;; profiler (http://arclanguage.org/item?id=11556) ; Keeping this right on top as a reminder to profile before guessing at why my ; program is slow. (mac proc (name params . body) `(def ,name ,params ,@body nil)) (= times* (table)) (mac deftimed(name args . body) `(do (def ,(sym (string name "_core")) ,args ,@body) (def ,name ,args (let t0 (msec) (ret ans ,(cons (sym (string name "_core")) args) (update-time ,(string name) t0)))))) (proc update-time(name t0) ; call directly in recursive functions (or= times*.name (list 0 0)) (with ((a b) times*.name timing (- (msec) t0)) (= times*.name (list (+ a timing) (+ b 1))))) (def print-times() (prn (current-process-milliseconds)) (prn "gc " (current-gc-milliseconds)) (each (name time) (tablist times*) (prn name " " time))) ;; what happens when our virtual machine starts up (= initialization-fns* (queue)) (def reset () (each f (as cons initialization-fns*) (f))) (mac on-init body `(enq (fn () ,@body) initialization-fns*)) ;; persisting and checking traces for each test (= traces* (queue)) (= trace-dir* ".traces/") (ensure-dir trace-dir*) (= curr-trace-file* nil) (on-init (awhen curr-trace-file* (tofile (+ trace-dir* it) (each (label trace) (as cons traces*) (pr label ": " trace)))) (= curr-trace-file* nil) (= traces* (queue))) (def new-trace (filename) (prn "== @filename") ;? ) (= curr-trace-file* filename)) (= dump-trace* nil) (def trace (label . args) (when (or (is dump-trace* t) (and dump-trace* (is label "-")) (and dump-trace* (pos label dump-trace*!whitelist)) (and dump-trace* (no dump-trace*!whitelist) (~pos label dump-trace*!blacklist))) (apply prn label ": " args)) (enq (list label (apply tostring:prn args)) traces*) (car args)) (on-init (wipe dump-trace*)) (redef tr args ; why am I still returning to prn when debugging? Will this help? (do1 nil (apply trace "-" args))) (def tr2 (msg arg) (tr msg arg) arg) (def check-trace-contents (msg expected-contents) (unless (trace-contents-match expected-contents) (prn "F - " msg) (prn " trace contents") (print-trace-contents-mismatch expected-contents))) (def trace-contents-match (expected-contents) (each (label msg) (as cons traces*) (when (and expected-contents (is label expected-contents.0.0) (posmatch expected-contents.0.1 msg)) (pop expected-contents))) (no expected-contents)) (def print-trace-contents-mismatch (expected-contents) (each (label msg) (as cons traces*) (whenlet (expected-label expected-msg) expected-contents.0 (if (and (is label expected-label) (posmatch expected-msg msg)) (do (pr " * ") (pop expected-contents)) (pr " ")) (pr label ": " msg))) (prn " couldn't find") (each (expected-label expected-msg) expected-contents (prn " ! " expected-label ": " expected-msg))) (def check-trace-doesnt-contain (msg (label unexpected-contents)) (when (some (fn ((l s)) (and (is l label) (posmatch unexpected-contents msg))) (as cons traces*)) (prn "F - " msg) (prn " trace contents") (each (l msg) (as cons traces*) (if (and (is l label) (posmatch unexpected-contents msg)) (pr " X ") (pr " ")) (pr label ": " msg)))) ;; virtual machine state ; things that a future assembler will need separate memory for: ; code; types; args channel ; at compile time: mapping names to locations (on-init (= type* (table)) ; name -> type info (= memory* (table)) ; address -> value (= function* (table)) ; name -> [instructions] (= location* (table)) ; function -> {name -> index into default-space} (= next-space-generator* (table)) ; function -> name of function generating next space ; each function's next space will usually always come from a single function (= next-routine-id* 0) ) (on-init (= type* (obj ; Each type must be scalar or array, sum or product or primitive type (obj size 1) ; implicitly scalar and primitive type-address (obj size 1 address t elem '(type)) type-array (obj array t elem '(type)) type-array-address (obj size 1 address t elem '(type-array)) location (obj size 1 address t elem '(location)) ; assume it points to an atom integer (obj size 1) boolean (obj size 1) boolean-address (obj size 1 address t elem '(boolean)) byte (obj size 1) byte-address (obj size 1 address t elem '(byte)) string (obj array t elem '(byte)) ; inspired by Go ; an address contains the location of a specific type string-address (obj size 1 address t elem '(string)) string-address-address (obj size 1 address t elem '(string-address)) string-address-array (obj array t elem '(string-address)) string-address-array-address (obj size 1 address t elem '(string-address-array)) character (obj size 1) ; int32 like a Go rune character-address (obj size 1 address t elem '(character)) ; isolating function calls space (obj array t elem '(location)) ; by convention index 0 points to outer space space-address (obj size 1 address t elem '(space)) ; arrays consist