
4:num <- copy 34
5:num <- copy 35
6:num <- copy 37
7:bool <- equal 1:point-number/raw, 4:point-number/unsafe
]
+mem: storing 0 in location 7
:(before "struct reagent")
struct container_metadata {
int size;
vector<int> offset;
container_metadata() :size(0) {
}
};
:(before "End reagent Fields")
container_metadata metadata;
:(before "End reagent Copy Operator")
metadata = other.metadata;
:(before "End reagent Copy Constructor")
metadata = other.metadata;
:(before "End Globals")
vector<pair<type_tree*, container_metadata> > Container_metadata, Container_metadata_snapshot;
:(before "End save_snapshots")
Container_metadata_snapshot = Container_metadata;
:(before "End restore_snapshots")
restore_container_metadata();
:(before "End One-time Setup")
atexit(clear_container_metadata);
:(code)
void restore_container_metadata() {
for (int i = 0; i < SIZE(Container_metadata); ++i) {
assert(Container_metadata.at(i).first);
if (i < SIZE(Container_metadata_snapshot)) {
assert(Container_metadata.at(i).first == Container_metadata_snapshot.at(i).first);
continue;
}
delete Container_metadata.at(i).first;
Container_metadata.at(i).first = NULL;
}
Container_metadata.resize(SIZE(Container_metadata_snapshot));
}
void clear_container_metadata() {
Container_metadata_snapshot.clear();
for (int i = 0; i < SIZE(Container_metadata); ++i) {
delete Container_metadata.at(i).first;
Container_metadata.at(i).first = NULL;
}
Container_metadata.clear();
}
:(before "End size_of(reagent r) Cases")
if (r.metadata.size) return r.metadata.size;
:(before "End size_of(type) Cases")
if (type->atom) {
if (type->value == -1) return 1;
if (type->value == 0) return 1;
}
const type_tree* root = root_type(type);
if (!contains_key(Type, root->value)) {
raise << "no such type " << root->value << '\n' << end();
return 0;
}
type_info t = get(Type, root->value);
if (t.kind == CONTAINER) {
if (!contains_key(Container_metadata, type)) return 1;
return get(Container_metadata, type).size;
}
:(code)
const type_tree* root_type(const type_tree* t) {
const type_tree* result = t->atom ? t : t->left;
assert(result->atom);
return result;
}
:(after "End Type Modifying Transforms")
Transform.push_back(compute_container_sizes);
:(code)
void compute_container_sizes(const recipe_ordinal r) {
recipe& caller = get(Recipe, r);
trace(9992, "transform") << "--- compute container sizes for " << caller.name << end();
for (int i = 0; i < SIZE(caller.steps); ++i) {
instruction& inst = caller.steps.at(i);
trace(9993, "transform") << "- compute container sizes for " << to_string(inst) << end();
for (int i = 0; i < SIZE(inst.ingredients); ++i)
compute_container_sizes(inst.ingredients.at(i));
for (int i = 0; i < SIZE(inst.products); ++i)
compute_container_sizes(inst.products.at(i));
}
}
void compute_container_sizes(reagent& r) {
expand_type_abbreviations(r.type);
if (is_literal(r) || is_dummy(r)) return;
reagent rcopy = r;
set<type_tree> pending_metadata;
compute_container_sizes(rcopy.type, pending_metadata);
if (contains_key(Container_metadata, rcopy.type))
r.metadata = get(Container_metadata, rcopy.type);
}
void compute_container_sizes(const type_tree* type, set<type_tree>& pending_metadata) {
if (!type) return;
trace(9993, "transform") << "compute container sizes for " << to_string(type) << end();
if (contains_key(Container_metadata, type)) return;
if (contains_key(pending_metadata, *type)) return;
pending_metadata.insert(*type);
if (!type->atom) {
assert(type->left->atom);
if (type->left->name == "address") {
compute_container_sizes(type->right, pending_metadata);
}
else if (type->left->name == "array") {
const type_tree* element_type = type->right;
if (!element_type->atom && element_type->right && element_type->right->atom && is_integer(element_type->right->name))
element_type = element_type->left;
compute_container_sizes(element_type, pending_metadata);
}
return;
}
assert(type->atom);
if (!contains_key(Type, type->value)) return;
type_info& info = get(Type, type->value);
if (info.kind == CONTAINER) {
compute_container_sizes(info, type, pending_metadata);
}
}
void compute_container_sizes(const type_info& container_info, const type_tree* full_type, set<type_tree>& pending_metadata) {
