:(scenario add_r32_to_rm32) % Reg[3].i = 0x10; % Reg[0].i = 0x60; # word in addresses 0x60-0x63 has value 1 % Mem[0x60] = 1; # op ModR/M SIB displacement immediate 01 18 # add EBX to *EAX +run: add register 3 to effective address +run: effective address is memory at address 0x60 (register 0) +run: storing 0x11 :(before "End Single-Byte Opcodes") case 0x01: { // add r32 to r/m32 uint8_t modrm = next(); uint8_t arg2 = (modrm>>3)&0x7; trace(2, "run") << "add register " << static_cast(arg2) << " to effective address" << end(); int32_t* arg1 = effective_address(modrm); BINARY_ARITHMETIC_OP(+, *arg1, Reg[arg2].i); break; } :(code) // Implement tables 2-2 and 2-3 in the Intel manual, Volume 2. // We return a pointer so that instructions can write to multiple bytes in // 'Mem' at once. int32_t* effective_address(uint8_t modrm) { uint8_t mod = (modrm>>6); // ignore middle 3 'register opcode' bits uint8_t rm = modrm & 0x7; int32_t* result = 0; switch (mod) { case 0: // mod 0 is usually indirect addressing switch (rm) { default: trace(99, "run") << "effective address is memory at address 0x" << std::hex << Reg[rm].u << " (register " << static_cast(rm) << ")" << end(); assert(Reg[rm].u + sizeof(int32_t) <= Mem.size()); result = reinterpret_cast(&Mem.at(Reg[rm].u)); // rely on the host itself being in little-endian order break; // End Mod 0 Special-Cases } break; // End Mod Special-Cases } return result; }