of an integer length followed by that many ; elements, all of the same type integer-array (obj array t elem '(integer)) integer-array-address (obj size 1 address t elem '(integer-array)) integer-array-address-address (obj size 1 address t elem '(integer-array-address)) integer-address (obj size 1 address t elem '(integer)) ; pointer to int integer-address-address (obj size 1 address t elem '(integer-address)) ; and-records consist of a multiple fields of different types integer-boolean-pair (obj size 2 and-record t elems '((integer) (boolean)) fields '(int bool)) integer-boolean-pair-address (obj size 1 address t elem '(integer-boolean-pair)) integer-boolean-pair-array (obj array t elem '(integer-boolean-pair)) integer-boolean-pair-array-address (obj size 1 address t elem '(integer-boolean-pair-array)) integer-integer-pair (obj size 2 and-record t elems '((integer) (integer))) integer-integer-pair-address (obj size 1 address t elem '(integer-integer-pair)) integer-point-pair (obj size 2 and-record t elems '((integer) (integer-integer-pair))) integer-point-pair-address (obj size 1 address t elem '(integer-point-pair)) integer-point-pair-address-address (obj size 1 address t elem '(integer-point-pair-address)) ; tagged-values are the foundation of dynamic types tagged-value (obj size 2 and-record t elems '((type) (location)) fields '(type payload)) tagged-value-address (obj size 1 address t elem '(tagged-value)) tagged-value-array (obj array t elem '(tagged-value)) tagged-value-array-address (obj size 1 address t elem '(tagged-value-array)) tagged-value-array-address-address (obj size 1 address t elem '(tagged-value-array-address)) ; heterogeneous lists list (obj size 2 and-record t elems '((tagged-value) (list-address)) fields '(car cdr)) list-address (obj size 1 address t elem '(list)) list-address-address (obj size 1 address t elem '(list-address)) ; parallel routines use channels to synchronize channel (obj size 3 and-record t elems '((integer) (integer) (tagged-value-array-address)) fields '(first-full first-free circular-buffer)) ; be careful of accidental copies to channels channel-address (obj size 1 address t elem '(channel)) ; editor line (obj array t elem '(character)) line-address (obj size 1 address t elem '(line)) line-address-address (obj size 1 address t elem '(line-address)) screen (obj array t elem '(line-address)) screen-address (obj size 1 address t elem '(screen)) ))) ;; managing concurrent routines (on-init (= Memory-allocated-until 1000)) ; routine = runtime state for a serial thread of execution (def make-routine (fn-name . args) (do1 (annotate 'routine (obj alloc Memory-allocated-until call-stack (list (obj fn-name fn-name pc 0 args args caller-arg-idx 0)))) ; other fields we use in routine: ; sleep: conditions ; limit: number of cycles this routine can use ; running-since: start of the clock for counting cycles this routine has used ; todo: allow routines to expand past initial allocation ; todo: do memory management in mu (++ Memory-allocated-until 1000))) (defextend empty (x) (isa x 'routine) (no rep.x!call-stack)) (def stack (routine) ((rep routine) 'call-stack)) (mac push-stack (routine op) `(push (obj fn-name ,op pc 0 caller-arg-idx 0) ((rep ,routine) 'call-stack))) (mac pop-stack (routine) `(pop ((rep ,routine) 'call-stack))) (def top (routine) stack.routine.0) (def body (routine) (function* stack.routine.0!fn-name)) (mac pc (routine (o idx 0)) ; assignable `((((rep ,routine) 'call-stack) ,idx) 'pc)) (mac caller-arg-idx (routine (o idx 0)) ; assignable `((((rep ,routine) 'call-stack) ,idx) 'caller-arg-idx)) (mac caller-args (routine) ; assignable `((((rep ,routine) 'call-stack) 0) 'args)) (mac caller-operands (routine) ; assignable `((((rep ,routine) 'call-stack) 0) 'caller-operands)) (mac caller-results (routine) ; assignable `((((rep ,routine) 'call-stack) 0) 'caller-results)) (mac results (routine) ; assignable `((((rep ,routine) 'call-stack) 0) 'results)) (def waiting-for-exact-cycle? (routine) (is 'until rep.routine!sleep.0)) (def ready-to-wake-up (routine) (assert no.routine*) (case rep.routine!sleep.0 until (> curr-cycle* rep.routine!sleep.1) until-location-changes (~is rep.routine!sleep.2 (memory* rep.routine!sleep.1)) until-routine-done (find [and _ (is rep._!id rep.routine!sleep.1)] completed-routines*) )) (on-init (= running-routines* (queue)) ; simple round-robin scheduler ; set of sleeping routines; don't modify routines while they're in this table (= sleeping-routines* (table)) (= completed-routines* nil) ; audit trail (= routine* nil) (= abort-routine* (parameter nil)) (= curr-cycle* 0) (= scheduling-interval* 500) (= scheduler-switch-table* nil) ; hook into scheduler for tests ) ; like arc's 'point' but you can also call ((abort-routine*)) in nested calls (mac