See http://akkartik.name/akkartik-convivial-20200607.pdf for the complete
story. In brief: Mu is a statement-oriented language. Blocks consist of flat
lists of instructions. Instructions can have inputs after the operation, and
outputs to the left of a '<-'. Inputs and outputs must be variables. They can't
include nested expressions. Variables can be literals ('n'), or live in a
register ('var/reg') or in memory ('var') at some 'stack-offset' from the 'ebp'
register. Outputs must be registers. To modify a variable in memory, pass it in
by reference as an input. (Inputs are more precisely called 'inouts'.)
Conversely, registers that are just read from must not be passed as inputs.
The following chart shows all the instruction forms supported by Mu, along with
the SubX instruction they're translated to.
These instructions use the general-purpose registers.
var/eax <- increment => "40/increment-eax"
var/ecx <- increment => "41/increment-ecx"
var/edx <- increment => "42/increment-edx"
var/ebx <- increment => "43/increment-ebx"
var/esi <- increment => "46/increment-esi"
var/edi <- increment => "47/increment-edi"
increment var => "ff 0/subop/increment *(ebp+" var.stack-offset ")"
increment *var/reg => "ff 0/subop/increment *" reg
var/eax <- decrement => "48/decrement-eax"
var/ecx <- decrement => "49/decrement-ecx"
var/edx <- decrement => "4a/decrement-edx"
var/ebx <- decrement => "4b/decrement-ebx"
var/esi <- decrement => "4e/decrement-esi"
var/edi <- decrement => "4f/decrement-edi"
decrement var => "ff 1/subop/decrement *(ebp+" var.stack-offset ")"
decrement *var/reg => "ff 1/subop/decrement *" reg
var/reg <- add var2/reg2 => "01/add-to %" reg " " reg2 "/r32"
var/reg <- add var2 => "03/add *(ebp+" var2.stack-offset ") " reg "/r32"
var/reg <- add *var2/reg2 => "03/add *" reg2 " " reg "/r32"
add-to var1, var2/reg => "01/add-to *(ebp+" var1.stack-offset ") " reg "/r32"
add-to *var1/reg1, var2/reg2 => "01/add-to *" reg1 " " reg2 "/r32"
var/eax <- add n => "05/add-to-eax " n "/imm32"
var/reg <- add n => "81 0/subop/add %" reg " " n "/imm32"
add-to var, n => "81 0/subop/add *(ebp+" var.stack-offset ") " n "/imm32"
add-to *var/reg, n => "81 0/subop/add *" reg " " n "/imm32"
var/reg <- subtract var2/reg2 => "29/subtract-from %" reg " " reg2 "/r32"
var/reg <- subtract var2 => "2b/subtract *(ebp+" var2.stack-offset ") " reg "/r32"
var/reg <- subtract *var2/reg2 => "2b/subtract *" reg2 " " reg1 "/r32"
subtract-from var1, var2/reg2 => "29/subtract-from *(ebp+" var1.stack-offset ") " reg2 "/r32"
subtract-from *var1/reg1, var2/reg2 => "29/subtract-from *" reg1 " " reg2 "/r32"
var/eax <- subtract n => "2d/subtract-from-eax " n "/imm32"
var/reg <- subtract n => "81 5/subop/subtract %" reg " " n "/imm32"
subtract-from var, n => "81 5/subop/subtract *(ebp+" var.stack-offset ") " n "/imm32"
subtract-from *var/reg, n => "81 5/subop/subtract *" reg " " n "/imm32"
var/reg <- and var2/reg2 => "21/and-with %" reg " " reg2 "/r32"
var/reg <- and var2 => "23/and *(ebp+" var2.stack-offset " " reg "/r32"
var/reg <- and *var2/reg2 => "23/and *" reg2 " " reg "/r32"
and-with var1, var2/reg => "21/and-with *(ebp+" var1.stack-offset ") " reg "/r32"
and-with *var1/reg1, var2/reg2 => "21/and-with *" reg1 " " reg2 "/r32"
var/eax <- and n => "25/and-with-eax " n "/imm32"