assert(container_info.kind == CONTAINER);
container_metadata metadata;
for (int i = 0; i < SIZE(container_info.elements); ++i) {
reagent element = container_info.elements.at(i);
compute_container_sizes(element.type, pending_metadata);
metadata.offset.push_back(metadata.size);
metadata.size += size_of(element.type);
}
Container_metadata.push_back(pair<type_tree*, container_metadata>(new type_tree(*full_type), metadata));
}
container_metadata& get(vector<pair<type_tree*, container_metadata> >& all, const type_tree* key) {
for (int i = 0; i < SIZE(all); ++i) {
if (matches(all.at(i).first, key))
return all.at(i).second;
}
tb_shutdown();
raise << "unknown size for type '" << to_string(key) << "'\n" << end();
assert(false);
}
bool contains_key(const vector<pair<type_tree*, container_metadata> >& all, const type_tree* key) {
for (int i = 0; i < SIZE(all); ++i) {
if (matches(all.at(i).first, key))
return true;
}
return false;
}
bool matches(const type_tree* a, const type_tree* b) {
if (a == b) return true;
if (!a || !b) return false;
if (a->atom != b->atom) return false;
if (a->atom) return a->value == b->value;
return matches(a->left, b->left) && matches(a->right, b->right);
}
:(scenario stash_container)
def main [
1:num <- copy 34
2:num <- copy 35
3:num <- copy 36
stash [foo:], 1:point-number/raw
]
+app: foo: 34 35 36
:(before "End Unit Tests")
void test_container_sizes() {
reagent r("x:point");
CHECK(!contains_key(Container_metadata, r.type));
compute_container_sizes(r);
CHECK_EQ(r.metadata.size, 2);
CHECK(contains_key(Container_metadata, r.type));
CHECK_EQ(get(Container_metadata, r.type).size, 2);
}
void test_container_sizes_through_aliases() {
put(Type_abbreviations, "pt", new_type_tree("point"));
reagent r("x:pt");
compute_container_sizes(r);
CHECK_EQ(r.metadata.size, 2);
CHECK(contains_key(Container_metadata, r.type));
CHECK_EQ(get(Container_metadata, r.type).size, 2);
}
void test_container_sizes_nested() {
reagent r("x:point-number");
CHECK(!contains_key(Container_metadata, r.type));
compute_container_sizes(r);
CHECK_EQ(r.metadata.size, 3);
CHECK(contains_key(Container_metadata, r.type));
CHECK_EQ(get(Container_metadata, r.type).size, 3);
}
void test_container_sizes_recursive() {
run("container foo [\n"
" x:num\n"
" y:address:foo\n"
"]\n");
reagent r("x:foo");
compute_container_sizes(r);
CHECK_EQ(r.metadata.size, 2);
}
void test_container_sizes_from_address() {
reagent container("x:point");
CHECK(!contains_key(Container_metadata, container.type));
reagent r("x:address:point");
compute_container_sizes(r);
CHECK(contains_key(Container_metadata, container.type));
CHECK_EQ(get(Container_metadata, container.type).size, 2);
}
void test_container_sizes_from_array() {
reagent container("x:point");
CHECK(!contains_key(Container_metadata, container.type));
reagent r("x:array:point");
compute_container_sizes(r);
CHECK(contains_key(Container_metadata, container.type));
CHECK_EQ(get(Container_metadata, container.type).size, 2);
}
void test_container_sizes_from_address_to_array() {
reagent container("x:point");
CHECK(!contains_key(Container_metadata, container.type));
reagent r("x:address:array:point");
compute_container_sizes(r);
CHECK(contains_key(Container_metadata, container.type));
CHECK_EQ(get(Container_metadata, container.type).size, 2);
}
void test_container_sizes_from_static_array() {
reagent container("x:point");
int old_size = SIZE(Container_metadata);
reagent r("x:array:point:10");
compute_container_sizes(r);
CHECK(contains_key(Container_metadata, container.type));
CHECK_EQ(get(Container_metadata, container.type).size, 2);
CHECK_EQ(SIZE(Container_metadata)-old_size, 1);
}
void test_container_sizes_from_address_to_static_array() {
reagent container("x:point");
int old_size = SIZE(Container_metadata);
reagent r("x:address:array:point:10");
compute_container_sizes(r);
CHECK(contains_key(Container_metadata, container.type));
CHECK_EQ(get(Container_metadata, container.type).size, 2);
CHECK_EQ(SIZE(Container_metadata)-old_size, 1);
}
void test_container_sizes_from_repeated_address_and_array_types() {
reagent container("x:point");
