https://github.com/akkartik/mu/blob/master/subx/010---vm.cc
1
2
3
4
5
6
7
8
9
10
11 :(before "End Types")
12 enum {
13 EAX,
14 ECX,
15 EDX,
16 EBX,
17 ESP,
18 EBP,
19 ESI,
20 EDI,
21 NUM_INT_REGISTERS,
22 };
23 union reg {
24 int32_t i;
25 uint32_t u;
26 };
27 :(before "End Globals")
28 reg Reg[NUM_INT_REGISTERS] = { {0} };
29 uint32_t EIP = 1;
30 :(before "End Reset")
31 bzero(Reg, sizeof(Reg));
32 EIP = 1;
33
34 :(before "End Help Contents")
35 cerr << " registers\n";
36 :(before "End Help Texts")
37 put_new(Help, "registers",
38 "SubX currently supports eight 32-bit integer registers. From 0 to 7, they are:\n"
39 " EAX ECX EDX EBX ESP EBP ESI EDI\n"
40 "ESP contains the top of the stack.\n"
41 "\n"
42 "-- 8-bit registers\n"
43 "Some instructions operate on eight *overlapping* 8-bit registers.\n"
44 "From 0 to 7, they are:\n"
45 " AL CL DL BL AH CH DH BH\n"
46 "The 8-bit registers overlap with the 32-bit ones. AL is the lowest signicant byte\n"
47 "of EAX, AH is the second lowest significant byte, and so on.\n"
48 "\n"
49 "For example, if EBX contains 0x11223344, then BL contains 0x44, and BH contains 0x33.\n"
50 "\n"
51 "There is no way to access bytes within ESP, EBP, ESI or EDI.\n"
52 "\n"
53 "For complete details consult the IA-32 software developer's manual, volume 2,\n"
54 "table 2-2, \"32-bit addressing forms with the ModR/M byte\".\n"
55 "It is included in this repository as 'modrm.pdf'.\n"
56 "The register encodings are described in the top row of the table, but you'll need\n"
57 "to spend some time with it.\n"
58 "\n"
59 "-- flag registers\n"
60 "Various instructions (particularly 'compare') modify one or more of three 1-bit 'flag'\n"
61 "registers, as a side-effect:\n"
62 "- the sign flag (SF): usually set if an arithmetic result is negative, or\n"
63 " reset if not.\n"
64 "- the zero flag (ZF): usually set if a result is zero, or reset if not.\n"
65 "- the carry flag (CF): usually set if an arithmetic result overflows by just one bit.\n"
66 " Useful for operating on unsigned numbers.\n"
67 "- the overflow flag (OF): usually set if an arithmetic result overflows by more than one bit.\n"
68 " Useful for operating on signed numbers.\n"
69 "The flag bits are read by conditional jumps.\n"
70 "\n"
71 "For complete details on how different instructions update the flags, consult the IA-32\n"
72 "manual (volume 2). There's various versions of it online, such as https://c9x.me/x86,\n"
73 "though of course you'll need to be careful to ignore instructions and flag registers\n"
74 "that SubX doesn't support.\n"
75 "\n"
76 "It isn't simple, but if this is the processor you have running on your computer,\n"
77 "might as well get good at it.\n"
78 );
79
80 :(before "End Globals")
81
82 bool SF = false;
83 bool ZF = false;
84 bool CF = false;
85 bool OF = false;
86 :(before "End Reset")
87 SF = ZF = CF = OF = false;
88
89
90
91 :(before "End Types")
92 const uint32_t SEGMENT_ALIGNMENT = 0x1000000;
93 inline uint32_t align_upwards(uint32_t x, uint32_t align) {
94 return (x+align-1) & -(align);
95 }
96
97
98
99 struct vma {
100 uint32_t start;
101 uint32_t end;
102 vector<uint8_t> _data;
103 vma(uint32_t s, uint32_t e) :start(s), end(e) {}
104 vma(uint32_t s) :start(s), end(align_upwards(s+1, SEGMENT_ALIGNMENT)) {}
105 bool match(uint32_t a) {
106 return a >= start && a < end;
107 }
108 bool match32(uint32_t a) {
109 return a >= start && a+4 <= end;
110 }
111 uint8_t& data(uint32_t a) {
112 assert(match(a));
113 uint32_t result_index = a-start;
114 if (_data.size() <= result_index) {
115 const int align = 0x1000;
116 uint32_t result_size = result_index + 1;
117 uint32_t new_size = align_upwards(result_size, align);
118
119 if (new_size < _data.size() * 2)
120 new_size = _data.size() * 2;
121
122 if (new_size > end-start)
123 new_size = end-start;
124 _data.resize(new_size);
125 }
126 return _data.at(result_index);
127 }
128 void grow_until(uint32_t new_end_address) {
129 if (new_end_address < end) return;
