https://github.com/akkartik/mu/blob/master/subx/013direct_addressing.cc
1
2
3 :(before "End Initialize Op Names")
4 put_new(Name, "01", "add r32 to rm32 (add)");
5
6 :(scenario add_r32_to_r32)
7 % Reg[EAX].i = 0x10;
8 % Reg[EBX].i = 1;
9 == 0x1
10
11 01 d8
12
13 +run: add EBX to r/m32
14 +run: r/m32 is EAX
15 +run: storing 0x00000011
16
17 :(before "End Single-Byte Opcodes")
18 case 0x01: {
19 uint8_t modrm = next();
20 uint8_t arg2 = (modrm>>3)&0x7;
21 trace(90, "run") << "add " << rname(arg2) << " to r/m32" << end();
22 int32_t* arg1 = effective_address(modrm);
23 BINARY_ARITHMETIC_OP(+, *arg1, Reg[arg2].i);
24 break;
25 }
26
27 :(code)
28
29
30
31 int32_t* effective_address(uint8_t modrm) {
32 const uint8_t mod = (modrm>>6);
33
34 const uint8_t rm = modrm & 0x7;
35 if (mod == 3) {
36
37 trace(90, "run") << "r/m32 is " << rname(rm) << end();
38 return &Reg[rm].i;
39 }
40 return mem_addr_i32(effective_address_number(modrm));
41 }
42
43 uint32_t effective_address_number(uint8_t modrm) {
44 const uint8_t mod = (modrm>>6);
45
46 const uint8_t rm = modrm & 0x7;
47 uint32_t addr = 0;
48 switch (mod) {
49 case 3:
50
51 raise << "unexpected direct addressing mode\n" << end();
52 return 0;
53
54 default:
55 cerr << "unrecognized mod bits: " << NUM(mod) << '\n';
56 exit(1);
57 }
58
59 return addr;
60 }
61
62 string rname(uint8_t r) {
63 switch (r) {
64 case 0: return "EAX";
65 case 1: return "ECX";
66 case 2: return "EDX";
67 case 3: return "EBX";
68 case 4: return "ESP";
69 case 5: return "EBP";
70 case 6: return "ESI";
71 case 7: return "EDI";
72 default: raise << "invalid register " << r << '\n' << end(); return "";
73 }
74 }
75
76
77
78 :(before "End Initialize Op Names")
79 put_new(Name, "29", "subtract r32 from rm32 (sub)");
80
81 :(scenario subtract_r32_from_r32)
82 % Reg[EAX].i = 10;
83 % Reg[EBX].i = 1;
84 == 0x1
85
86 29 d8
87
88 +run: subtract EBX from r/m32
89 +run: r/m32 is EAX
90 +run: storing 0x00000009
91
92 :(before "End Single-Byte Opcodes")
93 case 0x29: {
94 const uint8_t modrm = next();
95 const uint8_t arg2 = (modrm>>3)&0x7;
96 trace(90, "run") << "subtract " << rname(arg2) << " from r/m32" << end();
97 int32_t* arg1 = effective_address(modrm);
98 BINARY_ARITHMETIC_OP(-, *arg1, Reg[arg2].i);
99 break;
100 }
101
102
103
104 :(before "End Initialize Op Names")
105 put_new(Name, "f7", "negate/multiply rm32 (with EAX if necessary) depending on subop (neg/mul)");
106
107 :(scenario multiply_eax_by_r32)
108 % Reg[EAX].i = 4;
109 % Reg[ECX].i = 3;
110 == 0x1
111
112 f7 e1
113
114 +run: operate on r/m32
115 +run: r/m32 is ECX
116 +run: subop: multiply EAX by r/m32
117 +run: storing 0x0000000c
118
119 :(before "End Single-Byte Opcodes")
120 case 0xf7: {
121 const uint8_t modrm = next();
122 trace(90, "run") << "operate on r/m32" << end();
123 int32_t* arg1 = effective_address(modrm);
124 const uint8_t subop = (modrm>>3)&0x7;
125 switch (subop) {
126 case 4: {
127 trace(90, "run") << "subop: multiply EAX by r/m32" << end();
128 const uint64_t result = Reg[EAX].u * static_cast<uint32_t>(*arg1);
129 Reg[EAX].u = result & 0xffffffff;
130 Reg[EDX].u = result >> 32;
131 OF = (Reg[EDX].u != 0);
132 trace(90, "run") << "storing 0x" << HEXWORD << Reg[EAX].u << end();
133 break;
134 }
135