var/reg <- and n => "81 4/subop/and %" reg " " n "/imm32"
and-with var, n => "81 4/subop/and *(ebp+" var.stack-offset ") " n "/imm32"
and-with *var/reg, n => "81 4/subop/and *" reg " " n "/imm32"
var/reg <- or var2/reg2 => "09/or-with %" reg " " reg2 "/r32"
var/reg <- or var2 => "0b/or *(ebp+" var2.stack-offset ") " reg "/r32"
var/reg <- or *var2/reg2 => "0b/or *" reg2 " " reg "/r32"
or-with var1, var2/reg2 => "09/or-with *(ebp+" var1.stack-offset " " reg2 "/r32"
or-with *var1/reg1, var2/reg2 => "09/or-with *" reg1 " " reg2 "/r32"
var/eax <- or n => "0d/or-with-eax " n "/imm32"
var/reg <- or n => "81 1/subop/or %" reg " " n "/imm32"
or-with var, n => "81 1/subop/or *(ebp+" var.stack-offset ") " n "/imm32"
or-with *var/reg, n => "81 1/subop/or *" reg " " n "/imm32"
var/reg <- xor var2/reg2 => "31/xor-with %" reg " " reg2 "/r32"
var/reg <- xor var2 => "33/xor *(ebp+" var2.stack-offset ") " reg "/r32"
var/reg <- xor *var2/reg2 => "33/xor *" reg2 " " reg "/r32"
xor-with var1, var2/reg => "31/xor-with *(ebp+" var1.stack-offset ") " reg "/r32"
xor-with *var1/reg1, var2/reg2 => "31/xor-with *" reg1 " " reg2 "/r32"
var/eax <- xor n => "35/xor-with-eax " n "/imm32"
var/reg <- xor n => "81 6/subop/xor %" reg " " n "/imm32"
xor-with var, n => "81 6/subop/xor *(ebp+" var.stack-offset ") " n "/imm32"
xor-with *var/reg, n => "81 6/subop/xor *" reg " " n "/imm32"
var/reg <- negate => "f7 3/subop/negate %" reg
negate var => "f7 3/subop/negate *(ebp+" var.stack-offset ")"
negate *var/reg => "f7 3/subop/negate *" reg
var/reg <- shift-left n => "c1/shift 4/subop/left %" reg " " n "/imm32"
var/reg <- shift-right n => "c1/shift 5/subop/right %" reg " " n "/imm32"
var/reg <- shift-right-signed n => "c1/shift 7/subop/right-signed %" reg " " n "/imm32"
shift-left var, n => "c1/shift 4/subop/left *(ebp+" var.stack-offset ") " n "/imm32"
shift-left *var/reg, n => "c1/shift 4/subop/left *" reg " " n "/imm32"
shift-right var, n => "c1/shift 5/subop/right *(ebp+" var.stack-offset ") " n "/imm32"
shift-right *var/reg, n => "c1/shift 5/subop/right *" reg " " n "/imm32"
shift-right-signed var, n => "c1/shift 7/subop/right-signed *(ebp+" var.stack-offset ") " n "/imm32"
shift-right-signed *var/reg, n => "c1/shift 7/subop/right-signed *" reg " " n "/imm32"
var/eax <- copy n => "b8/copy-to-eax " n "/imm32"
var/ecx <- copy n => "b9/copy-to-ecx " n "/imm32"
var/edx <- copy n => "ba/copy-to-edx " n "/imm32"
var/ebx <- copy n => "bb/copy-to-ebx " n "/imm32"
var/esi <- copy n => "be/copy-to-esi " n "/imm32"
var/edi <- copy n => "bf/copy-to-edi " n "/imm32"
var/reg <- copy var2/reg2 => "89/<- %" reg " " reg2 "/r32"
copy-to var1, var2/reg => "89/<- *(ebp+" var1.stack-offset ") " reg "/r32"
copy-to *var1/reg1, var2/reg2 => "89/<- *" reg1 " " reg2 "/r32"
var/reg <- copy var2 => "8b/-> *(ebp+" var2.stack-offset ") " reg "/r32"
var/reg <- copy *var2/reg2 => "8b/-> *" reg2 " " reg "/r32"
var/reg <- copy n => "c7 0/subop/copy %" reg " " n "/imm32"
copy-to var, n => "c7 0/subop/copy *(ebp+" var.stack-offset ") " n "/imm32"
copy-to *var/reg, n => "c7 0/subop/copy *" reg " " n "/imm32"
var/reg <- copy-byte var2/reg2 => "8a/byte-> %" reg2 " " reg "/r32"
var/reg <- copy-byte *var2/reg2 => "8a/byte-> *" reg2 " " reg "/r32"
copy-byte-to *var1/reg1, var2/reg2 => "88/byte<- *" reg1 " " reg2 "/r32"