routine-mark body (w/uniq (g p) `(ccc (fn (,g) (parameterize abort-routine* (fn ((o ,p)) (,g ,p)) ,@body))))) (def run fn-names (freeze function*) (load-system-functions) ;? (write function*) ;? (quit) (= traces* (queue)) (each it fn-names (enq make-routine.it running-routines*)) (while (~empty running-routines*) (= routine* deq.running-routines*) (when rep.routine*!limit ; start the clock if it wasn't already running (or= rep.routine*!running-since curr-cycle*)) (trace "schedule" top.routine*!fn-name) (routine-mark (run-for-time-slice scheduling-interval*)) (update-scheduler-state) ;? (tr "after run iter " running-routines*) ;? (tr "after run iter " empty.running-routines*) )) ; prepare next iteration of round-robin scheduler ; ; state before: routine* running-routines* sleeping-routines* ; state after: running-routines* (with next routine to run at head) sleeping-routines* ; ; responsibilities: ; add routine* to either running-routines* or sleeping-routines* or completed-routines* ; wake up any necessary sleeping routines (which might be waiting for a ; particular time or for a particular memory location to change) ; detect termination: all non-helper routines completed ; detect deadlock: kill all sleeping routines when none can be woken (def update-scheduler-state () ;? (tr curr-cycle*) (when routine* (if rep.routine*!sleep (do (trace "schedule" "pushing " top.routine*!fn-name " to sleep queue") ; keep the clock ticking at rep.routine*!running-since (set sleeping-routines*.routine*)) rep.routine*!error (do (trace "schedule" "done with dead routine " top.routine*!fn-name) ;? (tr rep.routine*) (push routine* completed-routines*)) empty.routine* (do (trace "schedule" "done with routine") (push routine* completed-routines*)) (no rep.routine*!limit) (do (trace "schedule" "scheduling " top.routine*!fn-name " for further processing") (enq routine* running-routines*)) (> rep.routine*!limit 0) (do (trace "schedule" "scheduling " top.routine*!fn-name " for further processing (limit)") ; stop the clock and debit the time on it from the routine (-- rep.routine*!limit (- curr-cycle* rep.routine*!running-since)) (wipe rep.routine*!running-since) (if (<= rep.routine*!limit 0) (do (trace "schedule" "routine ran out of time") (push routine* completed-routines*)) (enq routine* running-routines*))) :else (err "illegal scheduler state")) (= routine* nil)) ;? (tr 111) (each (routine _) canon.sleeping-routines* ;? (tr routine) (when (aand rep.routine!limit (<= it (- curr-cycle* rep.routine!running-since))) (trace "schedule" "routine timed out") (wipe sleeping-routines*.routine) (push routine completed-routines*) ;? (tr completed-routines*) )) (each (routine _) canon.sleeping-routines* (when (ready-to-wake-up routine) (trace "schedule" "waking up " top.routine!fn-name) (wipe sleeping-routines*.routine) ; do this before modifying routine (wipe rep.routine!sleep) (++ pc.routine) (enq routine running-routines*))) ;? (tr 112) ; optimization for simulated time (when (empty running-routines*) (whenlet exact-sleeping-routines (keep waiting-for-exact-cycle? keys.sleeping-routines*) (let next-wakeup-cycle (apply min (map [rep._!sleep 1] exact-sleeping-routines)) (= curr-cycle* (+ 1 next-wakeup-cycle))) (trace "schedule" "skipping to cycle " curr-cycle*) (update-scheduler-state))) ;? (prn running-routines*) ;? (prn sleeping-routines*) (when (and (or (~empty running-routines*) (~empty sleeping-routines*)) (all [rep._ 'helper] (as cons running-routines*)) (all [rep._ 'helper] keys.sleeping-routines*)) (trace "schedule" "just helpers left; stopping everything") (until (empty running-routines*) (push (deq running-routines*) completed-routines*)) (each (routine _) sleeping-routines* (wipe sleeping-routines*.routine) (push routine completed-routines*))) ;? (tr 113) (detect-deadlock) ;? (tr 114) ) (def detect-deadlock () (when (and (empty running-routines*) (~empty sleeping-routines*) (~some 'literal (map (fn(_) rep._!sleep.1) keys.sleeping-routines*))) (each (routine _) sleeping-routines* (wipe sleeping-routines*.routine) (= rep.routine!error "deadlock detected") (push routine completed-routines*)))) (def die (msg) (tr "die: " msg) (= rep.routine*!error msg) (= rep.routine*!stack-trace rep.routine*!call-stack) (iflet abort-continuation (abort-routine*) (abort-continuation))) ;; running a single routine ; value of an arg or oarg, stripping away all metadata ; wish I could have this flag an error when arg is incorrectly formed (mac v (operand) ; for value `((,operand 0) 0)) ; routines consist of instrs ; instrs consist of oargs, op and args (def parse-instr (instr) ;? (prn instr) (iflet delim (pos '<- instr) (list (cut instr 0 delim) ; oargs (v (instr (+ delim 1))) ; op (cut instr (+ delim 2))) ; args (list nil (v car.instr) cdr.instr))) (def