1
2
3
4
5
6
7
8
9
10
11 :(before "End Types")
12 enum {
13 EAX,
14 ECX,
15 EDX,
16 EBX,
17 ESP,
18 EBP,
19 ESI,
20 EDI,
21 NUM_INT_REGISTERS,
22 };
23 union reg {
24 int32_t i;
25 uint32_t u;
26 };
27 :(before "End Globals")
28 reg Reg[NUM_INT_REGISTERS] = { {0} };
29 uint32_t EIP = 1;
30 :(before "End Reset")
31 bzero(Reg, sizeof(Reg));
32 EIP = 1;
33
34 :(before "End Help Contents")
35 cerr << " registers\n";
36 :(before "End Help Texts")
37 put(Help, "registers",
38 "SubX currently supports eight 32-bit integer registers: R0 to R7.\n"
39 "R4 (ESP) contains the top of the stack.\n"
40 "\n"
41 "There's also a register for the address of the currently executing\n"
42 "instruction. It is modified by jumps.\n"
43 "\n"
44 "Various instructions modify one or more of three 1-bit 'flag' registers,\n"
45 "as a side-effect:\n"
46 "- the sign flag (SF): usually set if an arithmetic result is negative, or\n"
47 " reset if not.\n"
48 "- the zero flag (ZF): usually set if a result is zero, or reset if not.\n"
49 "- the overflow flag (OF): usually set if an arithmetic result overflows.\n"
50 "The flag bits are read by conditional jumps.\n"
51 "\n"
52 "We don't support non-integer (floating-point) registers yet.\n"
53 );
54
55 :(before "End Globals")
56
57 bool SF = false;
58 bool ZF = false;
59 bool OF = false;
60 :(before "End Reset")
61 SF = ZF = OF = false;
62
63
64
65 :(before "End Includes")
66
67
68
69
70 \
71 int64_t tmp = arg1 op arg2; \
72 arg1 = arg1 op arg2; \
73 trace(90, "run") << "storing 0x" << HEXWORD << arg1 << end(); \
74 SF = (arg1 < 0); \
75 ZF = (arg1 == 0); \
76 OF = (arg1 != tmp); \
77 }
78
79
80
81
82 \
83 arg1 = arg1 op arg2; \
84 trace(90, "run") << "storing 0x" << HEXWORD << arg1 << end(); \
85 SF = (arg1 >> 31); \
86 ZF = (arg1 == 0); \
87 OF = false; \
88 }
89
90
91
92 :(before "End Globals")
93 vector<uint8_t> Mem;
94 uint32_t Mem_offset = 0;
95 uint32_t End_of_program = 0;
96 :(before "End Reset")
97 Mem.clear();
98 Mem.resize(1024);
99 Mem_offset = 0;
100 End_of_program = 0;
101 :(code)
102
103
104 inline uint8_t read_mem_u8(uint32_t addr) {
105 return Mem.at(addr-Mem_offset);
106 }
107 inline int8_t read_mem_i8(uint32_t addr) {
108 return static_cast<int8_t>(Mem.at(addr-Mem_offset));
109 }
110 inline uint32_t read_mem_u32(uint32_t addr) {
111 return *reinterpret_cast<uint32_t*>(&Mem.at(addr-Mem_offset));
112 }
113 inline int32_t read_mem_i32(uint32_t addr) {
114 return *reinterpret_cast<int32_t*>(&Mem.at(addr-Mem_offset));
115 }
116
117 inline uint8_t* mem_addr_u8(uint32_t addr) {
118 return &Mem.at(addr-Mem_offset);
119 }
120 inline int8_t* mem_addr_i8(uint32_t addr) {
121 return reinterpret_cast<int8_t*>(&Mem.at(addr-Mem_offset));
122 }
123 inline uint32_t* mem_addr_u32(uint32_t addr) {
124 return reinterpret_cast<uint32_t*>(&Mem.at(addr-Mem_offset));
125 }
126 inline int32_t* mem_addr_i32(uint32_t addr) {
127 return reinterpret_cast<int32_t*>(&Mem.at(addr-Mem_offset));
128 }
129
130 inline void write_mem_u8(uint32_t addr, uint8_t val) {