compare var1, var2/reg2 => "39/compare *(ebp+" var1.stack-offset ") " reg2 "/r32"
compare *var1/reg1, var2/reg2 => "39/compare *" reg1 " " reg2 "/r32"
compare var1/reg1, var2 => "3b/compare<- *(ebp+" var2.stack-offset ") " reg1 "/r32"
compare var/reg, *var2/reg2 => "3b/compare<- *" reg " " n "/imm32"
compare var/eax, n => "3d/compare-eax-with " n "/imm32"
compare var/reg, n => "81 7/subop/compare %" reg " " n "/imm32"
compare var, n => "81 7/subop/compare *(ebp+" var.stack-offset ") " n "/imm32"
compare *var/reg, n => "81 7/subop/compare *" reg " " n "/imm32"
var/reg <- multiply var2 => "0f af/multiply *(ebp+" var2.stack-offset ") " reg "/r32"
var/reg <- multiply *var2/reg2 => "0f af/multiply *" reg2 " " reg "/r32"
These instructions operate on either floating-point registers (xreg) or
general-purpose registers (reg) in indirect mode.
var/xreg <- add var2/xreg2 => "f3 0f 58/add %" xreg2 " " xreg1 "/x32"
var/xreg <- add var2 => "f3 0f 58/add *(ebp+" var2.stack-offset ") " xreg "/x32"
var/xreg <- add *var2/reg2 => "f3 0f 58/add *" reg2 " " xreg "/x32"
var/xreg <- subtract var2/xreg2 => "f3 0f 5c/subtract %" xreg2 " " xreg1 "/x32"
var/xreg <- subtract var2 => "f3 0f 5c/subtract *(ebp+" var2.stack-offset ") " xreg "/x32"
var/xreg <- subtract *var2/reg2 => "f3 0f 5c/subtract *" reg2 " " xreg "/x32"
var/xreg <- multiply var2/xreg2 => "f3 0f 59/multiply %" xreg2 " " xreg1 "/x32"
var/xreg <- multiply var2 => "f3 0f 59/multiply *(ebp+" var2.stack-offset ") " xreg "/x32"
var/xreg <- multiply *var2/reg2 => "f3 0f 59/multiply *" reg2 " " xreg "/x32"
var/xreg <- divide var2/xreg2 => "f3 0f 5e/divide %" xreg2 " " xreg1 "/x32"
var/xreg <- divide var2 => "f3 0f 5e/divide *(ebp+" var2.stack-offset ") " xreg "/x32"
var/xreg <- divide *var2/reg2 => "f3 0f 5e/divide *" reg2 " " xreg "/x32"
There are also some exclusively floating-point instructions:
var/xreg <- reciprocal var2/xreg2 => "f3 0f 53/reciprocal %" xreg2 " " xreg1 "/x32"
var/xreg <- reciprocal var2 => "f3 0f 53/reciprocal *(ebp+" var2.stack-offset ") " xreg "/x32"
var/xreg <- reciprocal *var2/reg2 => "f3 0f 53/reciprocal *" reg2 " " xreg "/x32"
var/xreg <- square-root var2/xreg2 => "f3 0f 51/square-root %" xreg2 " " xreg1 "/x32"
var/xreg <- square-root var2 => "f3 0f 51/square-root *(ebp+" var2.stack-offset ") " xreg "/x32"
var/xreg <- square-root *var2/reg2 => "f3 0f 51/square-root *" reg2 " " xreg "/x32"
var/xreg <- inverse-square-root var2/xreg2 => "f3 0f 52/inverse-square-root %" xreg2 " " xreg1 "/x32"
var/xreg <- inverse-square-root var2 => "f3 0f 52/inverse-square-root *(ebp+" var2.stack-offset ") " xreg "/x32"
var/xreg <- inverse-square-root *var2/reg2 => "f3 0f 52/inverse-square-root *" reg2 " " xreg "/x32"
var/xreg <- min var2/xreg2 => "f3 0f 5d/min %" xreg2 " " xreg1 "/x32"
var/xreg <- min var2 => "f3 0f 5d/min *(ebp+" var2.stack-offset ") " xreg "/x32"
var/xreg <- min *var2/reg2 => "f3 0f 5d/min *" reg2 " " xreg "/x32"
var/xreg <- max var2/xreg2 => "f3 0f 5f/max %" xreg2 " " xreg1 "/x32"
var/xreg <- max var2 => "f3 0f 5f/max *(ebp+" var2.stack-offset ") " xreg "/x32"
var/xreg <- max *var2/reg2 => "f3 0f 5f/max *" reg2 " " xreg "/x32"
Remember, when these instructions use indirect mode, they still use an integer
register. Floating-point registers can't hold addresses.