int old_size = SIZE(Container_metadata);
reagent r("x:address:array:address:array:point:10");
compute_container_sizes(r);
CHECK(contains_key(Container_metadata, container.type));
CHECK_EQ(get(Container_metadata, container.type).size, 2);
CHECK_EQ(SIZE(Container_metadata)-old_size, 1);
}
:(scenario get)
def main [
12:num <- copy 34
13:num <- copy 35
15:num <- get 12:point/raw, 1:offset
]
+mem: storing 35 in location 15
:(before "End Primitive Recipe Declarations")
GET,
:(before "End Primitive Recipe Numbers")
put(Recipe_ordinal, "get", GET);
:(before "End Primitive Recipe Checks")
case GET: {
if (SIZE(inst.ingredients) != 2) {
raise << maybe(get(Recipe, r).name) << "'get' expects exactly 2 ingredients in '" << inst.original_string << "'\n" << end();
break;
}
reagent base = inst.ingredients.at(0);
if (!base.type) {
raise << maybe(get(Recipe, r).name) << "first ingredient of 'get' should be a container, but got '" << inst.ingredients.at(0).original_string << "'\n" << end();
break;
}
const type_tree* base_type = base.type;
if (!base_type->atom || base_type->value == 0 || !contains_key(Type, base_type->value) || get(Type, base_type->value).kind != CONTAINER) {
raise << maybe(get(Recipe, r).name) << "first ingredient of 'get' should be a container, but got '" << inst.ingredients.at(0).original_string << "'\n" << end();
break;
}
const reagent& offset = inst.ingredients.at(1);
if (!is_literal(offset) || !is_mu_scalar(offset)) {
raise << maybe(get(Recipe, r).name) << "second ingredient of 'get' should have type 'offset', but got '" << inst.ingredients.at(1).original_string << "'\n" << end();
break;
}
int offset_value = 0;
if (is_integer(offset.name))
offset_value = to_integer(offset.name);
else
offset_value = offset.value;
if (offset_value < 0 || offset_value >= SIZE(get(Type, base_type->value).elements)) {
raise << maybe(get(Recipe, r).name) << "invalid offset '" << offset_value << "' for '" << get(Type, base_type->value).name << "'\n" << end();
break;
}
if (inst.products.empty()) break;
reagent product = inst.products.at(0);
const reagent element = element_type(base.type, offset_value);
if (!types_coercible(product, element)) {
raise << maybe(get(Recipe, r).name) << "'get " << base.original_string << ", " << offset.original_string << "' should write to " << names_to_string_without_quotes(element.type) << " but '" << product.name << "' has type " << names_to_string_without_quotes(product.type) << '\n' << end();
break;
}
break;
}
:(before "End Primitive Recipe Implementations")
case GET: {
reagent base = current_instruction().ingredients.at(0);
int base_address = base.value;
if (base_address == 0) {
raise << maybe(current_recipe_name()) << "tried to access location 0 in '" << to_original_string(current_instruction()) << "'\n" << end();
break;
}
const type_tree* base_type = base.type;
int offset = ingredients.at(1).at(0);
if (offset < 0 || offset >= SIZE(get(Type, base_type->value).elements)) break;
assert(base.metadata.size);
int src = base_address + base.metadata.offset.at(offset);
trace(9998, "run") << "address to copy is " << src << end();
reagent element = element_type(base.type, offset);
element.set_value(src);
trace(9998, "run") << "its type is " << names_to_string(element.type) << end();
products.push_back(read_memory(element));
break;
}
:(code)
const reagent element_type(const type_tree* type, int offset_value) {
assert(offset_value >= 0);
const type_tree* root = root_type(type);
assert(contains_key(Type, root->value));
assert(!get(Type, root->value).name.empty());
const type_info& info = get(Type, root->value);
assert(info.kind == CONTAINER);
if (offset_value >= SIZE(info.elements)) return reagent();
reagent element = info.elements.at(offset_value);
return element;
}
:(scenario get_handles_nested_container_elements)
def main [
12:num <- copy 34
13:num <- copy 35
14:num <- copy 36
15:num <- get 12:point-number/raw, 1:offset
]
+mem: storing 36 in location 15
:(scenario get_out_of_bounds)
% Hide_errors = true;
def main [
12:num <- copy 34
13:num <- copy 35
14:num <- copy 36
get 12:point-number/raw, 2:offset
]
+error: main: invalid offset '2' for 'point-number'
