//:: register indirect addressing :(scenario add_r32_to_mem_at_r32) % Reg[3].i = 0x10; % Reg[0].i = 0x60; # word in addresses 0x60-0x63 has value 1 % Mem.at(0x60) = 1; # op ModR/M SIB displacement immediate 01 18 # add EBX (reg 3) to *EAX (reg 0) +run: add reg 3 to effective address +run: effective address is mem at address 0x60 (reg 0) +run: storing 0x00000011 :(before "End Single-Byte Opcodes") case 0x01: { // add r32 to r/m32 uint8_t modrm = next(); uint8_t arg2 = (modrm>>3)&0x7; trace(2, "run") << "add reg " << NUM(arg2) << " to effective address" << end(); int32_t* arg1 = effective_address(modrm); BINARY_ARITHMETIC_OP(+, *arg1, Reg[arg2].i); break; } :(code) // Implement tables 2-2 and 2-3 in the Intel manual, Volume 2. // We return a pointer so that instructions can write to multiple bytes in // 'Mem' at once. int32_t* effective_address(uint8_t modrm) { uint8_t mod = (modrm>>6); // ignore middle 3 'reg opcode' bits uint8_t rm = modrm & 0x7; int32_t* result = 0; switch (mod) { case 0: // mod 0 is usually indirect addressing switch (rm) { default: trace(2, "run") << "effective address is mem at address 0x" << std::hex << Reg[rm].u << " (reg " << NUM(rm) << ")" << end(); assert(Reg[rm].u + sizeof(int32_t) <= Mem.size()); result = reinterpret_cast(&Mem.at(Reg[rm].u)); // rely on the host itself being in little-endian order break; // End Mod 0 Special-cases } break; // End Mod Special-cases default: cerr << "unrecognized mod bits: " << NUM(mod) << '\n'; exit(1); } return result; } //:: register direct addressing :(scenario add_imm32_to_r32) % Reg[3].i = 1; # op ModRM SIB displacement immediate 81 c3 0a 0b 0c 0d # add 0x0d0c0b0a to EBX (reg 3) +run: add imm32 0x0d0c0b0a to effective address +run: effective address is reg 3 +run: storing 0x0d0c0b0b :(before "End Single-Byte Opcodes") case 0x81: { // combine imm32 with r/m32 uint8_t modrm = next(); int32_t arg2 = imm32(); trace(2, "run") << "add imm32 0x" << HEXWORD << arg2 << " to effective address" << end(); int32_t* arg1 = effective_address(modrm); uint8_t subop = (modrm>>3)&0x7; // middle 3 'reg opcode' bits switch (subop) { case 0: BINARY_ARITHMETIC_OP(+, *arg1, arg2); break; // End Op 81 Subops default: cerr << "unrecognized sub-opcode after 81: " << NUM(subop) << '\n'; exit(1); } break; } :(before "End Mod Special-cases") case 3: // mod 3 is just register direct addressing trace(2, "run") << "effective address is reg " << NUM(rm) << end(); result = &Reg[rm].i; break; //:: lots more tests :(scenario add_imm32_to_mem_at_r32) % Reg[3].i = 0x60; % Mem.at(0x60) = 1; # op ModR/M SIB displacement immediate 81 03 0a 0b 0c 0d # add 0x0d0c0b0a to *EBX (reg 3) +run: add imm32 0x0d0c0b0a to effective address +run: effective address is mem at address 0x60 (reg 3) +run: storing 0x0d0c0b0b //: :(scenario add_mem_at_r32_to_r32) % Reg[0].i = 0x60; % Reg[3].i = 0x10; % Mem.at(0x60) = 1; # op ModR/M SIB displacement immediate 03 18 # add *EAX (reg 0) to EBX (reg 3) +run: add effective address to reg 3 +run: effective address is mem at address 0x60 (reg 0) +run: storing 0x00000011 :(before "End Single-Byte Opcodes") case 0x03: { // add r/m32 to r32 uint8_t modrm = next(); uint8_t arg1 = (modrm>>3)&0x7; trace(2, "run") << "add effective address to reg " << NUM(arg1) << end(); const int32_t* arg2 = effective_address(modrm); BINARY_ARITHMETIC_OP(+, Reg[arg1].i, *arg2); break; } //: :(scenario sub_imm32_from_eax) % Reg[EAX].i = 0x0d0c0baa; # op ModR/M SIB displacement immediate 2d 0a 0b 0c 0d # subtract 0x0d0c0b0a from EAX (reg 0) +run: subtract imm32 0x0d0c0b0a from reg EAX +run: storing 0x000000a0 :(before "End Single-Byte Opcodes") case 0x2d: { // subtract imm32 from EAX int32_t arg2 = imm32(); trace(2, "run") << "subtract imm32 0x" << HEXWORD << arg2 << " from reg EAX" << end(); BINARY_ARITHMETIC_OP(-, Reg[EAX].i, arg2); break; }