metadata (operand) cdr.operand) (def ty (operand) (cdr operand.0)) (def literal? (operand) (in ty.operand.0 'literal 'offset 'fn)) (def typeinfo (operand) (or (type* ty.operand.0) (err "unknown type @(tostring prn.operand)"))) ; operand accessors (def nondummy (operand) ; precondition for helpers below (~is '_ operand)) ; just for convenience, 'new' instruction sometimes takes a raw string and ; allocates just enough space to store it (def not-raw-string (operand) (~isa operand 'string)) (def address? (operand) (or (is ty.operand.0 'location) typeinfo.operand!address)) ($:require "charterm/main.rkt") ($:require graphics/graphics) (= Viewport nil) ; run instructions from 'routine*' for 'time-slice' (def run-for-time-slice (time-slice) (point return (for ninstrs 0 (< ninstrs time-slice) (++ ninstrs) (if (empty body.routine*) (err "@stack.routine*.0!fn-name not defined")) ; falling out of end of function = implicit reply (while (>= pc.routine* (len body.routine*)) (pop-stack routine*) (if empty.routine* (return ninstrs)) (when (pos '<- (body.routine* pc.routine*)) (die "No results returned: @(tostring:prn (body.routine* pc.routine*))")) (++ pc.routine*)) (++ curr-cycle*) ;? (trace "run" "-- " int-canon.memory*) (trace "run" curr-cycle* " " top.routine*!fn-name " " pc.routine* ": " (body.routine* pc.routine*)) ;? (trace "run" routine*) (when (atom (body.routine* pc.routine*)) ; label (when (aand scheduler-switch-table* (alref it (body.routine* pc.routine*))) (++ pc.routine*) (trace "run" "context-switch forced " abort-routine*) ((abort-routine*))) (++ pc.routine*) (continue)) (let (oarg op arg) (parse-instr (body.routine* pc.routine*)) (let results (case op ; arithmetic add (+ (m arg.0) (m arg.1)) subtract (- (m arg.0) (m arg.1)) multiply (* (m arg.0) (m arg.1)) divide (/ (real (m arg.0)) (m arg.1)) divide-with-remainder (list (trunc:/ (m arg.0) (m arg.1)) (mod (m arg.0) (m arg.1))) ; boolean and (and (m arg.0) (m arg.1)) or (or (m arg.0) (m arg.1)) not (not (m arg.0)) ; comparison equal ;? (do (prn (m arg.0) " vs " (m arg.1)) (is (m arg.0) (m arg.1)) ;? ) not-equal (~is (m arg.0) (m arg.1)) less-than (< (m arg.0) (m arg.1)) greater-than (> (m arg.0) (m arg.1)) lesser-or-equal (<= (m arg.0) (m arg.1)) greater-or-equal (>= (m arg.0) (m arg.1)) ; control flow jump (do (= pc.routine* (+ 1 pc.routine* (v arg.0))) (continue)) jump-if (when (m arg.0) (= pc.routine* (+ 1 pc.routine* (v arg.1))) (continue)) jump-unless ; convenient helper (unless (m arg.0) (= pc.routine* (+ 1 pc.routine* (v arg.1))) (continue)) ; data management: scalars, arrays, and-records (structs) copy (m arg.0) get (with (operand (canonize arg.0) idx (v arg.1)) (assert (iso '(offset) (ty arg.1)) "record index @arg.1 must have type 'offset'") (assert (< -1 idx (len typeinfo.operand!elems)) "@idx is out of bounds of record @operand") (m `((,(apply + v.operand (map (fn(x) (sizeof `((_ ,@x)))) (firstn idx typeinfo.operand!elems))) ,@typeinfo.operand!elems.idx) (raw)))) get-address (with (operand (canonize arg.0) idx (v arg.1)) (assert (iso '(offset) (ty arg.1)) "record index @arg.1 must have type 'offset'") (assert (< -1 idx (len typeinfo.operand!elems)) "@idx is out of bounds of record @operand") (apply + v.operand (map (fn(x) (sizeof `((_ ,@x)))) (firstn idx typeinfo.operand!elems)))) index (withs (operand (canonize arg.0) elemtype typeinfo.operand!elem idx (m arg.1)) ;? (write arg.0) ;? (pr " => ") ;? (write operand) ;? (prn) (unless (< -1 idx array-len.operand) (die "@idx is out of bounds of array @operand")) (m `((,(+ v.operand 1 ; for array size (* idx (sizeof `((_ ,@elemtype))))) ,@elemtype) (raw)))) index-address (withs (operand (canonize arg.0) elemtype typeinfo.operand!elem idx (m arg.1)) (unless (< -1 idx array-len.operand) (die "@idx is out of bounds of array @operand")) (+ v.operand 1 ; for array size (* idx (sizeof `((_ ,@elemtype)))))) new (if (isa arg.0 'string) ; special-case: allocate space for a literal string (new-string arg.0) (let type (v arg.0) (assert (iso '(literal) (ty arg.0)) "new: second arg @arg.0 must be literal") (if (no type*.type) (err "no such type @type")) ; todo: initialize memory. currently racket does it for us (if type*.type!array (new-array type (m arg.1)) (new-scalar type)))) sizeof (sizeof `((_ ,(m arg.0)))) length (let base arg.0 (if (or typeinfo.base!array address?.base) array-len.base -1)) ; tagged-values require one primitive save-type (annotate 'record `(,((ty arg.0) 0) ,(m arg.0))) ; code points for characters character-to-integer ($.char->integer (m arg.0)) integer-to-character ($.integer->char (m arg.0)) ; multiprocessing fork ; args: fn globals-table args ... (let routine (apply make-routine (m arg.0) (map m (nthcdr 3 arg))) (= rep.routine!id ++.next-routine-id*) (= rep.routine!globals (when (len> arg 