:(scenario get_out_of_bounds_2)
% Hide_errors = true;
def main [
12:num <- copy 34
13:num <- copy 35
14:num <- copy 36
get 12:point-number/raw, -1:offset
]
+error: main: invalid offset '-1' for 'point-number'
:(scenario get_product_type_mismatch)
% Hide_errors = true;
def main [
12:num <- copy 34
13:num <- copy 35
14:num <- copy 36
15:address:num <- get 12:point-number/raw, 1:offset
]
+error: main: 'get 12:point-number/raw, 1:offset' should write to number but '15' has type (address number)
:(scenario get_without_product)
def main [
12:num <- copy 34
13:num <- copy 35
get 12:point/raw, 1:offset
]
:(scenario put)
def main [
12:num <- copy 34
13:num <- copy 35
$clear-trace
12:point <- put 12:point, 1:offset, 36
]
+mem: storing 36 in location 13
-mem: storing 34 in location 12
:(before "End Primitive Recipe Declarations")
PUT,
:(before "End Primitive Recipe Numbers")
put(Recipe_ordinal, "put", PUT);
:(before "End Primitive Recipe Checks")
case PUT: {
if (SIZE(inst.ingredients) != 3) {
raise << maybe(get(Recipe, r).name) << "'put' expects exactly 3 ingredients in '" << inst.original_string << "'\n" << end();
break;
}
reagent base = inst.ingredients.at(0);
if (!base.type) {
raise << maybe(get(Recipe, r).name) << "first ingredient of 'put' should be a container, but got '" << inst.ingredients.at(0).original_string << "'\n" << end();
break;
}
const type_tree* base_type = base.type;
if (!base_type->atom || base_type->value == 0 || !contains_key(Type, base_type->value) || get(Type, base_type->value).kind != CONTAINER) {
raise << maybe(get(Recipe, r).name) << "first ingredient of 'put' should be a container, but got '" << inst.ingredients.at(0).original_string << "'\n" << end();
break;
}
reagent offset = inst.ingredients.at(1);
if (!is_literal(offset) || !is_mu_scalar(offset)) {
raise << maybe(get(Recipe, r).name) << "second ingredient of 'put' should have type 'offset', but got '" << inst.ingredients.at(1).original_string << "'\n" << end();
break;
}
int offset_value = 0;
if (is_integer(offset.name)) {
offset_value = to_integer(offset.name);
if (offset_value < 0 || offset_value >= SIZE(get(Type, base_type->value).elements)) {
raise << maybe(get(Recipe, r).name) << "invalid offset '" << offset_value << "' for '" << get(Type, base_type->value).name << "'\n" << end();
break;
}
}
else {
offset_value = offset.value;
}
const reagent& value = inst.ingredients.at(2);
const reagent& element = element_type(base.type, offset_value);
if (!types_coercible(element, value)) {
raise << maybe(get(Recipe, r).name) << "'put " << base.original_string << ", " << offset.original_string << "' should write to " << names_to_string_without_quotes(element.type) << " but '" << value.name << "' has type " << names_to_string_without_quotes(value.type) << '\n' << end();
break;
}
if (inst.products.empty()) break;
if (inst.products.at(0).name != inst.ingredients.at(0).name) {
raise << maybe(get(Recipe, r).name) << "product of 'put' must be first ingredient '" << inst.ingredients.at(0).original_string << "', but got '" << inst.products.at(0).original_string << "'\n" << end();
break;
}
break;
}
:(before "End Primitive Recipe Implementations")
case PUT: {
reagent base = current_instruction().ingredients.at(0);
int base_address = base.value;
if (base_address == 0) {
raise << maybe(current_recipe_name()) << "tried to access location 0 in '" << to_original_string(current_instruction()) << "'\n" << end();
break;
}
const type_tree* base_type = base.type;
int offset = ingredients.at(1).at(0);
if (offset < 0 || offset >= SIZE(get(Type, base_type->value).elements)) break;
int address = base_address + base.metadata.offset.at(offset);
trace(9998, "run") << "address to copy to is " << address << end();
for (int i = 0; i < SIZE(ingredients.at(2)); ++i) {
trace(9999, "mem") << "storing " << no_scientific(ingredients.at(2).at(i)) << " in location " << address+i << end();
put(Memory, address+i, ingredients.at(2).at(i));
}
goto finish_instruction;
}
:(scenario put_product_error)
% Hide_errors = true;
def main [
local-scope
load-ingredients
1:point <- merge 34, 35
3:point <- put 1:point, x:offset, 36
]
