1
2
3 :(before "End Initialize Op Names")
4 put_new(Name, "01", "add r32 to rm32 (add)");
5
6 :(scenario add_r32_to_r32)
7 % Reg[EAX].i = 0x10;
8 % Reg[EBX].i = 1;
9 == 0x1
10
11 01 d8
12
13 +run: add EBX to r/m32
14 +run: r/m32 is EAX
15 +run: storing 0x00000011
16
17 :(before "End Single-Byte Opcodes")
18 case 0x01: {
19 uint8_t modrm = next();
20 uint8_t arg2 = (modrm>>3)&0x7;
21 trace(90, "run") << "add " << rname(arg2) << " to r/m32" << end();
22 int32_t* arg1 = effective_address(modrm);
23 BINARY_ARITHMETIC_OP(+, *arg1, Reg[arg2].i);
24 break;
25 }
26
27 :(code)
28
29
30
31 int32_t* effective_address(uint8_t modrm) {
32 const uint8_t mod = (modrm>>6);
33
34 const uint8_t rm = modrm & 0x7;
35 if (mod == 3) {
36
37 trace(90, "run") << "r/m32 is " << rname(rm) << end();
38 return &Reg[rm].i;
39 }
40 return mem_addr_i32(effective_address_number(modrm));
41 }
42
43 uint32_t effective_address_number(uint8_t modrm) {
44 const uint8_t mod = (modrm>>6);
45
46 const uint8_t rm = modrm & 0x7;
47 uint32_t addr = 0;
48 switch (mod) {
49 case 3:
50
51 raise << "unexpected direct addressing mode\n" << end();
52 return 0;
53
54 default:
55 cerr << "unrecognized mod bits: " << NUM(mod) << '\n';
56 exit(1);
57 }
58
59 return addr;
60 }
61
62 string rname(uint8_t r) {
63 switch (r) {
64 case 0: return "EAX";
65 case 1: return "ECX";
66 case 2: return "EDX";
67 case 3: return "EBX";
68 case 4: return "ESP";
69 case 5: return "EBP";
70 case 6: return "ESI";
71 case 7: return "EDI";
72 default: raise << "invalid register " << r << '\n' << end(); return "";
73 }
74 }
75
76
77
78 :(before "End Initialize Op Names")
79 put_new(Name, "29", "subtract r32 from rm32 (sub)");
80
81 :(scenario subtract_r32_from_r32)
82 % Reg[EAX].i = 10;
83 % Reg[EBX].i = 1;
84 == 0x1
85
86 29 d8
87
88 +run: subtract EBX from r/m32
89 +run: r/m32 is EAX
90 +run: storing 0x00000009
91
92 :(before "End Single-Byte Opcodes")
93 case 0x29: {
94 const uint8_t modrm = next();
95 const uint8_t arg2 = (modrm>>3)&0x7;
96 trace(90, "run") << "subtract " << rname(arg2) << " from r/m32" << end();
97 int32_t* arg1 = effective_address(modrm);
98 BINARY_ARITHMETIC_OP(-, *arg1, Reg[arg2].i);
99 break;
100 }
101
102
103
104 :(before "End Initialize Op Names")
105 put_new(Name, "f7", "negate/multiply rm32 (with EAX if necessary) depending on subop (neg/mul)");
106
107 :(scenario multiply_eax_by_r32)
108 % Reg[EAX].i = 4;
109 % Reg[ECX].i = 3;
110 == 0x1
111
112 f7 e1
113
114 +run: operate on r/m32
115 +run: r/m32 is ECX
116 +run: subop: multiply EAX by r/m32
117 +run: storing 0x0000000c
118
119 :(before "End Single-Byte Opcodes")
120 case 0xf7: {
121 const uint8_t modrm = next();
122 trace(90, "run") << "operate on r/m32" << end();
123 int32_t* arg1 = effective_address(modrm);
124 const uint8_t subop = (modrm>>3)&0x7;
125 switch (subop) {
126 case 4: {
127 trace(90, "run") << "subop: multiply EAX by r/m32" << end();
128 const uint64_t result = Reg[EAX].u * static_cast<uint32_t>(*arg1);
129 Reg[EAX].u = result & 0xffffffff;
130 Reg[EDX].u = result >> 32;
131 OF = (Reg[EDX].u != 0);
132 trace(90, "run") << "storing 0x" << HEXWORD << Reg[EAX].u << end();