1) (m arg.1))) (= rep.routine!limit (when (len> arg 2) (m arg.2))) (enq routine running-routines*) rep.routine!id) fork-helper ; args: fn globals-table args ... (let routine (apply make-routine (m arg.0) (map m (nthcdr 3 arg))) (= rep.routine!id ++.next-routine-id*) (set rep.routine!helper) (= rep.routine!globals (when (len> arg 1) (m arg.1))) (= rep.routine!limit (when (len> arg 2) (m arg.2))) (enq routine running-routines*) rep.routine!id) sleep (do (case (v arg.0) for-some-cycles (let wakeup-time (+ curr-cycle* (v arg.1)) (trace "run" "sleeping until " wakeup-time) ; TODO (= rep.routine*!sleep `(until ,wakeup-time))) until-location-changes (= rep.routine*!sleep `(until-location-changes ,(addr arg.1) ,(m arg.1))) until-routine-done (= rep.routine*!sleep `(until-routine-done ,(m arg.1))) ; else (die "badly formed 'sleep' call @(tostring:prn (body.routine* pc.routine*))") ) ((abort-routine*))) assert (unless (m arg.0) (die (v arg.1))) ; other routines will be able to look at the error status ; cursor-based (text mode) interaction clear-screen (do1 nil (if ($.current-charterm) ($.charterm-clear-screen) ($.graphics-open?) ($.clear-viewport Viewport))) clear-line (do1 nil ($.charterm-clear-line)) cursor (do1 nil ($.charterm-cursor (m arg.0) (m arg.1))) cursor-to-next-line (do1 nil ($.charterm-newline)) print-primitive (do1 nil ((if ($.current-charterm) $.charterm-display pr) (m arg.0))) read-key (if ($.current-charterm) (and ($.charterm-byte-ready?) ($.charterm-read-key)) ($.graphics-open?) ($.ready-key-press Viewport)) wait-for-key (if ($.current-charterm) ($.charterm-read-key) ($.graphics-open?) ($.get-key-press Viewport)) bold-mode (do1 nil ($.charterm-bold)) non-bold-mode (do1 nil ($.charterm-normal)) console-on (do1 nil (if (no ($.current-charterm)) ($.open-charterm))) console-off (do1 nil (if ($.current-charterm) ($.close-charterm))) ; graphics graphics-on (do1 nil ($.open-graphics) (= Viewport ($.open-viewport (m arg.0) ; name (m arg.1) (m arg.2)))) ; width height graphics-off (do1 nil ($.close-viewport Viewport) ; why doesn't this close the window? works in naked racket. not racket vs arc. ($.close-graphics) (= Viewport nil)) mouse-position (aif ($.ready-mouse-click Viewport) (let posn ($.mouse-click-posn it) (list (annotate 'record (list ($.posn-x posn) ($.posn-y posn))) t)) (list nil nil)) wait-for-mouse (let posn ($.mouse-click-posn ($.get-mouse-click Viewport)) (list (annotate 'record (list ($.posn-x posn) ($.posn-y posn))) t)) ; clear-screen in cursor mode above rectangle (do1 nil (($.draw-solid-rectangle Viewport) ($.make-posn (m arg.0) (m arg.1)) ; origin (m arg.2) (m arg.3) ; width height (m arg.4))) ; color point (do1 nil (($.draw-pixel Viewport) ($.make-posn (m arg.0) (m arg.1)) (m arg.2))) ; color image (do1 nil (($.draw-pixmap Viewport) (m arg.0) ; filename ($.make-posn (m arg.1) (m arg.2)))) color-at (let pixel (($.get-color-pixel Viewport) ($.make-posn (m arg.0) (m arg.1))) (prn ($.rgb-red pixel) " " ($.rgb-blue pixel) " " ($.rgb-green pixel)) ($:rgb-red pixel)) foo (= times* (table)) ; user-defined functions next-input (let idx caller-arg-idx.routine* (++ caller-arg-idx.routine*) (trace "arg" arg " " idx " " caller-args.routine*) (if (len> caller-args.routine* idx) (list caller-args.routine*.idx t) (list nil nil))) input (do (assert (iso '(literal) (ty arg.0))) (= caller-arg-idx.routine* (v arg.0)) (let idx caller-arg-idx.routine* (++ caller-arg-idx.routine*) (trace "arg" arg " " idx " " caller-args.routine*) (if (len> caller-args.routine* idx) (list caller-args.routine*.idx t) (list nil nil)))) ; type and otype won't always easily compile. be careful. type (ty (caller-operands.routine* (v arg.0))) otype (ty (caller-results.routine* (v arg.0))) prepare-reply (prepare-reply arg) reply (do (when arg (prepare-reply arg)) (let results results.routine* (pop-stack routine*) (if empty.routine* (return ninstrs)) (let (caller-oargs _ _) (parse-instr (body.routine* pc.routine*)) (trace "reply" arg " " caller-oargs) (each (dest val) (zip caller-oargs results) (when nondummy.dest (trace "reply" val " => " dest) (setm dest val)))) (++ pc.routine*) (while (>= pc.routine* (len body.routine*)) (pop-stack routine*) (when empty.routine* (return ninstrs)) (++ pc.routine*)) (continue))) ; else try to call as a user-defined function (do (if function*.op (with (callee-args (accum yield (each a arg (yield (m a)))) callee-operands (accum yield (each a arg (yield a))) callee-results (accum yield (each a oarg (yield a)))) (push-stack routine* op) (= caller-args.routine* callee-args) (= caller-operands.routine* callee-operands) (= caller-results.routine* callee-results)) (err "no such op @op")) (continue)) ) ; opcode generated some 'results' ; copy to output args (if (acons results) (each (dest val) (zip oarg