+error: main: product of 'put' must be first ingredient '1:point', but got '3:point'
:(scenarios load)
:(scenario container)
container foo [
x:num
y:num
]
+parse: --- defining container foo
+parse: element: {x: "number"}
+parse: element: {y: "number"}
:(scenario container_use_before_definition)
container foo [
x:num
y:bar
]
container bar [
x:num
y:num
]
+parse: --- defining container foo
+parse: type number: 1000
+parse: element: {x: "number"}
+parse: element: {y: "bar"}
+parse: --- defining container bar
+parse: type number: 1001
+parse: element: {x: "number"}
+parse: element: {y: "number"}
:(scenarios run)
:(scenario container_extend)
container foo [
x:num
]
container foo [
y:num
]
def main [
1:num <- copy 34
2:num <- copy 35
3:num <- get 1:foo, 0:offset
4:num <- get 1:foo, 1:offset
]
+mem: storing 34 in location 3
+mem: storing 35 in location 4
:(before "End Command Handlers")
else if (command == "container") {
insert_container(command, CONTAINER, in);
}
:(before "End type_info Fields")
int Num_calls_to_transform_all_at_first_definition;
:(before "End type_info Constructor")
Num_calls_to_transform_all_at_first_definition = -1;
:(code)
void insert_container(const string& command, kind_of_type kind, istream& in) {
skip_whitespace_but_not_newline(in);
string name = next_word(in);
if (name.empty()) {
assert(!has_data(in));
raise << "incomplete container definition at end of file (0)\n" << end();
return;
}
trace(9991, "parse") << "--- defining " << command << ' ' << name << end();
if (!contains_key(Type_ordinal, name)
|| get(Type_ordinal, name) == 0) {
put(Type_ordinal, name, Next_type_ordinal++);
}
trace(9999, "parse") << "type number: " << get(Type_ordinal, name) << end();
skip_bracket(in, "'"+command+"' must begin with '['");
type_info& info = get_or_insert(Type, get(Type_ordinal, name));
if (info.Num_calls_to_transform_all_at_first_definition == -1) {
info.Num_calls_to_transform_all_at_first_definition = Num_calls_to_transform_all;
}
else if (info.Num_calls_to_transform_all_at_first_definition != Num_calls_to_transform_all) {
raise << "there was a call to transform_all() between the definition of container '" << name << "' and a subsequent extension. This is not supported, since any recipes that used '" << name << "' values have already been transformed and \"frozen\".\n" << end();
return;
}
info.name = name;
info.kind = kind;
while (has_data(in)) {
skip_whitespace_and_comments(in);
string element = next_word(in);
if (element.empty()) {
assert(!has_data(in));
raise << "incomplete container definition at end of file (1)\n" << end();
return;
}
if (element == "]") break;
if (in.peek() != '\n') {
raise << command << " '" << name << "' contains multiple elements on a single line. Containers and exclusive containers must only contain elements, one to a line, no code.\n" << end();
while (has_data(in)) {
skip_whitespace_and_comments(in);
if (next_word(in) == "]") break;
}
break;
}
info.elements.push_back(reagent(element));
expand_type_abbreviations(info.elements.back().type);
replace_unknown_types_with_unique_ordinals(info.elements.back().type, info);
trace(9993, "parse") << " element: " << to_string(info.elements.back()) << end();
}
}
void replace_unknown_types_with_unique_ordinals(type_tree* type, const type_info& info) {
if (!type) return;
if (!type->atom) {
replace_unknown_types_with_unique_ordinals(type->left, info);
replace_unknown_types_with_unique_ordinals(type->right, info);
return;
}
assert(!type->name.empty());
if (contains_key(Type_ordinal, type->name)) {
type->value = get(Type_ordinal, type->name);
}
else if (is_integer(type->name)) {
type->value = 0;
}
else if (type->name != "->") {
put(Type_ordinal, type->name, Next_type_ordinal++);
type->value = get(Type_ordinal, type->name);
}
}
void skip_bracket(istream& in, string message) {
skip_whitespace_and_comments(in);
if (in.get() != '[')
raise << message << '\n' << end();
}
:(scenario multi_word_line_in_container_declaration)
% Hide_errors = true;
container foo [
x:num y:num
]
+error: container 'foo' contains multiple elements on a single line. Containers and exclusive containers must only contain elements, one to a line, no code.