131 Mem.at(addr-Mem_offset) = val;
132 }
133 inline void write_mem_i8(uint32_t addr, int8_t val) {
134 Mem.at(addr-Mem_offset) = static_cast<uint8_t>(val);
135 }
136 inline void write_mem_u32(uint32_t addr, uint32_t val) {
137 *reinterpret_cast<uint32_t*>(&Mem.at(addr-Mem_offset)) = val;
138 }
139 inline void write_mem_i32(uint32_t addr, int32_t val) {
140 *reinterpret_cast<int32_t*>(&Mem.at(addr-Mem_offset)) = val;
141 }
142
143
144
145 :(code)
146
147 void run_one_instruction() {
148 uint8_t op=0, op2=0, op3=0;
149 trace(90, "run") << "inst: 0x" << HEXWORD << EIP << end();
150
151
152 op = next();
153
154 switch (op) {
155 case 0xf4:
156 EIP = End_of_program;
157 break;
158
159 case 0x0f:
160 switch(op2 = next()) {
161
162 default:
163 cerr << "unrecognized second opcode after 0f: " << HEXBYTE << NUM(op2) << '\n';
164 DUMP("");
165 exit(1);
166 }
167 break;
168 case 0xf3:
169 switch(op2 = next()) {
170
171 case 0x0f:
172 switch(op3 = next()) {
173
174 default:
175 cerr << "unrecognized third opcode after f3 0f: " << HEXBYTE << NUM(op3) << '\n';
176 DUMP("");
177 exit(1);
178 }
179 break;
180 default:
181 cerr << "unrecognized second opcode after f3: " << HEXBYTE << NUM(op2) << '\n';
182 DUMP("");
183 exit(1);
184 }
185 break;
186 default:
187 cerr << "unrecognized opcode: " << HEXBYTE << NUM(op) << '\n';
188 DUMP("");
189 exit(1);
190 }
191 }
192
193 inline uint8_t next() {
194 return read_mem_u8(EIP++);
195 }
196
197 void dump_registers() {
198 for (int i = 0; i < NUM_INT_REGISTERS; ++i) {
199 if (i > 0) cerr << "; ";
200 cerr << " " << i << ": " << std::hex << std::setw(8) << std::setfill('_') << Reg[i].u;
201 }
202 cerr << " -- SF: " << SF << "; ZF: " << ZF << "; OF: " << OF << '\n';
203 }
204
205
206 :(before "End Globals")
207 map<string, string> name;
208 map<string, string> name_0f;
209 map<string, string> name_f3;
210 map<string, string> name_f3_0f;
211 :(before "End One-time Setup")
212 init_op_names();
213 :(code)
214 void init_op_names() {
215 put(name, "f4", "halt");
216
217 }
218
219 :(before "End Help Special-cases(key)")
220 if (key == "opcodes") {
221 cerr << "Opcodes currently supported by SubX:\n";
222 for (map<string, string>::iterator p = name.begin(); p != name.end(); ++p)
223 cerr << " " << p->first << ": " << p->second << '\n';
224 for (map<string, string>::iterator p = name_0f.begin(); p != name_0f.end(); ++p)
225 cerr << " 0f " << p->first << ": " << p->second << '\n';
226 for (map<string, string>::iterator p = name_f3.begin(); p != name_f3.end(); ++p)
227 cerr << " f3 " << p->first << ": " << p->second << '\n';
228 for (map<string, string>::iterator p = name_f3_0f.begin(); p != name_f3_0f.end(); ++p)
229 cerr << " f3 0f " << p->first << ": " << p->second << '\n';
230 cerr << "Run `subx help instructions` for details on words like 'r32' and 'disp8'.\n";
231 return 0;
232 }
233 :(before "End Help Contents")
234 cerr << " opcodes\n";
235
236 :(before "End Includes")
237
238
239
240
241
242