results) (unless (is dest '_) (trace "run" val " => " dest) (setm dest val))) (when oarg ; must be a list (trace "run" results " => " oarg.0) (setm oarg.0 results))) ) (++ pc.routine*))) (return time-slice))) (def prepare-reply (args) (= results.routine* (accum yield (each a args (yield (m a)))))) ; helpers for memory access respecting ; immediate addressing - 'literal' and 'offset' ; direct addressing - default ; indirect addressing - 'deref' ; relative addressing - if routine* has 'default-space' (def m (loc) ; read memory, respecting metadata (point return (when (literal? loc) (return v.loc)) (when (is v.loc 'default-space) (return rep.routine*!call-stack.0!default-space)) (trace "m" loc) (assert (isa v.loc 'int) "addresses must be numeric (problem in convert-names?) @loc") (with (n sizeof.loc addr addr.loc) ;? (trace "m" "reading " n " locations starting at " addr) (if (is 1 n) memory*.addr :else (annotate 'record (map memory* (addrs addr n))))))) (def setm (loc val) ; set memory, respecting metadata (point return (when (is v.loc 'default-space) (assert (is 1 sizeof.loc) "can't store compounds in default-space @loc") (= rep.routine*!call-stack.0!default-space val) (return)) (assert (isa v.loc 'int) "can't store to non-numeric address (problem in convert-names?)") (trace "setm" loc " <= " val) (with (n (if (isa val 'record) (len rep.val) 1) addr addr.loc typ typeof.loc) (trace "setm" "size of " loc " is " n) (assert n "setm: can't compute type of @loc") (assert addr "setm: null pointer @loc") (if (is 1 n) (do (assert (~isa val 'record) "setm: record of size 1 @(tostring prn.val)") (trace "setm" loc ": setting " addr " to " val) (= memory*.addr val)) (do (if type*.typ!array ; size check for arrays (when (~is n (+ 1 ; array length (* rep.val.0 (sizeof `((_ ,@type*.typ!elem)))))) (die "writing invalid array @(tostring prn.val)")) ; size check for non-arrays (when (~is sizeof.loc n) (die "writing to incorrect size @(tostring pr.val) => @loc"))) (let addrs (addrs addr n) (each (dest src) (zip addrs rep.val) (trace "setm" loc ": setting " dest " to " src) (= memory*.dest src)))))))) (def typeof (operand) (let loc absolutize.operand (while (pos '(deref) metadata.loc) (zap deref loc)) ty.loc.0)) (def addr (operand) (v canonize.operand)) (def addrs (n sz) (accum yield (repeat sz (yield n) (++ n)))) (def canonize (operand) ;? (tr "0: @operand") (ret operand ;? (prn "1: " operand) ;? (tr "1: " operand) ; todo: why does this die? (zap absolutize operand) ;? (tr "2: @(tostring write.operand)") (while (pos '(deref) metadata.operand) (zap deref operand) ;? (tr "3: @(tostring write.operand)") ))) (def array-len (operand) (trace "array-len" operand) (zap canonize operand) (if typeinfo.operand!array (m `((,v.operand integer) ,@metadata.operand)) :else (err "can't take len of non-array @operand"))) (def sizeof (x) (trace "sizeof" x) (assert acons.x) (zap canonize x) (point return ;? (tr "sizeof: checking @x for array") (when typeinfo.x!array ;? (tr "sizeof: @x is an array") (assert (~is '_ v.x) "sizeof: arrays require a specific variable") (return (+ 1 (* array-len.x (sizeof `((_ ,@typeinfo.x!elem))))))) ;? (tr "sizeof: not an array") (when typeinfo.x!and-record ;? (tr "sizeof: @x is an and-record") (return (sum idfn (accum yield (each elem typeinfo.x!elems (yield (sizeof `((_ ,@elem))))))))) ;? (tr "sizeof: @x is a primitive") (return typeinfo.x!size))) (def absolutize (operand) (if (no routine*) operand (is '_ v.operand) operand (pos '(raw) metadata.operand) operand (is 'global space.operand) (aif rep.routine*!globals `((,(+ it 1 v.operand) ,@(cdr operand.0)) ,@(rem [caris _ 'space] metadata.operand) (raw)) (die "routine has no globals: @operand")) :else (iflet base rep.routine*!call-stack.0!default-space (lookup-space (rem [caris _ 'space] operand) base space.operand) operand))) (def lookup-space (operand base space) (if (is 0 space) ; base case (if (< v.operand memory*.base) `((,(+ base 1 v.operand) ,@(cdr operand.0)) ,@metadata.operand (raw)) (die "no room for var @operand in routine of size @memory*.base")) ; recursive case (lookup-space operand (memory* (+ base 1)) ; location 0 points to next space (- space 1)))) (def space (operand) (or (alref operand 'space) 0)) (def deref (operand) (assert (pos '(deref) metadata.operand)) (assert address?.operand) (cons `(,(memory* v.operand) ,@typeinfo.operand!elem) (drop-one '(deref) metadata.operand))) (def drop-one (f x) (when acons.x ; proper lists only (if (testify.f car.x) cdr.x (cons car.x (drop-one f cdr.x))))) ; memory allocation (def new-scalar (type) ;? (tr "new scalar: @type") (ret result rep.routine*!alloc (++ rep.routine*!alloc (sizeof `((_ ,type)))))) (def new-array (type size) ;? (tr "new array: @type @size") (ret result rep.routine*!alloc (++ rep.routine*!alloc (+ 1 (* (sizeof `((_ ,@type*.type!elem))) size))) (= memory*.result size))) (def new-string (literal-string) ;? (tr "new string: @literal-string") (ret result rep.routine*!alloc (= (memory* rep.routine*!alloc) len.literal-string) (++ rep.routine*!alloc) (each c literal-string (= (memory* rep.routine*!alloc) c) (++ rep.routine*!alloc)))) ;; desugar structured assembly based on blocks (def convert-braces (instrs) ;? (prn "convert-braces " instrs) (let locs () ; list of information on each brace: (open/close pc) (let pc 0 (loop (instrs instrs) (each instr instrs ;? (tr instr) (if (or atom.instr (~is 'begin instr.0)) ; label or regular instruction (do (trace "c{0" pc " " instr " -- " locs) (++ pc)) ; hack: racket replaces braces with parens, so we need the ; keyword 'begin' to delimit blocks. ; ultimately there'll be no nesting and braces will just be ; in an instr by themselves. :else ; brace (do (push `(open ,pc) locs) (recur cdr.instr) (push `(close ,pc) locs)))))) (zap rev locs) ;? (tr "-") (with (pc 0 stack ()) ; elems are pcs (accum yield (loop (instrs instrs) (each instr instrs ;? (tr "- " instr) (point continue (when (atom instr) ; label (yield instr) (++ pc) (continue)) (when (is car.instr 'begin) (push pc stack) (recur cdr.instr) (pop stack) (continue)) (with ((oarg op arg) (parse-instr instr) yield-new-instr (fn (new-instr) (trace "c{1" "@pc X " instr " => " new-instr) (yield new-instr)) yield-unchanged (fn () (trace "c{1" "@pc ✓ " instr) (yield instr))) (when (in op 'break 'break-if 'break-unless 'loop 'loop-if 'loop-unless) (assert (is oarg nil) "@op: can't take oarg in @instr")) (case op break (yield-new-instr `(((jump)) ((,(close-offset pc locs (and arg (v arg.0))) offset)))) break-if (yield-new-instr `(((jump-if)) ,arg.0 ((,(close-offset pc locs (and cdr.arg (v arg.1))) offset)))) break-unless (yield-new-instr `(((jump-unless)) ,arg.0 ((,(close-offset pc locs (and cdr.arg (v arg.1))) offset)))) loop (yield-new-instr `(((jump)) ((,(open-offset pc stack (and arg (v arg.0))) offset)))) loop-if (yield-new-instr `(((jump-if)) ,arg.0 ((,(open-offset pc stack (and cdr.arg (v arg.1))) offset)))) loop-unless (yield-new-instr `(((jump-unless)) ,arg.0 ((,(open-offset pc stack (and cdr.arg (v arg.1))) offset)))) ;else (yield-unchanged))) (++ pc)))))))) (def close-offset (pc locs nblocks) (or= nblocks 1) ;? (tr nblocks) (point return ;? (tr "close " pc " " locs) (let stacksize 0 (each (state loc) locs (point continue ;? (tr stacksize "/" done " " state " " loc) (when (<= loc pc) (continue)) ;? (tr "process " stacksize loc) (if (is 'open state) (++ stacksize) (-- stacksize)) ; last time ;? (tr "process2 " stacksize loc) (when (is stacksize (* -1 nblocks)) ;? (tr "close now " loc) (return (- loc pc 1)))))))) (def open-offset (pc stack nblocks) (or= nblocks 1) (- (stack (- nblocks 1)) 1 pc)) ;; convert jump targets to offsets (def convert-labels (instrs) ;? (tr "convert-labels " instrs) (let labels (table) (let pc 0 (each instr instrs (when (~acons instr) ;? (tr "label " pc) (= labels.instr pc)) (++ pc))) (let pc 0 (each instr instrs (when (and acons.instr (acons car.instr) (in (v car.instr) 'jump 'jump-if 'jump-unless)) (each arg cdr.instr ;? (tr "trying " arg " " ty.arg ": " v.arg " => " (labels v.arg)) (when (and (is ty.arg.0 'offset) (isa v.arg 'sym) (labels v.arg)) (= v.arg (- (labels v.arg) pc 1))))) (++ pc)))) instrs) ;; convert symbolic names to raw memory locations (def add-next-space-generator (instrs name) ;? (prn "== @name") (each instr instrs (when acons.instr (let (oargs op args) (parse-instr instr) (each oarg oargs (when (and (nondummy oarg) (is v.oarg 0) (iso ty.oarg '(space-address))) (assert (no next-space-generator*.name) "function can have only one next-space-generator environment") (tr "next-space-generator of @name is @(alref oarg 'names)") (= next-space-generator*.name (alref oarg 'names)))))))) ; just a helper for testing; in practice we unbundle assign-names-to-location ; and replace-names-with-location. (def convert-names (instrs (o name)) ;? (tr "convert-names " instrs) (let location (table) (= location*.name (assign-names-to-location instrs name)) ;? (tr "save names for function @name: @(tostring:pr location*.name)") ) (replace-names-with-location instrs name)) (def assign-names-to-location (instrs name) (ret location (table) (with (isa-field (table) idx 1) ; 0 always reserved for next space (each instr instrs (point continue (when atom.instr (continue)) (trace "cn0" instr " " canon.location " " canon.isa-field) (let (oargs op args) (parse-instr instr) ;? (tr "about to rename args: @op") (if (in op 'get 'get-address) ; special case: map field offset by looking up type table (with (basetype (typeof args.0) field (v args.1)) ;? (tr 111 " " args.0 " " basetype) (assert type*.basetype!and-record "get on non-record @args.0") ;? (tr 112) (trace "cn0" "field-access @field in @args.0 of type @basetype") (when (isa field 'sym) (assert (or (~location field) isa-field.field) "field @args.1 is also a variable") (when (~location field) (trace "cn0" "new field; computing location") ;? (tr "aa " type*.basetype) (assert type*.basetype!fields "no field names available for @instr") ;? (tr "bb") (iflet idx (pos field type*.basetype!fields) (do (set isa-field.field) (trace "cn0" "field location @idx") (= location.field idx)) (assert nil "couldn't find field in @instr"))))) ; map args to location indices (each arg args (trace "cn0" "checking arg " arg) (when (and nondummy.arg not-raw-string.arg) (assert (~isa-field v.arg) "arg @arg is also a field name") (when (maybe-add arg location idx) (err "use before set: @arg"))))) ;? (tr "about to rename oargs") ; map oargs to location indices (each arg oargs (trace "cn0" "checking oarg " arg) (when (and nondummy.arg not-raw-string.arg) (assert (~isa-field v.arg) "oarg @arg is also a field name") (when (maybe-add arg location idx) (trace "cn0" "location for oarg " arg ": " idx) ; todo: can't allocate arrays on the stack (++ idx (sizeof `((_ ,@ty.arg))))))))))))) (def replace-names-with-location (instrs name) (each instr instrs (when (acons instr) (let (oargs op args) (parse-instr instr) (each arg args (convert-name arg name)) (each arg oargs (convert-name arg name))))) (each instr instrs (trace "cn1" instr)) instrs) ; assign an index to an arg (def maybe-add (arg location idx) (trace "maybe-add" arg) (when (and nondummy.arg ;? (prn arg " " (assoc 'space arg)) (~assoc 'space arg) (~literal? arg) (~location v.arg) (isa v.arg 'sym) (~in v.arg 'nil 'default-space) (~pos '(raw) metadata.arg)) (= (location v.arg) idx))) ; convert the arg to corresponding index (def convert-name (arg default-name) ;? (prn "111 @arg @default-name") (when (and nondummy.arg not-raw-string.arg (~is ty.arg.0 'literal)) ; can't use 'literal?' because we want to rename offsets ;? (prn "112 @arg") (let name (space-to-name arg default-name) ;? (prn "113 @arg @name @keys.location* @(tostring:pr location*.name)") ;? (when (is arg '((y integer) (space 1))) ;? (prn "@arg => @name")) (when (aand location*.name (it v.arg)) ;? (prn 114) (zap location*.name v.arg)) ;? (prn 115) ))) (def space-to-name (arg default-name) (ret name default-name (when (~is space.arg 'global) (repeat space.arg (zap next-space-generator* name))))) ;; literate tangling system for reordering code (def convert-quotes (instrs) (let deferred (queue) (each instr instrs (when (acons instr) (case instr.0 defer (let (q qinstrs) instr.1 (assert (is 'make-br-fn q) "defer: first arg must be [quoted]") (each qinstr qinstrs (enq qinstr deferred)))))) (accum yield (each instr instrs (if atom.instr ; label (yield instr) (is instr.0 'defer) nil ; skip (is instr.0 'reply) (do (when cdr.instr ; return values (= instr.0 'prepare-reply) (yield instr)) (each instr (as cons deferred) (yield instr)) (yield '(reply))) :else (yield instr))) (each instr (as cons deferred) (yield instr))))) (on-init (= before* (table)) ; label -> queue of fragments (= after* (table))) ; label -> list of fragments ; see add-code below for adding to before* and after* (def insert-code (instrs (o name)) ;? (tr "insert-code " instrs) (loop (instrs instrs) (accum yield (each instr instrs (if (and (acons instr) (~is 'begin car.instr)) ; simple instruction (yield instr) (and (acons instr) (is 'begin car.instr)) ; block (yield `{begin ,@(recur cdr.instr)}) (atom instr) ; label (do ;? (prn "tangling " instr) (each fragment (as cons (or (and name (before* (sym:string name '/ instr))) before*.instr)) (each instr fragment (yield instr))) (yield instr) (each fragment (or (and name (after* (sym:string name '/ instr))) after*.instr) (each instr fragment (yield instr))))))))) ;; loading code into the virtual machine (def add-code (forms) (each (op . rest) forms (case op ; function [ ] ; don't apply our lightweight tools just yet function! (let (name (_make-br-fn body)) rest (assert (is 'make-br-fn _make-br-fn)) (= function*.name body)) function (let (name (_make-br-fn body)) rest (assert (is 'make-br-fn _make-br-fn)) (= function*.name (join body function*.name))) ; and-record [ ] and-record (let (name (_make-br-fn fields)) rest (assert (is 'make-br-fn _make-br-fn)) (let fields (map tokenize-arg fields) (= type*.name (obj size len.fields and-record t ; dump all metadata for now except field name and type elems (map cdar fields) fields (map caar fields))))) ; primitive primitive (let (name) rest (= type*.name (obj size 1))) ; address address (let (name types) rest (= type*.name (obj size 1 address t elem types))) ; array array (let (name types) rest (= type*.name (obj array t elem types))) ; before