133 break;
134 }
135
136 default:
137 cerr << "unrecognized sub-opcode after f7: " << NUM(subop) << '\n';
138 exit(1);
139 }
140 break;
141 }
142
143
144
145 :(before "End Initialize Op Names")
146 put_new(Name_0f, "af", "multiply rm32 into r32 (imul)");
147
148 :(scenario multiply_r32_into_r32)
149 % Reg[EAX].i = 4;
150 % Reg[EBX].i = 2;
151 == 0x1
152
153 0f af d8
154
155 +run: multiply r/m32 into EBX
156 +run: r/m32 is EAX
157 +run: storing 0x00000008
158
159 :(before "End Two-Byte Opcodes Starting With 0f")
160 case 0xaf: {
161 const uint8_t modrm = next();
162 const uint8_t arg2 = (modrm>>3)&0x7;
163 trace(90, "run") << "multiply r/m32 into " << rname(arg2) << end();
164 const int32_t* arg1 = effective_address(modrm);
165 BINARY_ARITHMETIC_OP(*, Reg[arg2].i, *arg1);
166 break;
167 }
168
169
170
171 :(scenario negate_r32)
172 % Reg[EBX].i = 1;
173 == 0x1
174
175 f7 db
176
177 +run: operate on r/m32
178 +run: r/m32 is EBX
179 +run: subop: negate
180 +run: storing 0xffffffff
181
182 :(before "End Op f7 Subops")
183 case 3: {
184 trace(90, "run") << "subop: negate" << end();
185
186 if (static_cast<uint32_t>(*arg1) == 0x80000000) {
187 trace(90, "run") << "overflow" << end();
188 SF = true;
189 ZF = false;
190 OF = true;
191 break;
192 }
193 *arg1 = -(*arg1);
194 trace(90, "run") << "storing 0x" << HEXWORD << *arg1 << end();
195 SF = (*arg1 >> 31);
196 ZF = (*arg1 == 0);
197 OF = false;
198 break;
199 }
200
201 :(scenario negate_can_overflow)
202 % Reg[EBX].i = 0x80000000; // INT_MIN
203 == 0x1
204
205 f7 db
206
207 +run: operate on r/m32
208 +run: r/m32 is EBX
209 +run: subop: negate
210 +run: overflow
211
212
213
214 :(before "End Initialize Op Names")
215 put_new(Name, "21", "rm32 = bitwise AND of r32 with rm32 (and)");
216
217 :(scenario and_r32_with_r32)
218 % Reg[EAX].i = 0x0a0b0c0d;
219 % Reg[EBX].i = 0x000000ff;
220 == 0x1
221
222 21 d8
223
224 +run: and EBX with r/m32
225 +run: r/m32 is EAX
226 +run: storing 0x0000000d
227
228 :(before "End Single-Byte Opcodes")
229 case 0x21: {
230 const uint8_t modrm = next();
231 const uint8_t arg2 = (modrm>>3)&0x7;
232 trace(90, "run") << "and " << rname(arg2) << " with r/m32" << end();
233 int32_t* arg1 = effective_address(modrm);
234 BINARY_BITWISE_OP(&, *arg1, Reg[arg2].u);
235 break;
236 }
237
238
239
240 :(before "End Initialize Op Names")
241 put_new(Name, "09", "rm32 = bitwise OR of r32 with rm32 (or)");
242
243 :(scenario or_r32_with_r32)
244 % Reg[EAX].i = 0x0a0b0c0d;
245 % Reg[EBX].i = 0xa0b0c0d0;
246 == 0x1
247
248 09 d8
249
250 +run: or EBX with r/m32
251 +run: r/m32 is EAX
252 +run: storing 0xaabbccdd
253
254 :(before "End Single-Byte Opcodes")
255 case 0x09: {
256 const uint8_t modrm = next();
257 const uint8_t arg2 = (modrm>>3)&0x7;
258 trace(90, "run") << "or " << rname(arg2) << " with r/m32" << end();
259 int32_t* arg1 = effective_address(modrm);
260 BINARY_BITWISE_OP(|, *arg1, Reg[arg2].u);
261 break;
262 }
263
264
265
266 :(before "End Initialize Op Names")
267 put_new(Name, "31", "rm32 = bitwise XOR of r32 with rm32 (xor)");
268
269 :(scenario xor_r32_with_r32)
270 % Reg[EAX].i = 0x0a0b0c0d;