Most instructions operate exclusively on integer or floating-point operands.
The only exceptions are the instructions for converting between integers and
floating-point numbers.
var/xreg <- convert var2/reg2 => "f3 0f 2a/convert-to-float %" reg2 " " xreg "/x32"
var/xreg <- convert var2 => "f3 0f 2a/convert-to-float *(ebp+" var2.stack-offset ") " xreg "/x32"
var/xreg <- convert *var2/reg2 => "f3 0f 2a/convert-to-float *" reg2 " " xreg "/x32"
Converting floats to ints performs rounding by default. (We don't mess with the
MXCSR control register.)
var/reg <- convert var2/xreg2 => "f3 0f 2d/convert-to-int %" xreg2 " " reg "/r32"
var/reg <- convert var2 => "f3 0f 2d/convert-to-int *(ebp+" var2.stack-offset ") " reg "/r32"
var/reg <- convert *var2/reg2 => "f3 0f 2d/convert-to-int *" reg2 " " reg "/r32"
There's a separate instruction for truncating the fractional part.
var/reg <- truncate var2/xreg2 => "f3 0f 2c/truncate-to-int %" xreg2 " " reg "/r32"
var/reg <- truncate var2 => "f3 0f 2c/truncate-to-int *(ebp+" var2.stack-offset ") " reg "/r32"
var/reg <- truncate *var2/reg2 => "f3 0f 2c/truncate-to-int *" reg2 " " reg "/r32"
There are no instructions accepting floating-point literals. To obtain integer
literals in floating-point registers, copy them to general-purpose registers
and then convert them to floating-point.
One pattern you may have noticed above is that the floating-point instructions
above always write to registers. The only exceptions are `copy` instructions,
which can write to memory locations.
var/xreg <- copy var2/xreg2 => "f3 0f 11/<- %" xreg " " xreg2 "/x32"
copy-to var1, var2/xreg => "f3 0f 11/<- *(ebp+" var1.stack-offset ") " xreg "/x32"
var/xreg <- copy var2 => "f3 0f 10/-> *(ebp+" var2.stack-offset ") " xreg "/x32"
var/xreg <- copy *var2/reg2 => "f3 0f 10/-> *" reg2 " " xreg "/x32"
Comparisons must always start with a register:
compare var1/xreg1, var2/xreg2 => "0f 2f/compare %" xreg2 " " xreg1 "/x32"
compare var1/xreg1, var2 => "0f 2f/compare *(ebp+" var2.stack-offset ") " xreg1 "/x32"
In themselves, blocks generate no instructions. However, if a block contains
variable declarations, they must be cleaned up when the block ends.
