https://github.com/akkartik/mu/blob/master/subx/010---vm.cc
  1 //: Core data structures for simulating the SubX VM (subset of an x86 processor)
  2 //:
  3 //: At the lowest level ("level 1") of abstraction, SubX executes x86
  4 //: instructions provided in the form of an array of bytes, loaded into memory
  5 //: starting at a specific address.
  6 
  7 //:: registers
  8 //: assume segment registers are hard-coded to 0
  9 //: no floating-point, MMX, etc. yet
 10 
 11 :(before "End Types")
 12 enum {
 13   EAX,
 14   ECX,
 15   EDX,
 16   EBX,
 17   ESP,
 18   EBP,
 19   ESI,
 20   EDI,
 21   NUM_INT_REGISTERS,
 22 };
 23 union reg {
 24   int32_t i;
 25   uint32_t u;
 26 };
 27 :(before "End Globals")
 28 reg Reg[NUM_INT_REGISTERS] = { {0} };
 29 uint32_t EIP = 1;  // preserve null pointer
 30 :(before "End Reset")
 31 bzero(Reg, sizeof(Reg));
 32 EIP = 1;  // preserve null pointer
 33 
 34 :(before "End Help Contents")
 35 cerr << "  registers\n";
 36 :(before "End Help Texts")
 37 put_new(Help, "registers",
 38   "SubX currently supports eight 32-bit integer registers. From 0 to 7, they are:\n"
 39   "  EAX ECX EDX EBX ESP EBP ESI EDI\n"
 40   "ESP contains the top of the stack.\n"
 41   "\n"
 42   "-- 8-bit registers\n"
 43   "Some instructions operate on eight *overlapping* 8-bit registers.\n"
 44   "From 0 to 7, they are:\n"
 45   "  AL CL DL BL AH CH DH BH\n"
 46   "The 8-bit registers overlap with the 32-bit ones. AL is the lowest signicant byte\n"
 47   "of EAX, AH is the second lowest significant byte, and so on.\n"
 48   "\n"
 49   "For example, if EBX contains 0x11223344, then BL contains 0x44, and BH contains 0x33.\n"
 50   "\n"
 51   "There is no way to access bytes within ESP, EBP, ESI or EDI.\n"
 52   "\n"
 53   "For complete details consult the IA-32 software developer's manual, volume 2,\n"
 54   "table 2-2, \"32-bit addressing forms with the ModR/M byte\".\n"
 55   "It is included in this repository as 'modrm.pdf'.\n"
 56   "The register encodings are described in the top row of the table, but you'll need\n"
 57   "to spend some time with it.\n"
 58   "\n"
 59   "-- flag registers\n"
 60   "Various instructions (particularly 'compare') modify one or more of three 1-bit 'flag'\n"
 61   "registers, as a side-effect:\n"
 62   "- the sign flag (SF): usually set if an arithmetic result is negative, or\n"
 63   "  reset if not.\n"
 64   "- the zero flag (ZF): usually set if a result is zero, or reset if not.\n"
 65   "- the carry flag (CF): usually set if an arithmetic result overflows by just one bit.\n"
 66   "  Useful for operating on unsigned numbers.\n"
 67   "- the overflow flag (OF): usually set if an arithmetic result overflows by more than one bit.\n"
 68   "  Useful for operating on signed numbers.\n"
 69   "The flag bits are read by conditional jumps.\n"
 70   "\n"
 71   "For complete details on how different instructions update the flags, consult the IA-32\n"
 72   "manual (volume 2). There's various versions of it online, such as https://c9x.me/x86,\n"
 73   "though of course you'll need to be careful to ignore instructions and flag registers\n"
 74   "that SubX doesn't support.\n"
 75   "\n"
 76   "It isn't simple, but if this is the processor you have running on your computer,\n"
 77   "might as well get good at it.\n"
 78 );
 79 
 80 :(before "End Globals")
 81 // the subset of x86 flag registers we care about
 82 bool SF = false;  // sign flag
 83 bool ZF = false;  // zero flag
 84 bool CF = false;  // carry flag
 85 bool OF = false;  // overflow flag
 86 :(before "End Reset")
 87 SF = ZF = CF = OF = false;
 88 
 89 //:: simulated RAM
 90 
 91 :(before "End Types")
 92 const uint32_t SEGMENT_ALIGNMENT = 0x1000000;  // 16MB
 93 inline uint32_t align_upwards(uint32_t x, uint32_t align) {
 94   return (x+align-1) & -(align);
 95 }
 96 
 97 // Like in real-world Linux, we'll allocate RAM for our programs in disjoint
 98 // slabs called VMAs or Virtual Memory Areas.