136 default:
137 cerr << "unrecognized subop for opcode f7: " << NUM(subop) << '\n';
138 exit(1);
139 }
140 break;
141 }
142
143
144
145 :(before "End Initialize Op Names")
146 put_new(Name_0f, "af", "multiply rm32 into r32 (imul)");
147
148 :(scenario multiply_r32_into_r32)
149 % Reg[EAX].i = 4;
150 % Reg[EBX].i = 2;
151 == 0x1
152
153 0f af d8
154
155 +run: multiply r/m32 into EBX
156 +run: r/m32 is EAX
157 +run: storing 0x00000008
158
159 :(before "End Two-Byte Opcodes Starting With 0f")
160 case 0xaf: {
161 const uint8_t modrm = next();
162 const uint8_t arg2 = (modrm>>3)&0x7;
163 trace(90, "run") << "multiply r/m32 into " << rname(arg2) << end();
164 const int32_t* arg1 = effective_address(modrm);
165 BINARY_ARITHMETIC_OP(*, Reg[arg2].i, *arg1);
166 break;
167 }
168
169
170
171 :(scenario negate_r32)
172 % Reg[EBX].i = 1;
173 == 0x1
174
175 f7 db
176
177 +run: operate on r/m32
178 +run: r/m32 is EBX
179 +run: subop: negate
180 +run: storing 0xffffffff
181
182 :(before "End Op f7 Subops")
183 case 3: {
184 trace(90, "run") << "subop: negate" << end();
185
186 if (static_cast<uint32_t>(*arg1) == 0x80000000) {
187 trace(90, "run") << "overflow" << end();
188 SF = true;
189 ZF = false;
190 OF = true;
191 break;
192 }
193 *arg1 = -(*arg1);
194 trace(90, "run") << "storing 0x" << HEXWORD << *arg1 << end();
195 SF = (*arg1 >> 31);
196 ZF = (*arg1 == 0);
197 OF = false;
198 break;
199 }
200
201 :(scenario negate_can_overflow)
202 % Reg[EBX].i = 0x80000000; // INT_MIN
203 == 0x1
204
205 f7 db
206
207 +run: operate on r/m32
208 +run: r/m32 is EBX
209 +run: subop: negate
210 +run: overflow
211
212
213
214 :(before "End Initialize Op Names")
215 put_new(Name, "d3", "shift rm32 by CL bits depending on subop (sal/sar/shl/shr)");
216
217 :(scenario shift_left_r32_with_cl)
218 % Reg[EBX].i = 13;
219 % Reg[ECX].i = 1;
220 == 0x1
221
222 d3 e3
223
224 +run: operate on r/m32
225 +run: r/m32 is EBX
226 +run: subop: shift left by CL bits
227 +run: storing 0x0000001a
228
229 :(before "End Single-Byte Opcodes")
230 case 0xd3: {
231 const uint8_t modrm = next();
232 trace(90, "run") << "operate on r/m32" << end();
233 int32_t* arg1 = effective_address(modrm);
234 const uint8_t subop = (modrm>>3)&0x7;
235 switch (subop) {
236 case 4: {
237 trace(90, "run") << "subop: shift left by CL bits" << end();
238 uint8_t count = Reg[ECX].u & 0x1f;
239
240 if (count == 1) {
241 bool msb = (*arg1 & 0x80000000) >> 1;
242 bool pnsb = (*arg1 & 0x40000000);
243 OF = (msb != pnsb);
244 }
245 *arg1 = (*arg1 << count);
246 ZF = (*arg1 == 0);
247 SF = (*arg1 < 0);
248 trace(90, "run") << "storing 0x" << HEXWORD << *arg1 << end();
249 break;
250 }
251
252 default:
253 cerr << "unrecognized subop for opcode d3: " << NUM(subop) << '\n';
254 exit(1);
255 }
256 break;
257 }
258
259
260
261 :(scenario shift_right_arithmetic_r32_with_cl)
262 % Reg[EBX].i = 26;
263 % Reg[ECX].i = 1;
264 == 0x1
265
266 d3 fb
267
268 +run: operate on r/m32
269 +run: r/m32 is EBX
270 +run: subop: shift right by CL bits, while preserving sign
271 +run: storing 0x0000000d
272
273 :(before "End Op d3 Subops")
274 case 7: {
275 trace(90, "run") << "subop: shift right by CL bits, while preserving sign" << end();
276 uint8_t count = Reg[ECX].u & 0x1f;
