#ifndef VEC3_H #define VEC3_H #include <cmath> #include <iostream> using std::sqrt; class vec3 { public: vec3() : e{0,0,0} {} vec3(float e0, float e1, float e2) : e{e0, e1, e2} {} float x() const { return e[0]; } float y() const { return e[1]; } float z() const { return e[2]; } vec3 operator-() const { return vec3(-e[0], -e[1], -e[2]); } float operator[](int i) const { return e[i]; } float& operator[](int i) { return e[i]; } vec3& operator+=(const vec3 &v) { e[0] += v.e[0]; e[1] += v.e[1]; e[2] += v.e[2]; return *this; } vec3& operator*=(const float t) { e[0] *= t; e[1] *= t; e[2] *= t; return *this; } vec3& operator/=(const float t) { return *this *= 1/t; } float length() const { return sqrt(length_squared()); } float length_squared() const { return e[0]*e[0] + e[1]*e[1] + e[2]*e[2]; } public: float e[3]; }; // Type aliases for vec3 using point3 = vec3; // 3D point using color = vec3; // RGB color // vec3 Utility Functions inline std::ostream& operator<<(std::ostream &out, const vec3 &v) { return out << v.e[0] << ' ' << v.e[1] << ' ' << v.e[2]; } inline vec3 operator+(const vec3 &u, const vec3 &v) { return vec3(u.e[0] + v.e[0], u.e[1] + v.e[1], u.e[2] + v.e[2]); } inline vec3 operator-(const vec3 &u, const vec3 &v) { return vec3(u.e[0] - v.e[0], u.e[1] - v.e[1], u.e[2] - v.e[2]); } inline vec3 operator*(const vec3 &u, const vec3 &v) { return vec3(u.e[0] * v.e[0], u.e[1] * v.e[1], u.e[2] * v.e[2]); } inline vec3 operator*(float t, const vec3 &v) { return vec3(t*v.e[0], t*v.e[1], t*v.e[2]); } inline vec3 operator*(const vec3 &v, float t) { return t * v; } inline vec3 operator/(vec3 v, float t) { return (1/t) * v; } inline float dot(const vec3 &u, const vec3 &v) { return u.e[0] * v.e[0] + u.e[1] * v.e[1] + u.e[2] * v.e[2]; } inline vec3 cross(const vec3 &u, const vec3 &v) { return vec3(u.e[1] * v.e[2] - u.e[2] * v.e[1], u.e[2] * v.e[0] - u.e[0] * v.e[2], u.e[0] * v.e[1] - u.e[1] * v.e[0]); } inline vec3 unit_vector(vec3 v) { return v / v.length(); } #endif