//: operating directly on a register :(scenario add_r32_to_r32) % Reg[0].i = 0x10; % Reg[3].i = 1; # op ModR/M SIB displacement immediate 01 d8 # add EBX (reg 3) to EAX (reg 0) +run: add reg 3 to effective address +run: effective address is reg 0 +run: storing 0x00000011 :(before "End Single-Byte Opcodes") case 0x01: { // add r32 to r/m32 uint8_t modrm = next(); uint8_t arg2 = (modrm>>3)&0x7; trace(2, "run") << "add reg " << NUM(arg2) << " to effective address" << end(); int32_t* arg1 = effective_address(modrm); BINARY_ARITHMETIC_OP(+, *arg1, Reg[arg2].i); break; } :(code) // Implement tables 2-2 and 2-3 in the Intel manual, Volume 2. // We return a pointer so that instructions can write to multiple bytes in // 'Mem' at once. int32_t* effective_address(uint8_t modrm) { uint8_t mod = (modrm>>6); // ignore middle 3 'reg opcode' bits uint8_t rm = modrm & 0x7; int32_t* result = 0; switch (mod) { case 3: // mod 3 is just register direct addressing trace(2, "run") << "effective address is reg " << NUM(rm) << end(); result = &Reg[rm].i; break; // End Mod Special-cases default: cerr << "unrecognized mod bits: " << NUM(mod) << '\n'; exit(1); } return result; } //:: subtract :(scenario subtract_r32_from_r32) % Reg[0].i = 10; % Reg[3].i = 1; # op ModR/M SIB displacement immediate 29 d8 # subtract EBX (reg 3) from EAX (reg 0) +run: subtract reg 3 from effective address +run: effective address is reg 0 +run: storing 0x00000009 :(before "End Single-Byte Opcodes") case 0x29: { // subtract r32 from r/m32 uint8_t modrm = next(); uint8_t arg2 = (modrm>>3)&0x7; trace(2, "run") << "subtract reg " << NUM(arg2) << " from effective address" << end(); int32_t* arg1 = effective_address(modrm); BINARY_ARITHMETIC_OP(-, *arg1, Reg[arg2].i); break; } //:: and :(scenario and_r32_with_r32) % Reg[0].i = 0x0a0b0c0d; % Reg[3].i = 0x000000ff; # op ModR/M SIB displacement immediate 21 d8 # and EBX (reg 3) with destination EAX (reg 0) +run: and reg 3 with effective address +run: effective address is reg 0 +run: storing 0x0000000d :(before "End Single-Byte Opcodes") case 0x21: { // and r32 with r/m32 uint8_t modrm = next(); uint8_t arg2 = (modrm>>3)&0x7; trace(2, "run") << "and reg " << NUM(arg2) << " with effective address" << end(); int32_t* arg1 = effective_address(modrm); BINARY_BITWISE_OP(&, *arg1, Reg[arg2].u); break; } //:: or :(scenario or_r32_with_r32) % Reg[0].i = 0x0a0b0c0d; % Reg[3].i = 0xa0b0c0d0; # op ModR/M SIB displacement immediate 09 d8 # or EBX (reg 3) with destination EAX (reg 0) +run: or reg 3 with effective address +run: effective address is reg 0 +run: storing 0xaabbccdd :(before "End Single-Byte Opcodes") case 0x09: { // or r32 with r/m32 uint8_t modrm = next(); uint8_t arg2 = (modrm>>3)&0x7; trace(2, "run") << "or reg " << NUM(arg2) << " with effective address" << end(); int32_t* arg1 = effective_address(modrm); BINARY_BITWISE_OP(|, *arg1, Reg[arg2].u); break; } //:: xor :(scenario xor_r32_with_r32) % Reg[0].i = 0x0a0b0c0d; % Reg[3].i = 0xaabbc0d0; # op ModR/M SIB displacement immediate 31 d8 # xor EBX (reg 3) with destination EAX (reg 0) +run: xor reg 3 with effective address +run: effective address is reg 0 +run: storing 0xa0b0ccdd :(before "End Single-Byte Opcodes") case 0x31: { // xor r32 with r/m32 uint8_t modrm = next(); uint8_t arg2 = (modrm>>3)&0x7; trace(2, "run") << "xor reg " << NUM(arg2) << " with effective address" << end(); int32_t* arg1 = effective_address(modrm); BINARY_BITWISE_OP(^, *arg1, Reg[arg2].u); break; } //:: not :(scenario not_r32) % Reg[3].i = 0x0f0f00ff; # op ModR/M SIB displacement immediate f7 c3 # not EBX (reg 3) +run: 'not' of effective address +run: effective address is reg 3 +run: storing 0xf0f0ff00 :(before "End