271 % Reg[EBX].i = 0xaabbc0d0;
272 == 0x1
273
274 31 d8
275
276 +run: xor EBX with r/m32
277 +run: r/m32 is EAX
278 +run: storing 0xa0b0ccdd
279
280 :(before "End Single-Byte Opcodes")
281 case 0x31: {
282 const uint8_t modrm = next();
283 const uint8_t arg2 = (modrm>>3)&0x7;
284 trace(90, "run") << "xor " << rname(arg2) << " with r/m32" << end();
285 int32_t* arg1 = effective_address(modrm);
286 BINARY_BITWISE_OP(^, *arg1, Reg[arg2].u);
287 break;
288 }
289
290
291
292 :(scenario not_r32)
293 % Reg[EBX].i = 0x0f0f00ff;
294 == 0x1
295
296 f7 d3
297
298 +run: operate on r/m32
299 +run: r/m32 is EBX
300 +run: subop: not
301 +run: storing 0xf0f0ff00
302
303 :(before "End Op f7 Subops")
304 case 2: {
305 trace(90, "run") << "subop: not" << end();
306 *arg1 = ~(*arg1);
307 trace(90, "run") << "storing 0x" << HEXWORD << *arg1 << end();
308 SF = (*arg1 >> 31);
309 ZF = (*arg1 == 0);
310 OF = false;
311 break;
312 }
313
314
315
316 :(before "End Initialize Op Names")
317 put_new(Name, "39", "compare: set SF if rm32 < r32 (cmp)");
318
319 :(scenario compare_r32_with_r32_greater)
320 % Reg[EAX].i = 0x0a0b0c0d;
321 % Reg[EBX].i = 0x0a0b0c07;
322 == 0x1
323
324 39 d8
325
326 +run: compare EBX with r/m32
327 +run: r/m32 is EAX
328 +run: SF=0; ZF=0; OF=0
329
330 :(before "End Single-Byte Opcodes")
331 case 0x39: {
332 const uint8_t modrm = next();
333 const uint8_t reg2 = (modrm>>3)&0x7;
334 trace(90, "run") << "compare " << rname(reg2) << " with r/m32" << end();
335 const int32_t* arg1 = effective_address(modrm);
336 const int32_t arg2 = Reg[reg2].i;
337 const int32_t tmp1 = *arg1 - arg2;
338 SF = (tmp1 < 0);
339 ZF = (tmp1 == 0);
340 const int64_t tmp2 = *arg1 - arg2;
341 OF = (tmp1 != tmp2);
342 trace(90, "run") << "SF=" << SF << "; ZF=" << ZF << "; OF=" << OF << end();
343 break;
344 }
345
346 :(scenario compare_r32_with_r32_lesser)
347 % Reg[EAX].i = 0x0a0b0c07;
348 % Reg[EBX].i = 0x0a0b0c0d;
349 == 0x1
350
351 39 d8
352
353 +run: compare EBX with r/m32
354 +run: r/m32 is EAX
355 +run: SF=1; ZF=0; OF=0
356
357 :(scenario compare_r32_with_r32_equal)
358 % Reg[EAX].i = 0x0a0b0c0d;
359 % Reg[EBX].i = 0x0a0b0c0d;
360 == 0x1
361
362 39 d8
363
364 +run: compare EBX with r/m32
365 +run: r/m32 is EAX
366 +run: SF=0; ZF=1; OF=0
367
368
369
370 :(before "End Initialize Op Names")
371 put_new(Name, "89", "copy r32 to rm32 (mov)");
372
373 :(scenario copy_r32_to_r32)
374 % Reg[EBX].i = 0xaf;
375 == 0x1
376
377 89 d8
378
379 +run: copy EBX to r/m32
380 +run: r/m32 is EAX
381 +run: storing 0x000000af
382
383 :(before "End Single-Byte Opcodes")
384 case 0x89: {
385 const uint8_t modrm = next();
386 const uint8_t rsrc = (modrm>>3)&0x7;
387 trace(90, "run") << "copy " << rname(rsrc) << " to r/m32" << end();
388 int32_t* dest = effective_address(modrm);
389 *dest = Reg[rsrc].i;
390 trace(90, "run") << "storing 0x" << HEXWORD << *dest << end();
391 break;
392 }
393
394
395
396 :(before "End Initialize Op Names")
397 put_new(Name, "87", "swap the contents of r32 and rm32 (xchg)");
398
399 :(scenario xchg_r32_with_r32)
400 % Reg[EBX].i = 0xaf;
401 % Reg[EAX].i = 0x2e;
402 == 0x1
403
404 87 d8