 99 struct vma {
100   uint32_t start;  // inclusive
101   uint32_t end;  // exclusive
102   vector<uint8_t> _data;
103   vma(uint32_t s, uint32_t e) :start(s), end(e) {}
104   vma(uint32_t s) :start(s), end(align_upwards(s+1, SEGMENT_ALIGNMENT)) {}
105   bool match(uint32_t a) {
106     return a >= start && a < end;
107   }
108   bool match32(uint32_t a) {
109     return a >= start && a+4 <= end;
110   }
111   uint8_t& data(uint32_t a) {
112     assert(match(a));
113     uint32_t result_index = a-start;
114     if (_data.size() <= result_index) {
115       const int align = 0x1000;
116       uint32_t result_size = result_index + 1;  // size needed for result_index to be valid
117       uint32_t new_size = align_upwards(result_size, align);
118       // grow at least 2x to maintain some amortized complexity guarantees
119       if (new_size < _data.size() * 2)
120         new_size = _data.size() * 2;
121       // never grow past the stated limit
122       if (new_size > end-start)
123         new_size = end-start;
124       _data.resize(new_size);
125     }
126     return _data.at(result_index);
127   }
128   void grow_until(uint32_t new_end_address) {
129     if (new_end_address < end) return;
130     // Ugly: vma knows about the global Memory list of vmas
131     void sanity_check(uint32_t start, uint32_t end);
132     sanity_check(start, new_end_address);
133     end = new_end_address;
134   }
135   // End vma Methods
136 };
137 :(code)
138 void sanity_check(uint32_t start, uint32_t end) {
139   bool dup_found = false;
140   for (int i = 0;  i < SIZE(Mem);  ++i) {
141     const vma& curr = Mem.at(i);
142     if (curr.start == start) {
143       assert(!dup_found);
144       dup_found = true;
145     }
146     else if (curr.start > start) {
147       assert(curr.start > end);
148     }
149     else if (curr.start < start) {
150       assert(curr.end < start);
151     }
152   }
153 }
154 
155 :(before "End Globals")
156 // RAM is made of VMAs.
157 vector<vma> Mem;
158 :(code)
159 // The first 3 VMAs are special. When loading ELF binaries in later layers,
160 // we'll assume that the first VMA is for code, the second is for data
161 // (including the heap), and the third for the stack.
162 void grow_code_segment(uint32_t new_end_address) {
163   assert(!Mem.empty());
164   Mem.at(0).grow_until(new_end_address);
165 }
166 void grow_data_segment(uint32_t new_end_address) {
167   assert(SIZE(Mem) > 1);
168   Mem.at(1).grow_until(new_end_address);
169 }
170 :(before "End Globals")
171 uint32_t End_of_program = 0;  // when the program executes past this address in tests we'll stop the test
172 // The stack grows downward. Can't increase its size for now.
173 :(before "End Reset")
174 Mem.clear();
175 End_of_program = 0;
176 :(code)
177 // These helpers depend on Mem being laid out contiguously (so you can't use a
178 // map, etc.) and on the host also being little-endian.