277 *arg1 = (*arg1 >> count);
278 ZF = (*arg1 == 0);
279 SF = (*arg1 < 0);
280
281 if (count == 1) OF = false;
282 trace(90, "run") << "storing 0x" << HEXWORD << *arg1 << end();
283 break;
284 }
285
286 :(scenario shift_right_arithmetic_odd_r32_with_cl)
287 % Reg[EBX].i = 27;
288 % Reg[ECX].i = 1;
289 == 0x1
290
291 d3 fb
292
293 +run: operate on r/m32
294 +run: r/m32 is EBX
295 +run: subop: shift right by CL bits, while preserving sign
296
297 +run: storing 0x0000000d
298
299 :(scenario shift_right_arithmetic_negative_r32_with_cl)
300 % Reg[EBX].i = 0xfffffffd; // -3
301 % Reg[ECX].i = 1;
302 == 0x1
303
304 d3 fb
305
306 +run: operate on r/m32
307 +run: r/m32 is EBX
308 +run: subop: shift right by CL bits, while preserving sign
309
310 +run: storing 0xfffffffe
311
312
313
314 :(scenario shift_right_logical_r32_with_cl)
315 % Reg[EBX].i = 26;
316 % Reg[ECX].i = 1;
317 == 0x1
318
319 d3 eb
320
321 +run: operate on r/m32
322 +run: r/m32 is EBX
323 +run: subop: shift right by CL bits, while padding zeroes
324 +run: storing 0x0000000d
325
326 :(before "End Op d3 Subops")
327 case 5: {
328 trace(90, "run") << "subop: shift right by CL bits, while padding zeroes" << end();
329 uint8_t count = Reg[ECX].u & 0x1f;
330
331 if (count == 1) {
332 bool msb = (*arg1 & 0x80000000) >> 1;
333 bool pnsb = (*arg1 & 0x40000000);
334 OF = (msb != pnsb);
335 }
336 uint32_t* uarg1 = reinterpret_cast<uint32_t*>(arg1);
337 *uarg1 = (*uarg1 >> count);
338 ZF = (*uarg1 == 0);
339
340 SF = false;
341 trace(90, "run") << "storing 0x" << HEXWORD << *arg1 << end();
342 break;
343 }
344
345 :(scenario shift_right_logical_odd_r32_with_cl)
346 % Reg[EBX].i = 27;
347 % Reg[ECX].i = 1;
348 == 0x1
349
350 d3 eb
351
352 +run: operate on r/m32
353 +run: r/m32 is EBX
354 +run: subop: shift right by CL bits, while padding zeroes
355
356 +run: storing 0x0000000d
357
358 :(scenario shift_right_logical_negative_r32_with_cl)
359 % Reg[EBX].i = 0xfffffffd;
360 % Reg[ECX].i = 1;
361 == 0x1
362
363 d3 eb
364
365 +run: operate on r/m32
366 +run: r/m32 is EBX
367 +run: subop: shift right by CL bits, while padding zeroes
368 +run: storing 0x7ffffffe
369
370
371
372 :(before "End Initialize Op Names")
373 put_new(Name, "21", "rm32 = bitwise AND of r32 with rm32 (and)");
374
375 :(scenario and_r32_with_r32)
376 % Reg[EAX].i = 0x0a0b0c0d;
377 % Reg[EBX].i = 0x000000ff;
378 == 0x1
379
380 21 d8
381
382 +run: and EBX with r/m32
383 +run: r/m32 is EAX
384 +run: storing 0x0000000d
385
386 :(before "End Single-Byte Opcodes")
387 case 0x21: {
388 const uint8_t modrm = next();
389 const uint8_t arg2 = (modrm>>3)&0x7;
390 trace(90, "run") << "and " << rname(arg2) << " with r/m32" << end();
391 int32_t* arg1 = effective_address(modrm);
392 BINARY_BITWISE_OP(&, *arg1, Reg[arg2].u);
393 break;
394 }
395
396
397
398 :(before "End Initialize Op Names")
399 put_new(Name, "09", "rm32 = bitwise OR of r32 with rm32 (or)");
400
401 :(scenario or_r32_with_r32)
402 % Reg[EAX].i = 0x0a0b0c0d;
403 % Reg[EBX].i = 0xa0b0c0d0;
404 == 0x1
405
406 09 d8
407
408 +run: or EBX with r/m32
409 +run: r/m32 is EAX
410 +run: storing 0xaabbccdd
411
412 :(before "End Single-Byte Opcodes")
413 case 0x09: {
414 const uint8_t modrm = next();
415 const uint8_t arg2 = (modrm>>3)&0x7;