Clean up var on the stack => "81 0/subop/add %esp " size-of(var) "/imm32"
Clean up var/reg => "8f 0/subop/pop %" reg
Clean up var/xreg => "f3 0f 10/-> *esp " xreg "/x32"
"81 0/subop/add %esp 4/imm32"
Besides having to clean up any variable declarations (see above) between
themselves and their target, jumps translate like this:
break => "e9/jump break/disp32"
break label => "e9/jump " label ":break/disp32"
loop => "e9/jump loop/disp32"
loop label => "e9/jump " label ":loop/disp32"
break-if-= => "0f 84/jump-if-= break/disp32"
break-if-= label => "0f 84/jump-if-= " label ":break/disp32"
loop-if-= => "0f 84/jump-if-= loop/disp32"
loop-if-= label => "0f 84/jump-if-= " label ":loop/disp32"
break-if-!= => "0f 85/jump-if-!= break/disp32"
break-if-!= label => "0f 85/jump-if-!= " label ":break/disp32"
loop-if-!= => "0f 85/jump-if-!= loop/disp32"
loop-if-!= label => "0f 85/jump-if-!= " label ":loop/disp32"
break-if-< => "0f 8c/jump-if-< break/disp32"
break-if-< label => "0f 8c/jump-if-< " label ":break/disp32"
loop-if-< => "0f 8c/jump-if-< loop/disp32"
loop-if-< label => "0f 8c/jump-if-< " label ":loop/disp32"
break-if-> => "0f 8f/jump-if-> break/disp32"
break-if-> label => "0f 8f/jump-if-> " label ":break/disp32"
loop-if-> => "0f 8f/jump-if-> loop/disp32"
loop-if-> label => "0f 8f/jump-if-> " label ":loop/disp32"
break-if-<= => "0f 8e/jump-if-<= break/disp32"
break-if-<= label => "0f 8e/jump-if-<= " label ":break/disp32"
loop-if-<= => "0f 8e/jump-if-<= loop/disp32"
loop-if-<= label => "0f 8e/jump-if-<= " label ":loop/disp32"
break-if->= => "0f 8d/jump-if->= break/disp32"
break-if->= label => "0f 8d/jump-if->= " label ":break/disp32"
loop-if->= => "0f 8d/jump-if->= loop/disp32"
loop-if->= label => "0f 8d/jump-if->= " label ":loop/disp32"
break-if-addr< => "0f 82/jump-if-addr< break/disp32"
break-if-addr< label => "0f 82/jump-if-addr< " label ":break/disp32"
loop-if-addr< => "0f 82/jump-if-addr< loop/disp32"
loop-if-addr< label => "0f 82/jump-if-addr< " label ":loop/disp32"
break-if-addr> => "0f 87/jump-if-addr> break/disp32"
break-if-addr> label => "0f 87/jump-if-addr> " label ":break/disp32"
loop-if-addr> => "0f 87/jump-if-addr> loop/disp32"
loop-if-addr> label => "0f 87/jump-if-addr> " label ":loop/disp32"
break-if-addr<= => "0f 86/jump-if-addr<= break/disp32"
break-if-addr<= label => "0f 86/jump-if-addr<= " label ":break/disp32"
loop-if-addr<= => "0f 86/jump-if-addr<= loop/disp32"
loop-if-addr<= label => "0f 86/jump-if-addr<= " label ":loop/disp32"
break-if-addr>= => "0f 83/jump-if-addr>= break/disp32"
break-if-addr>= label => "0f 83/jump-if-addr>= " label ":break/disp32"
loop-if-addr>= => "0f 83/jump-if-addr>= loop/disp32"
loop-if-addr>= label => "0f 83/jump-if-addr>= " label ":loop/disp32"
Similar float variants like `break-if-float<` are aliases for the corresponding
`addr` equivalents. The x86 instruction set stupidly has floating-point
operations only update a subset of flags.