179 inline uint8_t read_mem_u8(uint32_t addr) {
180   uint8_t* handle = mem_addr_u8(addr);  // error messages get printed here
181   return handle ? *handle : 0;
182 }
183 inline int8_t read_mem_i8(uint32_t addr) {
184   return static_cast<int8_t>(read_mem_u8(addr));
185 }
186 inline uint32_t read_mem_u32(uint32_t addr) {
187   uint32_t* handle = mem_addr_u32(addr);  // error messages get printed here
188   return handle ? *handle : 0;
189 }
190 inline int32_t read_mem_i32(uint32_t addr) {
191   return static_cast<int32_t>(read_mem_u32(addr));
192 }
193 
194 inline uint8_t* mem_addr_u8(uint32_t addr) {
195   uint8_t* result = NULL;
196   for (int i = 0;  i < SIZE(Mem);  ++i) {
197     if (Mem.at(i).match(addr)) {
198       if (result)
199         raise << "address 0x" << HEXWORD << addr << " is in two segments\n" << end();
200       result = &Mem.at(i).data(addr);
201     }
202   }
203   if (result == NULL) {
204     if (Trace_file) Trace_file.flush();
205     raise << "Tried to access uninitialized memory at address 0x" << HEXWORD << addr << '\n' << end();
206     exit(1);
207   }
208   return result;
209 }
210 inline int8_t* mem_addr_i8(uint32_t addr) {
211   return reinterpret_cast<int8_t*>(mem_addr_u8(addr));
212 }
213 inline uint32_t* mem_addr_u32(uint32_t addr) {
214   uint32_t* result = NULL;
215   for (int i = 0;  i < SIZE(Mem);  ++i) {
216     if (Mem.at(i).match32(addr)) {
217       if (result)
218         raise << "address 0x" << HEXWORD << addr << " is in two segments\n" << end();
219       result = reinterpret_cast<uint32_t*>(&Mem.at(i).data(addr));
220     }
221   }
222   if (result == NULL) {
223     if (Trace_file) Trace_file.flush();
224     raise << "Tried to access uninitialized memory at address 0x" << HEXWORD << addr << '\n' << end();
225     raise << "The entire 4-byte word should be initialized and lie in a single segment.\n" << end();
226     exit(1);
227   }
228   return result;
229 }
230 inline int32_t* mem_addr_i32(uint32_t addr) {
231   return reinterpret_cast<int32_t*>(mem_addr_u32(addr));
232 }
233 // helper for some syscalls. But read-only.
234 inline const char* mem_addr_kernel_string(uint32_t addr) {
235   return reinterpret_cast<const char*>(mem_addr_u8(addr));
236 }
237 inline string mem_addr_string(uint32_t addr, uint32_t size) {
238   ostringstream out;
239   for (size_t i = 0;  i < size;  ++i)
240     out << read_mem_u8(addr+i);
241   return out.str();
242 }
243 
244 
245 inline void write_mem_u8(uint32_t addr, uint8_t val) {
246   uint8_t* handle = mem_addr_u8(addr);
247   if (handle != NULL) *handle = val;
248 }
249 inline void write_mem_i8(uint32_t addr, int8_t val) {
250   int8_t* handle = mem_addr_i8(addr);
251   if (handle != NULL) *handle = val;
252 }
253 inline void write_mem_u32(uint32_t addr, uint32_t val) {
254   uint32_t* handle = mem_addr_u32(addr);
255   if (handle != NULL) *handle = val;
256 }
257 inline void write_mem_i32(uint32_t addr, int32_t val) {
258   int32_t* handle = mem_addr_i32(addr);
259   if (handle != NULL) *handle = val;
260 }
261 
262 inline bool already_allocated(uint32_t addr) {
263   bool result = false;
264   for (int i = 0;  i < SIZE(Mem);  ++i) {
265     if (Mem.at(i).match(addr)) {
266       if (result)
267         raise << "address 0x" << HEXWORD << addr << " is in two segments\n" << end();
268       result = true;
269     }
270   }
271   return result;
272 }
273 
274 //:: core interpreter loop
275 
276 :(code)
277 // skeleton of how x86 instructions are decoded
278 void run_one_instruction() {
279   uint8_t op=0, op2=0, op3=0;
280   // Run One Instruction
281   if (Trace_file) {
282     dump_registers();
283     // End Dump Info for Instruction
284   }
285   uint32_t inst_start_address = EIP;
286   op = next();
287   trace(Callstack_depth+1, "run") << "0x" << HEXWORD << inst_start_address << " opcode: " << HEXBYTE << NUM(op) << end();
288   switch (op) {
289   case 0xf4:  // hlt
290     EIP = End_of_program;
291     break;
292   // End Single-Byte Opcodes
293   case 0x0f:
294     switch(op2 = next()) {
295     // End Two-Byte Opcodes Starting With 0f
296     default:
297       cerr << "unrecognized second opcode after 0f: " << HEXBYTE << NUM(op2) << '\n';
298       exit(1);
299     }
300     break;
301   case 0xf2:
302     switch(op2 = next()) {
303     // End Two-Byte Opcodes Starting With f2