416 trace(90, "run") << "or " << rname(arg2) << " with r/m32" << end();
417 int32_t* arg1 = effective_address(modrm);
418 BINARY_BITWISE_OP(|, *arg1, Reg[arg2].u);
419 break;
420 }
421
422
423
424 :(before "End Initialize Op Names")
425 put_new(Name, "31", "rm32 = bitwise XOR of r32 with rm32 (xor)");
426
427 :(scenario xor_r32_with_r32)
428 % Reg[EAX].i = 0x0a0b0c0d;
429 % Reg[EBX].i = 0xaabbc0d0;
430 == 0x1
431
432 31 d8
433
434 +run: xor EBX with r/m32
435 +run: r/m32 is EAX
436 +run: storing 0xa0b0ccdd
437
438 :(before "End Single-Byte Opcodes")
439 case 0x31: {
440 const uint8_t modrm = next();
441 const uint8_t arg2 = (modrm>>3)&0x7;
442 trace(90, "run") << "xor " << rname(arg2) << " with r/m32" << end();
443 int32_t* arg1 = effective_address(modrm);
444 BINARY_BITWISE_OP(^, *arg1, Reg[arg2].u);
445 break;
446 }
447
448
449
450 :(scenario not_r32)
451 % Reg[EBX].i = 0x0f0f00ff;
452 == 0x1
453
454 f7 d3
455
456 +run: operate on r/m32
457 +run: r/m32 is EBX
458 +run: subop: not
459 +run: storing 0xf0f0ff00
460
461 :(before "End Op f7 Subops")
462 case 2: {
463 trace(90, "run") << "subop: not" << end();
464 *arg1 = ~(*arg1);
465 trace(90, "run") << "storing 0x" << HEXWORD << *arg1 << end();
466 SF = (*arg1 >> 31);
467 ZF = (*arg1 == 0);
468 OF = false;
469 break;
470 }
471
472
473
474 :(before "End Initialize Op Names")
475 put_new(Name, "39", "compare: set SF if rm32 < r32 (cmp)");
476
477 :(scenario compare_r32_with_r32_greater)
478 % Reg[EAX].i = 0x0a0b0c0d;
479 % Reg[EBX].i = 0x0a0b0c07;
480 == 0x1
481
482 39 d8
483
484 +run: compare EBX with r/m32
485 +run: r/m32 is EAX
486 +run: SF=0; ZF=0; OF=0
487
488 :(before "End Single-Byte Opcodes")
489 case 0x39: {
490 const uint8_t modrm = next();
491 const uint8_t reg2 = (modrm>>3)&0x7;
492 trace(90, "run") << "compare " << rname(reg2) << " with r/m32" << end();
493 const int32_t* arg1 = effective_address(modrm);
494 const int32_t arg2 = Reg[reg2].i;
495 const int32_t tmp1 = *arg1 - arg2;
496 SF = (tmp1 < 0);
497 ZF = (tmp1 == 0);
498 const int64_t tmp2 = *arg1 - arg2;
499 OF = (tmp1 != tmp2);
500 trace(90, "run") << "SF=" << SF << "; ZF=" << ZF << "; OF=" << OF << end();
501 break;
502 }
503
504 :(scenario compare_r32_with_r32_lesser)
505 % Reg[EAX].i = 0x0a0b0c07;
506 % Reg[EBX].i = 0x0a0b0c0d;
507 == 0x1
508
509 39 d8
510
511 +run: compare EBX with r/m32
512 +run: r/m32 is EAX
513 +run: SF=1; ZF=0; OF=0
514
515 :(scenario compare_r32_with_r32_equal)
516 % Reg[EAX].i = 0x0a0b0c0d;
517 % Reg[EBX].i = 0x0a0b0c0d;
518 == 0x1
519
520 39 d8
521
522 +run: compare EBX with r/m32
523 +run: r/m32 is EAX
524 +run: SF=0; ZF=1; OF=0
525
526
527
528 :(before "End Initialize Op Names")
529 put_new(Name, "89", "copy r32 to rm32 (mov)");
530
531 :(scenario copy_r32_to_r32)
532 % Reg[EBX].i = 0xaf;
533 == 0x1
534
535 89 d8
536
537 +run: copy EBX to r/m32
538 +run: r/m32 is EAX
539 +run: storing 0x000000af
540
541 :(before "End Single-Byte Opcodes")
542 case 0x89: {
543 const uint8_t modrm = next();
544 const uint8_t rsrc = (modrm>>3)&0x7;
545 trace(90, "run") << "copy " << rname(rsrc) << " to r/m32" << end();
546 int32_t* dest = effective_address(modrm);
547 *dest = Reg[rsrc].i;
548 trace(90, "run") << "storing 0x" << HEXWORD << *dest << end();
549 break;
550 }