Single-Byte Opcodes") case 0xf7: { // xor r32 with r/m32 uint8_t modrm = next(); trace(2, "run") << "'not' of effective address" << end(); int32_t* arg1 = effective_address(modrm); *arg1 = ~(*arg1); trace(2, "run") << "storing 0x" << HEXWORD << *arg1 << end(); SF = (*arg1 >> 31); ZF = (*arg1 == 0); OF = false; break; } //:: compare (cmp) :(scenario compare_r32_with_r32_greater) % Reg[0].i = 0x0a0b0c0d; % Reg[3].i = 0x0a0b0c07; # op ModRM SIB displacement immediate 39 d8 # compare EBX (reg 3) with EAX (reg 0) +run: compare reg 3 with effective address +run: effective address is reg 0 +run: SF=0; ZF=0; OF=0 :(before "End Single-Byte Opcodes") case 0x39: { // set SF if r/m32 < r32 uint8_t modrm = next(); uint8_t reg2 = (modrm>>3)&0x7; trace(2, "run") << "compare reg " << NUM(reg2) << " with effective address" << end(); int32_t* arg1 = effective_address(modrm); int32_t arg2 = Reg[reg2].i; int32_t tmp1 = *arg1 - arg2; SF = (tmp1 < 0); ZF = (tmp1 == 0); int64_t tmp2 = *arg1 - arg2; OF = (tmp1 != tmp2); trace(2, "run") << "SF=" << SF << "; ZF=" << ZF << "; OF=" << OF << end(); break; } :(scenario compare_r32_with_r32_lesser) % Reg[0].i = 0x0a0b0c07; % Reg[3].i = 0x0a0b0c0d; # op ModRM SIB displacement immediate 39 d8 # compare EBX (reg 3) with EAX (reg 0) +run: compare reg 3 with effective address +run: effective address is reg 0 +run: SF=1; ZF=0; OF=0 :(scenario compare_r32_with_r32_equal) % Reg[0].i = 0x0a0b0c0d; % Reg[3].i = 0x0a0b0c0d; # op ModRM SIB displacement immediate 39 d8 # compare EBX (reg 3) with EAX (reg 0) +run: compare reg 3 with effective address +run: effective address is reg 0 +run: SF=0; ZF=1; OF=0 //:: copy (mov) :(scenario copy_r32_to_r32) % Reg[3].i = 0xaf; # op ModRM SIB displacement immediate 89 d8 # copy EBX (reg 3) to EAX (reg 0) +run: copy reg 3 to effective address +run: effective address is reg 0 +run: storing 0x000000af :(before "End Single-Byte Opcodes") case 0x89: { // copy r32 to r/m32 uint8_t modrm = next(); uint8_t reg2 = (modrm>>3)&0x7; trace(2, "run") << "copy reg " << NUM(reg2) << " to effective address" << end(); int32_t* arg1 = effective_address(modrm); *arg1 = Reg[reg2].i; trace(2, "run") << "storing 0x" << HEXWORD << *arg1 << end(); break; } //:: push :(scenario push_r32) % Reg[ESP].u = 0x64; % Reg[EBX].i = 0x0000000a; # op ModRM SIB displacement immediate 53 # push EBX (reg 3) to stack +run: push reg 3 +run: decrementing ESP to 0x00000060 +run: pushing value 0x0000000a :(before "End Single-Byte Opcodes") case 0x50: case 0x51: case 0x52: case 0x53: case 0x54: case 0x55: case 0x56: case 0x57: { // push r32 to stack uint8_t reg = op & 0x7; trace(2, "run") << "push reg " << NUM(reg) << end(); push(Reg[reg].u); break; } :(code) void push(uint32_t val) { Reg[ESP].u -= 4; trace(2, "run") << "decrementing ESP to 0x" << HEXWORD << Reg[ESP].u << end(); trace(2, "run") << "pushing value 0x" << HEXWORD << val << end(); *reinterpret_cast(&Mem.at(Reg[ESP].u)) = val; } //:: pop :(scenario pop_r32) % Reg[ESP].u = 0x60; % SET_WORD_IN_MEM(0x60, 0x0000000a); # op ModRM SIB displacement immediate 5b # pop stack to EBX (reg 3) +run: pop into reg 3 +run: popping value 0x0000000a +run: incrementing ESP to 0x00000064 :(before "End Single-Byte Opcodes") case 0x58: case 0x59: case 0x5a: case 0x5b: case 0x5c: case 0x5d: case 0x5e: case 0x5f: { // pop stack into r32 uint8_t reg = op & 0x7; trace(2, "run") << "pop into reg " << NUM(reg) << end(); Reg[reg].u = pop(); break; } :(code) uint32_t pop() { uint32_t result = *reinterpret_cast(&Mem.at(Reg[ESP].u)); trace(2, "run") << "popping value 0x" << HEXWORD << result << end(); Reg[ESP].u += 4; trace(2, "run") << "incrementing ESP to 0x" << HEXWORD << Reg[ESP].u << end(); return result; }