//: Addresses help us spend less time copying data around.

//: So far we've been operating on primitives like numbers and characters, and
//: we've started combining these primitives together into larger logical
//: units (containers or arrays) that may contain many different primitives at
//: once. Containers and arrays can grow quite large in complex programs, and
//: we'd like some way to efficiently share them between recipes without
//: constantly having to make copies. Right now 'next-ingredient' and 'reply'
//: copy data across recipe boundaries. To avoid copying large quantities of
//: data around, we'll use *addresses*. An address is a bookmark to some
//: arbitrary quantity of data (the *payload*). It's a primitive, so it's as
//: efficient to copy as a number. To read or modify the payload 'pointed to'
//: by an address, we'll perform a *lookup*.
//:
//: The notion of 'lookup' isn't an instruction like 'add' or 'subtract'.
//: Instead it's an operation that can be performed when reading any of the
//: ingredients of an instruction, and when writing to any of the products. To
//: write to the payload of an ingredient rather than its value, simply add
//: the /lookup property to it. Modern computers provide efficient support for
//: addresses and lookups, making this a realistic feature.
//:
//: To recap: an address is a bookmark to some potentially large payload, and
//: you can replace any ingredient or product with a lookup to an address of
//: the appropriate type. But how do we get addresses to begin with? That
//: requires a little more explanation. Once we introduce the notion of
//: bookmarks to data, we have to think about the life cycle of a piece of
//: data and its bookmarks (because remember, bookmarks can be copied around
//: just like anything else). Otherwise several bad outcomes can result (and
//: indeed *have* resulted in past languages like C):
//:
//:   a) You can run out of memory if you don't have a way to reclaim
//:   data.
//:   b) If you allow data to be reclaimed, you have to be careful not to
//:   leave any stale addresses pointing at it. Otherwise your program might
//:   try to lookup such an address and find something unexpected. Such
//:   problems can be very hard to track down, and they can also be exploited
//:   to break into your computer over the network, etc.
//:
//: To avoid these problems, we introduce the notion of a *reference count* or
//: refcount. The life cycle of a bit of data accessed through addresses looks
//: like this.
//:
//:    We create space in computer memory for it using the 'new' instruction.
//:    The 'new' instruction takes a type as an ingredient, allocates
//:    sufficient space to hold that type, and returns an address (bookmark)
//:    to the allocated space.
//:
//:      x:address:number <- new number:type
//:
//:                     +------------+
//:          x -------> |  number    |
//:                     +------------+
//:
//:    That isn't entirely accurate. Under the hood, 'new' allocates an extra
//:    number -- the refcount:
//:
//:                     +------------+------------+
//:          x -------> | refcount   |  number    |
//:                     +------------+------------+
//:
//:    This probably seems like a waste of space. In practice it isn't worth
//:    allocating individual numbers and our payload will tend to be larger,
//:    so the picture would look more like this (zooming out a bit):
//:
//:                         +-------------------------+
//:                     +---+                         |
//:          x -------> | r |                         |
//:                     +---+        DATA             |
//:                         |                         |
//:                         |                         |
//:                         +-------------------------+
//:
//:    (Here 'r' denotes the refcount. It occupies a tiny amount of space
//:    compared to the payload.)
//:
//:    Anyways, back to our example where the data is just a single number.
//:    After the call to 'new', Mu's map of memory looks like this:
//:
//:                     +---+------------+
//:          x -------> | 1 |  number    |
//:                     +---+------------+
//:
//:    The refcount of 1 here indicates that this number has one bookmark
//:    outstanding. If you then make a copy of x, the refcount increments:
//:
//:      y:address:number <- copy x
//:
//:          x ---+     +---+------------+
//:               +---> | 2 |  number    |
//:          y ---+     +---+------------+
//:
//:    Whether you access the payload through x or y, Mu knows how many
//:    bookmarks are outstanding to it. When you change x or y, the refcount
//:    transparently decrements:
//:
//:      x <- copy 0  # an address is just a number, you can always write 0 to it
//:
//:                     +---+------------+
//:          y -------> | 1 |  number    |
//:                     +---+------------+
//:
//:    The final flourish is what happens when the refcount goes down to 0: Mu
//:    reclaims the space occupied by both refcount and payload in memory, and
//:    they're ready to be reused by later calls to 'new'.
//:
//:      y <- copy 0
//:
//:                     +---+------------+
//:                     | 0 |  XXXXXXX   |
//:                     +---+------------+
//:
//: Using refcounts fixes both our problems a) and b) above: you can use
//: memory for many different purposes as many times as you want without
//: running out of memory, and you don't have to worry about ever leaving a
//: dangling bookmark when you reclaim memory.
//:
//: This layer implements creating addresses using 'new'. The next few layers
//: will flesh out the rest of the life cycle.