551
552
553
554 :(before "End Initialize Op Names")
555 put_new(Name, "87", "swap the contents of r32 and rm32 (xchg)");
556
557 :(scenario xchg_r32_with_r32)
558 % Reg[EBX].i = 0xaf;
559 % Reg[EAX].i = 0x2e;
560 == 0x1
561
562 87 d8
563
564 +run: exchange EBX with r/m32
565 +run: r/m32 is EAX
566 +run: storing 0x000000af in r/m32
567 +run: storing 0x0000002e in EBX
568
569 :(before "End Single-Byte Opcodes")
570 case 0x87: {
571 const uint8_t modrm = next();
572 const uint8_t reg2 = (modrm>>3)&0x7;
573 trace(90, "run") << "exchange " << rname(reg2) << " with r/m32" << end();
574 int32_t* arg1 = effective_address(modrm);
575 const int32_t tmp = *arg1;
576 *arg1 = Reg[reg2].i;
577 Reg[reg2].i = tmp;
578 trace(90, "run") << "storing 0x" << HEXWORD << *arg1 << " in r/m32" << end();
579 trace(90, "run") << "storing 0x" << HEXWORD << Reg[reg2].i << " in " << rname(reg2) << end();
580 break;
581 }
582
583
584
585 :(before "End Initialize Op Names")
586 put_new(Name, "40", "increment EAX (inc)");
587 put_new(Name, "41", "increment ECX (inc)");
588 put_new(Name, "42", "increment EDX (inc)");
589 put_new(Name, "43", "increment EBX (inc)");
590 put_new(Name, "44", "increment ESP (inc)");
591 put_new(Name, "45", "increment EBP (inc)");
592 put_new(Name, "46", "increment ESI (inc)");
593 put_new(Name, "47", "increment EDI (inc)");
594
595 :(scenario increment_r32)
596 % Reg[ECX].u = 0x1f;
597 == 0x1
598
599 41
600 +run: increment ECX
601 +run: storing value 0x00000020
602
603 :(before "End Single-Byte Opcodes")
604 case 0x40:
605 case 0x41:
606 case 0x42:
607 case 0x43:
608 case 0x44:
609 case 0x45:
610 case 0x46:
611 case 0x47: {
612 const uint8_t reg = op & 0x7;
613 trace(90, "run") << "increment " << rname(reg) << end();
614 ++Reg[reg].u;
615 trace(90, "run") << "storing value 0x" << HEXWORD << Reg[reg].u << end();
616 break;
617 }
618
619 :(before "End Initialize Op Names")
620 put_new(Name, "ff", "increment/decrement/jump/push/call rm32 based on subop (inc/dec/jmp/push/call)");
621
622 :(scenario increment_rm32)
623 % Reg[EAX].u = 0x20;
624 == 0x1
625
626 ff c0
627
628 +run: increment r/m32
629 +run: r/m32 is EAX
630 +run: storing value 0x00000021
631
632 :(before "End Single-Byte Opcodes")
633 case 0xff: {
634 const uint8_t modrm = next();
635 const uint8_t subop = (modrm>>3)&0x7;
636 switch (subop) {
637 case 0: {
638 trace(90, "run") << "increment r/m32" << end();
639 int32_t* arg = effective_address(modrm);
640 ++*arg;
641 trace(90, "run") << "storing value 0x" << HEXWORD << *arg << end();
642 break;
643 }
644 default:
645 cerr << "unrecognized subop for ff: " << HEXBYTE << NUM(subop) << '\n';
646 DUMP("");
647 exit(1);
648
649 }
650 break;
651 }
652
653
654
655 :(before "End Initialize Op Names")
656 put_new(Name, "48", "decrement EAX (dec)");
657 put_new(Name, "49", "decrement ECX (dec)");
658 put_new(Name, "4a", "decrement EDX (dec)");
659 put_new(Name, "4b", "decrement EBX (dec)");
660 put_new(Name, "4c", "decrement ESP (dec)");
661 put_new(Name, "4d", "decrement EBP (dec)");
662 put_new(Name, "4e", "decrement ESI (dec)");
663 put_new(Name, "4f", "decrement EDI (dec)");
664
665 :(scenario decrement_r32)
666 % Reg[ECX].u = 0x1f;
667 == 0x1
668
669 49
670 +run: decrement ECX