405
406 +run: exchange EBX with r/m32
407 +run: r/m32 is EAX
408 +run: storing 0x000000af in r/m32
409 +run: storing 0x0000002e in EBX
410
411 :(before "End Single-Byte Opcodes")
412 case 0x87: {
413 const uint8_t modrm = next();
414 const uint8_t reg2 = (modrm>>3)&0x7;
415 trace(90, "run") << "exchange " << rname(reg2) << " with r/m32" << end();
416 int32_t* arg1 = effective_address(modrm);
417 const int32_t tmp = *arg1;
418 *arg1 = Reg[reg2].i;
419 Reg[reg2].i = tmp;
420 trace(90, "run") << "storing 0x" << HEXWORD << *arg1 << " in r/m32" << end();
421 trace(90, "run") << "storing 0x" << HEXWORD << Reg[reg2].i << " in " << rname(reg2) << end();
422 break;
423 }
424
425
426
427 :(before "End Initialize Op Names")
428 put_new(Name, "40", "increment EAX (inc)");
429 put_new(Name, "41", "increment ECX (inc)");
430 put_new(Name, "42", "increment EDX (inc)");
431 put_new(Name, "43", "increment EBX (inc)");
432 put_new(Name, "44", "increment ESP (inc)");
433 put_new(Name, "45", "increment EBP (inc)");
434 put_new(Name, "46", "increment ESI (inc)");
435 put_new(Name, "47", "increment EDI (inc)");
436
437 :(scenario increment_r32)
438 % Reg[ECX].u = 0x1f;
439 == 0x1
440
441 41
442 +run: increment ECX
443 +run: storing value 0x00000020
444
445 :(before "End Single-Byte Opcodes")
446 case 0x40:
447 case 0x41:
448 case 0x42:
449 case 0x43:
450 case 0x44:
451 case 0x45:
452 case 0x46:
453 case 0x47: {
454 const uint8_t reg = op & 0x7;
455 trace(90, "run") << "increment " << rname(reg) << end();
456 ++Reg[reg].u;
457 trace(90, "run") << "storing value 0x" << HEXWORD << Reg[reg].u << end();
458 break;
459 }
460
461 :(before "End Initialize Op Names")
462 put_new(Name, "ff", "increment/decrement/jump/push/call rm32 based on subop (inc/dec/jmp/push/call)");
463
464 :(scenario increment_rm32)
465 % Reg[EAX].u = 0x20;
466 == 0x1
467
468 ff c0
469
470 +run: increment r/m32
471 +run: r/m32 is EAX
472 +run: storing value 0x00000021
473
474 :(before "End Single-Byte Opcodes")
475 case 0xff: {
476 const uint8_t modrm = next();
477 const uint8_t subop = (modrm>>3)&0x7;
478 switch (subop) {
479 case 0: {
480 trace(90, "run") << "increment r/m32" << end();
481 int32_t* arg = effective_address(modrm);
482 ++*arg;
483 trace(90, "run") << "storing value 0x" << HEXWORD << *arg << end();
484 break;
485 }
486 default:
487 cerr << "unrecognized subop for ff: " << HEXBYTE << NUM(subop) << '\n';
488 DUMP("");
489 exit(1);
490
491 }
492 break;
493 }
494
495
496
497 :(before "End Initialize Op Names")
498 put_new(Name, "48", "decrement EAX (dec)");
499 put_new(Name, "49", "decrement ECX (dec)");
500 put_new(Name, "4a", "decrement EDX (dec)");
501 put_new(Name, "4b", "decrement EBX (dec)");
502 put_new(Name, "4c", "decrement ESP (dec)");
503 put_new(Name, "4d", "decrement EBP (dec)");
504 put_new(Name, "4e", "decrement ESI (dec)");
505 put_new(Name, "4f", "decrement EDI (dec)");
506
507 :(scenario decrement_r32)
508 % Reg[ECX].u = 0x1f;
509 == 0x1
510
511 49
512 +run: decrement ECX
513 +run: storing value 0x0000001e
514
515 :(before "End Single-Byte Opcodes")
516 case 0x48:
517 case 0x49:
518 case 0x4a:
519 case 0x4b:
520 case 0x4c:
521 case 0x4d:
522 case 0x4e:
523 case 0x4f: {
524 const uint8_t reg = op & 0x7;
525 trace(90, "run") << "decrement " << rname(reg) << end();
526 --Reg[reg].u;
527 trace(90, "run") << "storing value 0x" << HEXWORD << Reg[reg].u << end();
528 break;
529 }
530
531 :(scenario decrement_rm32)
532 % Reg[EAX].u = 0x20;
533 == 0x1
534
535 ff c8
536
537 +run: decrement r/m32
538 +run: r/m32 is EAX
539 +run: storing value 0x0000001f
540
541 :(before "End Op ff Subops")
542 case 1: {
543 trace(90, "run") << "decrement r/m32" << end();
544 int32_t* arg = effective_address(modrm);
545 --*arg;
546 trace(90, "run") << "storing value 0x" << HEXWORD << *arg << end();
547 break;
548 }
549
550
551
552 :(before "End Initialize Op Names")
553 put_new(Name, "50", "push EAX to stack (push)");
554 put_new(Name, "51", "push ECX to stack (push)");
555 put_new(Name, "52", "push EDX to stack (push)");
556 put_new(Name, "53", "push EBX to stack (push)");
557 put_new(Name, "54", "push ESP to stack (push)");
558 put_new(Name, "55", "push EBP to stack (push)");
559 put_new(Name, "56", "push ESI to stack (push)");
560 put_new(Name, "57", "push EDI to stack (push)");
561
562 :(scenario push_r32)
563 % Reg[ESP].u = 0x64;
564 % Reg[EBX].i = 0x0000000a;
565 == 0x1
566
567 53
568 +run: push EBX
569 +run: decrementing ESP to 0x00000060
570 +run: pushing value 0x0000000a
571
572 :(before "End Single-Byte Opcodes")
573 case 0x50:
574 case 0x51:
575 case 0x52:
576 case 0x53:
577 case 0x54:
578 case 0x55:
579 case 0x56:
580 case 0x57: {
581 uint8_t reg = op & 0x7;
582 trace(90, "run") << "push " << rname(reg) << end();
583
584 push(Reg[reg].u);
585 break;
586 }
587
588
589
590 :(before "End Initialize Op Names")
591 put_new(Name, "58", "pop top of stack to EAX (pop)");
592 put_new(Name, "59", "pop top of stack to ECX (pop)");
593 put_new(Name, "5a", "pop top of stack to EDX (pop)");
594 put_new(Name, "5b", "pop top of stack to EBX (pop)");
595 put_new(Name, "5c", "pop top of stack to ESP (pop)");
596 put_new(Name, "5d", "pop top of stack to EBP (pop)");
597 put_new(Name, "5e", "pop top of stack to ESI (pop)");
598 put_new(Name, "5f", "pop top of stack to EDI (pop)");
599
600 :(scenario pop_r32)
601 % Reg[ESP].u = 0x02000000;
602 % Mem.push_back(vma(0x02000000)); // manually allocate memory
603 % write_mem_i32(0x02000000, 0x0000000a); // ..before this write
604 == 0x1
605
606 5b
607 == 0x2000
608 0a 00 00 00
609 +run: pop into EBX
610 +run: popping value 0x0000000a
611 +run: incrementing ESP to 0x02000004
612
613 :(before "End Single-Byte Opcodes")
614 case 0x58:
615 case 0x59:
616 case 0x5a:
617 case 0x5b:
618 case 0x5c:
619 case 0x5d:
620 case 0x5e:
621 case 0x5f: {
622 const uint8_t reg = op & 0x7;
623 trace(90, "run") << "pop into " << rname(reg) << end();
624
625 Reg[reg].u = pop();
626
627 break;
628 }
629 :(code)
630 uint32_t pop() {
631 const uint32_t result = read_mem_u32(Reg[ESP].u);
632 trace(90, "run") << "popping value 0x" << HEXWORD << result << end();
633 Reg[ESP].u += 4;
634 trace(90, "run") << "incrementing ESP to 0x" << HEXWORD << Reg[ESP].u << end();
635 return result;
636 }