The `return` instruction cleans up variable declarations just like an unconditional
`jump` to end of function, but also emits a series of copies before the final
`jump`, copying each argument of `return` to the register appropriate to the
respective function output. This doesn't work if a function output register
contains a later `return` argument (e.g. if the registers for two outputs are
swapped in `return`), so you can't do that.
return => "c3/return"
---
In the following instructions types are provided for clarity even if they must
be provided in an earlier 'var' declaration.
var/reg: (addr T) <- address var2: T
=> "8d/copy-address *(ebp+" var2.stack-offset ") " reg "/r32"
var/reg: (addr T) <- index arr/rega: (addr array T), idx/regi: int
| if size-of(T) is 1, 2, 4 or 8
=> "(__check-mu-array-bounds *" rega " %" regi " " size-of(T) ")"
"8d/copy-address *(" rega "+" regi "<<" log2(size-of(T)) "+4) " reg "/r32"
var/reg: (addr T) <- index arr: (array T len), idx/regi: int
=> "(__check-mu-array-bounds *(ebp+" arr.stack-offset ") %" regi " " size-of(T) ")"
"8d/copy-address *(ebp+" regi "<<" log2(size-of(T)) "+" (arr.stack-offset + 4) ") " reg "/r32"
var/reg: (addr T) <- index arr/rega: (addr array T), n
=> "(__check-mu-array-bounds *" rega " " n " " size-of(T) ")"
"8d/copy-address *(" rega "+" (n*size-of(T)+4) ") " reg "/r32"
var/reg: (addr T) <- index arr: (array T len), n
=> "(__check-mu-array-bounds *(ebp+" arr.stack-offset ") " n " " size-of(T) ")"
"8d/copy-address *(ebp+" (arr.stack-offset+4+n*size-of(T)) ") " reg "/r32"
var/reg: (offset T) <- compute-offset arr: (addr array T), idx/regi: int
=> "69/multiply %" regi " " size-of(T) "/imm32 " reg "/r32"
var/reg: (offset T) <- compute-offset arr: (addr array T), idx: int
=> "69/multiply *(ebp+" idx.stack-offset ") " size-of(T) "/imm32 " reg "/r32"
var/reg: (addr T) <- index arr/rega: (addr array T), o/rego: (offset T)
=> "(__check-mu-array-bounds %" rega " %" rego " 1 \"" function-name "\")"
"8d/copy-address *(" rega "+" rego "+4) " reg "/r32"
Computing the length of an array is complex.
var/reg: int <- length arr/reg2: (addr array T)
| if T is byte (TODO)
=> "8b/-> *" reg2 " " reg "/r32"
| if size-of(T) is 4 or 8 or 16 or 32 or 64 or 128
=> "8b/-> *" reg2 " " reg "/r32"
"c1/shift 5/subop/logic-right %" reg " " log2(size-of(T)) "/imm8"
| otherwise
x86 has no instruction to divide by a literal, so
we need up to 3 extra registers! eax/edx for division and say ecx
=> if reg is not eax
"50/push-eax"
if reg is not ecx
"51/push-ecx"
if reg is not edx
"52/push-edx"
"8b/-> *" reg2 " eax/r32"
"31/xor %edx 2/r32/edx"
"b9/copy-to-ecx " size-of(T) "/imm32"
"f7 7/subop/idiv-eax-edx-by %ecx"
if reg is not eax
"89/<- %" reg " 0/r32/eax"
if reg is not edx
"5a/pop-to-edx"
if reg is not ecx
"59/pop-to-ecx"
if reg is not eax
"58/pop-to-eax"
If a record (product) type T was defined to have elements a, b, c, ... of
types T_a, T_b, T_c, ..., then accessing one of those elements f of type T_f:
var/reg: (addr T_f) <- get var2/reg2: (addr T), f
=> "8d/copy-address *(" reg2 "+" offset(f) ") " reg "/r32"
var/reg: (addr T_f) <- get var2: T, f
=> "8d/copy-address *(ebp+" var2.stack-offset "+" offset(f) ") " reg "/r32"
allocate in: (addr handle T)
=> "(allocate Heap " size-of(T) " " in ")"
populate in: (addr handle array T), num
=> "(allocate-array2 Heap " size-of(T) " " num " " in ")"
populate-stream in: (addr handle stream T), num
=> "(new-stream Heap " size-of(T) " " num " " in ")"
clear x: (addr T)
=> "(zero-out " s " " size-of(T) ")"
read-from-stream s: (addr stream T), out: (addr T)
=> "(read-from-stream " s " " out " " size-of(T) ")"
write-to-stream s: (addr stream T), in: (addr T)
=> "(write-to-stream " s " " in " " size-of(T) ")"
vim:ft=mu:nowrap:textwidth=0