304     case 0x0f:
305       switch(op3 = next()) {
306       // End Three-Byte Opcodes Starting With f2 0f
307       default:
308         cerr << "unrecognized third opcode after f2 0f: " << HEXBYTE << NUM(op3) << '\n';
309         exit(1);
310       }
311       break;
312     default:
313       cerr << "unrecognized second opcode after f2: " << HEXBYTE << NUM(op2) << '\n';
314       exit(1);
315     }
316     break;
317   case 0xf3:
318     switch(op2 = next()) {
319     // End Two-Byte Opcodes Starting With f3
320     case 0x0f:
321       switch(op3 = next()) {
322       // End Three-Byte Opcodes Starting With f3 0f
323       default:
324         cerr << "unrecognized third opcode after f3 0f: " << HEXBYTE << NUM(op3) << '\n';
325         exit(1);
326       }
327       break;
328     default:
329       cerr << "unrecognized second opcode after f3: " << HEXBYTE << NUM(op2) << '\n';
330       exit(1);
331     }
332     break;
333   default:
334     cerr << "unrecognized opcode: " << HEXBYTE << NUM(op) << '\n';
335     exit(1);
336   }
337 }
338 
339 inline uint8_t next() {
340   return read_mem_u8(EIP++);
341 }
342 
343 void dump_registers() {
344   ostringstream out;
345   out << "registers before: ";
346   for (int i = 0;  i < NUM_INT_REGISTERS;  ++i) {
347     if (i > 0) out << "; ";
348     out << "  " << i << ": " << std::hex << std::setw(8) << std::setfill('_') << Reg[i].u;
349   }
350   out << " -- SF: " << SF << "; ZF: " << ZF << "; CF: " << CF << "; OF: " << OF;
351   trace(Callstack_depth+1, "run") << out.str() << end();
352 }
353 
354 //: start tracking supported opcodes
355 :(before "End Globals")
356 map</*op*/string, string> Name;
357 map</*op*/string, string> Name_0f;
358 map</*op*/string, string> Name_f3;
359 map</*op*/string, string> Name_f3_0f;
360 :(before "End One-time Setup")
361 init_op_names();
362 :(code)
363 void init_op_names() {
364   put(Name, "f4", "halt (hlt)");
365   // End Initialize Op Names
366 }
367 
368 :(before "End Help Special-cases(key)")
369 if (key == "opcodes") {
370   cerr << "Opcodes currently supported by SubX:\n";
371   for (map<string, string>::iterator p = Name.begin();  p != Name.end();  ++p)
372     cerr << "  " << p->first << ": " << p->second << '\n';
373   for (map<string, string>::iterator p = Name_0f.begin();  p != Name_0f.end();  ++p)
374     cerr << "  0f " << p->first << ": " << p->second << '\n';
375   for (map<string, string>::iterator p = Name_f3.begin();  p != Name_f3.end();  ++p)
376     cerr << "  f3 " << p->first << ": " << p->second << '\n';
377   for (map<string, string>::iterator p = Name_f3_0f.begin();  p != Name_f3_0f.end();  ++p)
378     cerr << "  f3 0f " << p->first << ": " << p->second << '\n';
379   cerr << "Run `subx help instructions` for details on words like 'r32' and 'disp8'.\n"
380           "For complete details on these instructions, consult the IA-32 manual (volume 2).\n"
381           "There's various versions of it online, such as https://c9x.me/x86.\n"
382           "The mnemonics in brackets will help you locate each instruction.\n";
383   return 0;
384 }
385 :(before "End Help Contents")
386 cerr << "  opcodes\n";
387 
388 //: Helpers for managing trace depths
389 //:
390 //: We're going to use trace depths primarily to segment code running at
391 //: different frames of the call stack. This will make it easy for the trace
392 //: browser to collapse over entire calls.
393 //:
394 //: Errors will be at depth 0.
395 //: Warnings will be at depth 1.
396 //: SubX instructions will occupy depth 2 and up to Max_depth, organized by
397 //: stack frames. Each instruction's internal details will be one level deeper
398 //: than its 'main' depth. So 'call' instruction details will be at the same
399 //: depth as the instructions of the function it calls.
400 :(before "End Globals")
401 extern const int Initial_callstack_depth = 2;
402 int Callstack_depth = Initial_callstack_depth;
403 :(before "End Reset")
404 Callstack_depth = Initial_callstack_depth;
405 
406 :(before "End Includes")
407 #include <iomanip>
408 #define HEXBYTE  std::hex << std::setw(2) << std::setfill('0')
409 #define HEXWORD  std::hex << std::setw(8) << std::setfill('0')
410 // ugly that iostream doesn't print uint8_t as an integer
411 #define NUM(X) static_cast<int>(X)
412 #include <stdint.h>