130
131 void sanity_check(uint32_t start, uint32_t end);
132 sanity_check(start, new_end_address);
133 end = new_end_address;
134 }
135
136 };
137 :(code)
138 void sanity_check(uint32_t start, uint32_t end) {
139 bool dup_found = false;
140 for (int i = 0; i < SIZE(Mem); ++i) {
141 const vma& curr = Mem.at(i);
142 if (curr.start == start) {
143 assert(!dup_found);
144 dup_found = true;
145 }
146 else if (curr.start > start) {
147 assert(curr.start > end);
148 }
149 else if (curr.start < start) {
150 assert(curr.end < start);
151 }
152 }
153 }
154
155 :(before "End Globals")
156
157 vector<vma> Mem;
158 :(code)
159
160
161
162 void grow_code_segment(uint32_t new_end_address) {
163 assert(!Mem.empty());
164 Mem.at(0).grow_until(new_end_address);
165 }
166 void grow_data_segment(uint32_t new_end_address) {
167 assert(SIZE(Mem) > 1);
168 Mem.at(1).grow_until(new_end_address);
169 }
170 :(before "End Globals")
171 uint32_t End_of_program = 0;
172
173 :(before "End Reset")
174 Mem.clear();
175 End_of_program = 0;
176 :(code)
177
178
179 inline uint8_t read_mem_u8(uint32_t addr) {
180 uint8_t* handle = mem_addr_u8(addr);
181 return handle ? *handle : 0;
182 }
183 inline int8_t read_mem_i8(uint32_t addr) {
184 return static_cast<int8_t>(read_mem_u8(addr));
185 }
186 inline uint32_t read_mem_u32(uint32_t addr) {
187 uint32_t* handle = mem_addr_u32(addr);
188 return handle ? *handle : 0;
189 }
190 inline int32_t read_mem_i32(uint32_t addr) {
191 return static_cast<int32_t>(read_mem_u32(addr));
192 }
193
194 inline uint8_t* mem_addr_u8(uint32_t addr) {
195 uint8_t* result = NULL;
196 for (int i = 0; i < SIZE(Mem); ++i) {
197 if (Mem.at(i).match(addr)) {
198 if (result)
199 raise << "address 0x" << HEXWORD << addr << " is in two segments\n" << end();
200 result = &Mem.at(i).data(addr);
201 }
202 }
203 if (result == NULL) {
204 if (Trace_file) Trace_file.flush();
205 raise << "Tried to access uninitialized memory at address 0x" << HEXWORD << addr << '\n' << end();
206 exit(1);
207 }
208 return result;
209 }
210 inline int8_t* mem_addr_i8(uint32_t addr) {
211 return reinterpret_cast<int8_t*>(mem_addr_u8(addr));
212 }
213 inline uint32_t* mem_addr_u32(uint32_t addr) {
214 uint32_t* result = NULL;
215 for (int i = 0; i < SIZE(Mem); ++i) {
216 if (Mem.at(i).match32(addr)) {
217 if (result)
218 raise << "address 0x" << HEXWORD << addr << " is in two segments\n" << end();
219 result = reinterpret_cast<uint32_t*>(&Mem.at(i).data(addr));
220 }
221 }
222 if (result == NULL) {
223 if (Trace_file) Trace_file.flush();
224 raise << "Tried to access uninitialized memory at address 0x" << HEXWORD << addr << '\n' << end();
225 raise << "The entire 4-byte word should be initialized and lie in a single segment.\n" << end();
226 exit(1);
227 }
228 return result;
229 }
230 inline int32_t* mem_addr_i32(uint32_t addr) {
231 return reinterpret_cast<int32_t*>(mem_addr_u32(addr));
232 }
233
234 inline const char* mem_addr_kernel_string(uint32_t addr) {
235 return reinterpret_cast<const char*>(mem_addr_u8(addr));
236 }
237 inline string mem_addr_string(uint32_t addr, uint32_t size) {
238 ostringstream out;
239 for (size_t i = 0; i < size; ++i)
240 out << read_mem_u8(addr+i);
241 return out.str();
242 }
243
244
245 inline void write_mem_u8(uint32_t addr, uint8_t val) {
246 uint8_t* handle = mem_addr_u8(addr);
247 if (handle != NULL) *handle = val;
248 }
249 inline void write_mem_i8(uint32_t addr, int8_t val) {
250 int8_t* handle = mem_addr_i8(addr);
251 if (handle != NULL) *handle = val;
252 }
253 inline void write_mem_u32(uint32_t addr, uint32_t val) {
254 uint32_t* handle = mem_addr_u32(addr);
255 if (handle != NULL) *handle = val;
256 }
257 inline void write_mem_i32(uint32_t addr, int32_t val) {
258 int32_t* handle = mem_addr_i32(addr);
259 if (handle != NULL) *handle = val;
260 }
261
262 inline bool already_allocated(uint32_t addr) {
263 bool result = false;
264 for (int i = 0; i < SIZE(Mem); ++i) {
265 if (Mem.at(i).match(addr)) {