671 +run: storing value 0x0000001e
672
673 :(before "End Single-Byte Opcodes")
674 case 0x48:
675 case 0x49:
676 case 0x4a:
677 case 0x4b:
678 case 0x4c:
679 case 0x4d:
680 case 0x4e:
681 case 0x4f: {
682 const uint8_t reg = op & 0x7;
683 trace(90, "run") << "decrement " << rname(reg) << end();
684 --Reg[reg].u;
685 trace(90, "run") << "storing value 0x" << HEXWORD << Reg[reg].u << end();
686 break;
687 }
688
689 :(scenario decrement_rm32)
690 % Reg[EAX].u = 0x20;
691 == 0x1
692
693 ff c8
694
695 +run: decrement r/m32
696 +run: r/m32 is EAX
697 +run: storing value 0x0000001f
698
699 :(before "End Op ff Subops")
700 case 1: {
701 trace(90, "run") << "decrement r/m32" << end();
702 int32_t* arg = effective_address(modrm);
703 --*arg;
704 trace(90, "run") << "storing value 0x" << HEXWORD << *arg << end();
705 break;
706 }
707
708
709
710 :(before "End Initialize Op Names")
711 put_new(Name, "50", "push EAX to stack (push)");
712 put_new(Name, "51", "push ECX to stack (push)");
713 put_new(Name, "52", "push EDX to stack (push)");
714 put_new(Name, "53", "push EBX to stack (push)");
715 put_new(Name, "54", "push ESP to stack (push)");
716 put_new(Name, "55", "push EBP to stack (push)");
717 put_new(Name, "56", "push ESI to stack (push)");
718 put_new(Name, "57", "push EDI to stack (push)");
719
720 :(scenario push_r32)
721 % Reg[ESP].u = 0x64;
722 % Reg[EBX].i = 0x0000000a;
723 == 0x1
724
725 53
726 +run: push EBX
727 +run: decrementing ESP to 0x00000060
728 +run: pushing value 0x0000000a
729
730 :(before "End Single-Byte Opcodes")
731 case 0x50:
732 case 0x51:
733 case 0x52:
734 case 0x53:
735 case 0x54:
736 case 0x55:
737 case 0x56:
738 case 0x57: {
739 uint8_t reg = op & 0x7;
740 trace(90, "run") << "push " << rname(reg) << end();
741
742 push(Reg[reg].u);
743 break;
744 }
745
746
747
748 :(before "End Initialize Op Names")
749 put_new(Name, "58", "pop top of stack to EAX (pop)");
750 put_new(Name, "59", "pop top of stack to ECX (pop)");
751 put_new(Name, "5a", "pop top of stack to EDX (pop)");
752 put_new(Name, "5b", "pop top of stack to EBX (pop)");
753 put_new(Name, "5c", "pop top of stack to ESP (pop)");
754 put_new(Name, "5d", "pop top of stack to EBP (pop)");
755 put_new(Name, "5e", "pop top of stack to ESI (pop)");
756 put_new(Name, "5f", "pop top of stack to EDI (pop)");
757
758 :(scenario pop_r32)
759 % Reg[ESP].u = 0x02000000;
760 % Mem.push_back(vma(0x02000000)); // manually allocate memory
761 % write_mem_i32(0x02000000, 0x0000000a); // ..before this write
762 == 0x1
763
764 5b
765 == 0x2000
766 0a 00 00 00
767 +run: pop into EBX
768 +run: popping value 0x0000000a
769 +run: incrementing ESP to 0x02000004
770
771 :(before "End Single-Byte Opcodes")
772 case 0x58:
773 case 0x59:
774 case 0x5a:
775 case 0x5b:
776 case 0x5c:
777 case 0x5d:
778 case 0x5e:
779 case 0x5f: {
780 const uint8_t reg = op & 0x7;
781 trace(90, "run") << "pop into " << rname(reg) << end();
782
783 Reg[reg].u = pop();
784
785 break;
786 }
787 :(code)
788 uint32_t pop() {
789 const uint32_t result = read_mem_u32(Reg[ESP].u);
790 trace(90, "run") << "popping value 0x" << HEXWORD << result << end();
791 Reg[ESP].u += 4;
792 trace(90, "run") << "incrementing ESP to 0x" << HEXWORD << Reg[ESP].u << end();
793 return result;
794 }