:(scenario type_abbreviations_in_containers)
type foo = number
container bar [
x:foo
]
def main [
1:num <- copy 34
2:foo <- get 1:bar/unsafe, 0:offset
]
+mem: storing 34 in location 2
:(after "Transform.push_back(expand_type_abbreviations)")
Transform.push_back(expand_type_abbreviations_in_containers);
:(code)
void expand_type_abbreviations_in_containers(unused const recipe_ordinal r) {
for (map<type_ordinal, type_info>::iterator p = Type.begin(); p != Type.end(); ++p) {
for (int i = 0; i < SIZE(p->second.elements); ++i)
expand_type_abbreviations(p->second.elements.at(i).type);
}
}
:(before "End Setup")
Next_type_ordinal = 1000;
:(before "End Test Run Initialization")
assert(Next_type_ordinal < 1000);
:(code)
void test_error_on_transform_all_between_container_definition_and_extension() {
run("container foo [\n"
" a:num\n"
"]\n");
transform_all();
CHECK_TRACE_DOESNT_CONTAIN_ERROR();
Hide_errors = true;
run("container foo [\n"
" b:num\n"
"]\n");
CHECK_TRACE_CONTAINS_ERROR();
}
:(scenario run_complains_on_unknown_types)
% Hide_errors = true;
def main [
1:integer <- copy 0
]
+error: main: unknown type integer in '1:integer <- copy 0'
:(scenario run_allows_type_definition_after_use)
def main [
1:bar <- copy 0/unsafe
]
container bar [
x:num
]
$error: 0
:(before "End Type Modifying Transforms")
Transform.push_back(check_or_set_invalid_types);
:(code)
void check_or_set_invalid_types(const recipe_ordinal r) {
recipe& caller = get(Recipe, r);
trace(9991, "transform") << "--- check for invalid types in recipe " << caller.name << end();
for (int index = 0; index < SIZE(caller.steps); ++index) {
instruction& inst = caller.steps.at(index);
for (int i = 0; i < SIZE(inst.ingredients); ++i)
check_or_set_invalid_types(inst.ingredients.at(i), caller, inst);
for (int i = 0; i < SIZE(inst.products); ++i)
check_or_set_invalid_types(inst.products.at(i), caller, inst);
}
}
void check_or_set_invalid_types(reagent& r, const recipe& caller, const instruction& inst) {
check_or_set_invalid_types(r.type, maybe(caller.name), "'"+inst.original_string+"'");
}
void check_or_set_invalid_types(type_tree* type, const string& block, const string& name) {
if (!type) return;
if (!type->atom) {
check_or_set_invalid_types(type->left, block, name);
check_or_set_invalid_types(type->right, block, name);
return;
}
if (type->value == 0) return;
if (!contains_key(Type, type->value)) {
assert(!type->name.empty());
if (contains_key(Type_ordinal, type->name))
type->value = get(Type_ordinal, type->name);
else
raise << block << "unknown type " << type->name << " in " << name << '\n' << end();
}
}
:(scenario container_unknown_field)
% Hide_errors = true;
container foo [
x:num
y:bar
]
+error: foo: unknown type in y
:(scenario read_container_with_bracket_in_comment)
container foo [
x:num
y:num
]
+parse: --- defining container foo
+parse: element: {x: "number"}
+parse: element: {y: "number"}
:(scenario container_with_compound_field_type)
container foo [
{x: (address array (address array character))}
]
$error: 0
:(before "End transform_all")
check_container_field_types();
:(code)
void check_container_field_types() {
for (map<type_ordinal, type_info>::iterator p = Type.begin(); p != Type.end(); ++p) {
const type_info& info = p->second;
for (int i = 0; i < SIZE(info.elements); ++i)
check_invalid_types(info.elements.at(i).type, maybe(info.name), info.elements.at(i).name);
}
}
void check_invalid_types(const type_tree* type, const string& block, const string& name) {
if (!type) return;
if (!type->atom) {
check_invalid_types(type->left, block, name);
check_invalid_types(type->right, block, name);
return;
}
if (type->value != 0) {
if (!contains_key(Type, type->value))
raise << block << "unknown type in " << name << '\n' << end();
}
}