266 if (result)
267 raise << "address 0x" << HEXWORD << addr << " is in two segments\n" << end();
268 result = true;
269 }
270 }
271 return result;
272 }
273
274
275
276 :(code)
277
278 void run_one_instruction() {
279 uint8_t op=0, op2=0, op3=0;
280
281 if (Trace_file) {
282 dump_registers();
283
284 }
285 uint32_t inst_start_address = EIP;
286 op = next();
287 trace(Callstack_depth+1, "run") << "0x" << HEXWORD << inst_start_address << " opcode: " << HEXBYTE << NUM(op) << end();
288 switch (op) {
289 case 0xf4:
290 EIP = End_of_program;
291 break;
292
293 case 0x0f:
294 switch(op2 = next()) {
295
296 default:
297 cerr << "unrecognized second opcode after 0f: " << HEXBYTE << NUM(op2) << '\n';
298 exit(1);
299 }
300 break;
301 case 0xf2:
302 switch(op2 = next()) {
303
304 case 0x0f:
305 switch(op3 = next()) {
306
307 default:
308 cerr << "unrecognized third opcode after f2 0f: " << HEXBYTE << NUM(op3) << '\n';
309 exit(1);
310 }
311 break;
312 default:
313 cerr << "unrecognized second opcode after f2: " << HEXBYTE << NUM(op2) << '\n';
314 exit(1);
315 }
316 break;
317 case 0xf3:
318 switch(op2 = next()) {
319
320 case 0x0f:
321 switch(op3 = next()) {
322
323 default:
324 cerr << "unrecognized third opcode after f3 0f: " << HEXBYTE << NUM(op3) << '\n';
325 exit(1);
326 }
327 break;
328 default:
329 cerr << "unrecognized second opcode after f3: " << HEXBYTE << NUM(op2) << '\n';
330 exit(1);
331 }
332 break;
333 default:
334 cerr << "unrecognized opcode: " << HEXBYTE << NUM(op) << '\n';
335 exit(1);
336 }
337 }
338
339 inline uint8_t next() {
340 return read_mem_u8(EIP++);
341 }
342
343 void dump_registers() {
344 ostringstream out;
345 out << "registers before: ";
346 for (int i = 0; i < NUM_INT_REGISTERS; ++i) {
347 if (i > 0) out << "; ";
348 out << " " << i << ": " << std::hex << std::setw(8) << std::setfill('_') << Reg[i].u;
349 }
350 out << " -- SF: " << SF << "; ZF: " << ZF << "; CF: " << CF << "; OF: " << OF;
351 trace(Callstack_depth+1, "run") << out.str() << end();
352 }
353
354
355 :(before "End Globals")
356 map<string, string> Name;
357 map<string, string> Name_0f;
358 map<string, string> Name_f3;
359 map<string, string> Name_f3_0f;
360 :(before "End One-time Setup")
361 init_op_names();
362 :(code)
363 void init_op_names() {
364 put(Name, "f4", "halt (hlt)");
365
366 }
367
368 :(before "End Help Special-cases(key)")
369 if (key == "opcodes") {
370 cerr << "Opcodes currently supported by SubX:\n";
371 for (map<string, string>::iterator p = Name.begin(); p != Name.end(); ++p)
372 cerr << " " << p->first << ": " << p->second << '\n';
373 for (map<string, string>::iterator p = Name_0f.begin(); p != Name_0f.end(); ++p)
374 cerr << " 0f " << p->first << ": " << p->second << '\n';
375 for (map<string, string>::iterator p = Name_f3.begin(); p != Name_f3.end(); ++p)
376 cerr << " f3 " << p->first << ": " << p->second << '\n';
377 for (map<string, string>::iterator p = Name_f3_0f.begin(); p != Name_f3_0f.end(); ++p)
378 cerr << " f3 0f " << p->first << ": " << p->second << '\n';
379 cerr << "Run `subx help instructions` for details on words like 'r32' and 'disp8'.\n"
380 "For complete details on these instructions, consult the IA-32 manual (volume 2).\n"
381 "There's various versions of it online, such as https://c9x.me/x86.\n"
382 "The mnemonics in brackets will help you locate each instruction.\n";
383 return 0;
384 }
385 :(before "End Help Contents")
386 cerr << " opcodes\n";
387
388
389
390
391
392
393
394
395
396
397
398
399
400 :(before "End Globals")
401 extern const int Initial_callstack_depth = 2;
402 int Callstack_depth = Initial_callstack_depth;
403 :(before "End Reset")
404 Callstack_depth = Initial_callstack_depth;
405
406 :(before "End Includes")
407 #include <iomanip>
408 #define HEXBYTE std::hex << std::setw(2) << std::setfill('0')
409 #define HEXWORD std::hex << std::setw(8) << std::setfill('0')
410
411 #define NUM(X) static_cast<int>(X)
412 #include <stdint.h>