//: todo: give 'new' a custodian ingredient. Following malloc/free is a temporary hack.

:(scenario new)
# call 'new' two times with identical types without modifying the results; you
# should get back different results
def main [
  1:address:number/raw <- new number:type
  2:address:number/raw <- new number:type
  3:boolean/raw <- equal 1:address:number/raw, 2:address:number/raw
]
+mem: storing 0 in location 3

:(scenario dilated_reagent_with_new)
def main [
  1:address:address:number <- new {(address number): type}
]
+new: size of ("address" "number") is 1

//: 'new' takes a weird 'type' as its first ingredient; don't error on it
:(before "End Mu Types Initialization")
put(Type_ordinal);
void replace_when_sub_empty(void** state);
void replace_when_sub_null(void** state);
void replace_when_new_empty(void** state);
void replace_when_new_null(void** state);
void test_online_is_valid_resource_presence_string(void** state);
void test_chat_is_valid_resource_presence_string(void** state);
void test_away_is_valid_resource_presence_string(void** state);
void test_xa_is_valid_resource_presence_string(void** state);
void test_dnd_is_valid_resource_presence_string(void** state);
void test_available_is_not_valid_resource_presence_string(void** state);
void test_unavailable_is_not_valid_resource_presence_string(void** state);
void test_blah_is_not_valid_resource_presence_string(void** state);
void utf8_display_len_null_str(void** state);
void utf8_display_len_1_non_wide(void** state);
void utf8_display_len_1_wide(void** state);
void utf8_display_len_non_wide(void** state);
void utf8_display_len_wide(void** state);
void utf8_display_len_all_wide(void** state);
void strip_quotes_does_nothing_when_no_quoted(void** state);
void strip_quotes_strips_first(void** state);
void strip_quotes_strips_last(void** state);
void strip_quotes_strips_both(void** state);
void prof_partial_occurrences_tests(void** state);
void prof_whole_occurrences_tests(void** state);
void prof_occurrences_of_large_message_tests(void** state);
void unique_filename_from_url_td(void** state);
void format_call_external_argv_td(void** state);
iter">, "array")) return false; drop_from_type(product, "array"); } reagent/*copy*/ expected_product("x:"+inst.ingredients.at(0).name); { string_tree* tmp_type_names = parse_string_tree(expected_product.type->name); delete expected_product.type; expected_product.type = new_type_tree(tmp_type_names); delete tmp_type_names; } return types_strictly_match(product, expected_product); } void drop_from_type(reagent& r, string expected_type) { assert(!r.type->atom); if (r.type->left->name != expected_type) { raise << "can't drop2 " << expected_type << " from '" << to_string(r) << "'\n" << end(); return; } type_tree* tmp = r.type; r.type = tmp->right; tmp->right = NULL; delete tmp; } //: To implement 'new', a Mu transform turns all 'new' instructions into //: 'allocate' instructions that precompute the amount of memory they want to //: allocate. //: Ensure that we never call 'allocate' directly, and that there's no 'new' //: instructions left after the transforms have run. :(before "End Primitive Recipe Checks") case ALLOCATE: { raise << "never call 'allocate' directly'; always use 'new'\n" << end(); break; } :(before "End Primitive Recipe Implementations") case NEW: { raise << "no implementation for 'new'; why wasn't it translated to 'allocate'? Please save a copy of your program and send it to Kartik.\n" << end(); break; } :(after "Transform.push_back(check_instruction)") // check_instruction will guard against direct 'allocate' instructions below Transform.push_back(transform_new_to_allocate); // idempotent :(code) void transform_new_to_allocate(const recipe_ordinal r) { trace(9991, "transform") << "--- convert 'new' to 'allocate' for recipe " << get(Recipe, r).name << end(); for (int i = 0; i < SIZE(get(Recipe, r).steps); ++i) { instruction& inst = get(Recipe, r).steps.at(i); // Convert 'new' To 'allocate' if (inst.name == "new") { inst.operation = ALLOCATE; string_tree* type_name = new string_tree(inst.ingredients.at(0).name); type_name = parse_string_tree(type_name); type_tree* type = new_type_tree(type_name); inst.ingredients.at(0).set_value(size_of(type)); trace(9992, "new") << "size of " << to_string(type_name) << " is " << inst.ingredients.at(0).value << end(); delete type; delete type_name; } } } //: implement 'allocate' based on size :(before "End Globals") extern const int Reserved_for_tests = 1000; int Memory_allocated_until = Reserved_for_tests; int Initial_memory_per_routine = 100000; :(before "End Setup") Memory_allocated_until = Reserved_for_tests; Initial_memory_per_routine = 100000; :(before "End routine Fields") int alloc, alloc_max; :(before "End routine Constructor") alloc = Memory_allocated_until; Memory_allocated_until += Initial_memory_per_routine; alloc_max = Memory_allocated_until; trace(9999, "new") << "routine allocated memory from " << alloc << " to " << alloc_max << end(); :(before "End Primitive Recipe Declarations") ALLOCATE, :(before "End Primitive Recipe Numbers") put(Recipe_ordinal, "allocate", ALLOCATE); :(before "End Primitive Recipe Implementations") case ALLOCATE: { // compute the space we need int size = ingredients.at(0).at(0); if (SIZE(ingredients) > 1) { // array allocation trace(9999, "mem") << "array length is " << ingredients.at(1).at(0) << end(); size = /*space for length*/1 + size*ingredients.at(1).at(0); } int result = allocate(size); if (SIZE(current_instruction().ingredients) > 1) { // initialize array length trace(9999, "mem") << "storing " << ingredients.at(1).at(0) << " in location " << result+/*skip refcount*/1 << end(); put(Memory, result+/*skip refcount*/1, ingredients.at(1).at(0)); } products.resize(1); products.at(0).push_back(result); break; } :(code) int allocate(int size) { // include space for refcount ++size; trace(9999, "mem") << "allocating size " << size << end(); //? Total_alloc += size; //? ++Num_alloc; // Allocate Special-cases // compute the region of memory to return // really crappy at the moment ensure_space(size); const int result = Current_routine->alloc; trace(9999, "mem") << "new alloc: " << result << end(); // initialize allocated space for (int address = result; address < result+size; ++address) { trace(9999, "mem") << "storing 0 in location " << address << end(); put(Memory, address, 0); } Current_routine->alloc += size; // no support yet for reclaiming memory between routines assert(Current_routine->alloc <= Current_routine->alloc_max); return result; } //: statistics for debugging //? :(before "End Globals") //? int Total_alloc = 0; //? int Num_alloc = 0; //? int Total_free = 0; //? int Num_free = 0; //? :(before "End Setup") //? Total_alloc = Num_alloc = Total_free = Num_free = 0; //? :(before "End Teardown") //? cerr << Total_alloc << "/" << Num_alloc //? << " vs " << Total_free << "/" << Num_free << '\n'; //? cerr << SIZE(Memory) << '\n'; :(code) void ensure_space(int size) { if (size > Initial_memory_per_routine) { tb_shutdown(); cerr << "can't allocate " << size << " locations, that's too much compared to " << Initial_memory_per_routine << ".\n"; exit(0); } if (Current_routine->alloc + size > Current_routine->alloc_max) { // waste the remaining space and create a new chunk Current_routine->alloc = Memory_allocated_until; Memory_allocated_until += Initial_memory_per_routine; Current_routine->alloc_max = Memory_allocated_until; trace(9999, "new") << "routine allocated memory from " << Current_routine->alloc << " to " << Current_routine->alloc_max << end(); } } :(scenario new_initializes) % Memory_allocated_until = 10; % put(Memory, Memory_allocated_until, 1); def main [ 1:address:number <- new number:type ] +mem: storing 0 in location 10 :(scenario new_array) def main [ 1:address:array:number/raw <- new number:type, 5 2:address:number/raw <- new number:type 3:number/raw <- subtract 2:address:number/raw, 1:address:array:number/raw ] +run: {1: ("address" "array" "number"), "raw": ()} <- new {number: "type"}, {5: "literal"} +mem: array length is 5 # don't forget the extra location for array length, and the second extra location for the refcount +mem: storing 7 in location 3 :(scenario new_empty_array) def main [ 1:address:array:number/raw <- new number:type, 0 2:address:number/raw <- new number:type 3:number/raw <- subtract 2:address:number/raw, 1:address:array:number/raw ] +run: {1: ("address" "array" "number"), "raw": ()} <- new {number: "type"}, {0: "literal"} +mem: array length is 0 # one location for array length, and one for the refcount +mem: storing 2 in location 3 //: If a routine runs out of its initial allocation, it should allocate more. :(scenario new_overflow) % Initial_memory_per_routine = 3; // barely enough room for point allocation below def main [ 1:address:number/raw <- new number:type 2:address:point/raw <- new point:type # not enough room in initial page ] +new: routine allocated memory from 1000 to 1003 +new: routine allocated memory from 1003 to 1006