//: operating on memory at the address provided by some register //: we'll now start providing data in a separate segment void test_add_r32_to_mem_at_r32() { Reg[EBX].i = 0x10; Reg[EAX].i = 0x2000; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 01 18 \n" // add EBX to *EAX // ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX) "== 0x2000\n" // data segment "01 00 00 00\n" // 0x00000001 ); CHECK_TRACE_CONTENTS( "run: add EBX to r/m32\n" "run: effective address is 0x00002000 (EAX)\n" "run: storing 0x00000011\n" ); } :(before "End Mod Special-cases(addr)") case 0: // indirect addressing switch (rm) { default: // address in register trace(Callstack_depth+1, "run") << "effective address is 0x" << HEXWORD << Reg[rm].u << " (" << rname(rm) << ")" << end(); addr = Reg[rm].u; break; // End Mod 0 Special-cases(addr) } break; //: :(before "End Initialize Op Names") put_new(Name, "03", "add rm32 to r32 (add)"); :(code) void test_add_mem_at_r32_to_r32() { Reg[EAX].i = 0x2000; Reg[EBX].i = 0x10; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 03 18 \n" // add *EAX to EBX // ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX) "== 0x2000\n" // data segment "01 00 00 00\n" // 0x00000001 ); CHECK_TRACE_CONTENTS( "run: add r/m32 to EBX\n" "run: effective address is 0x00002000 (EAX)\n" "run: storing 0x00000011\n" ); } :(before "End Single-Byte Opcodes") case 0x03: { // add r/m32 to r32 const uint8_t modrm = next(); const uint8_t arg1 = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "add r/m32 to " << rname(arg1) << end(); const int32_t* signed_arg2 = effective_address(modrm); int32_t signed_result = Reg[arg1].i + *signed_arg2; int64_t signed_full_result = static_cast(Reg[arg1].i) + *signed_arg2; SF = (signed_result < 0); ZF = (signed_result == 0); OF = (signed_result != signed_full_result); // set CF uint32_t unsigned_arg2 = static_cast(*signed_arg2); uint32_t unsigned_result = Reg[arg1].u + unsigned_arg2; uint64_t unsigned_full_result = static_cast(Reg[arg1].u) + unsigned_arg2; CF = (unsigned_result != unsigned_full_result); trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); Reg[arg1].i = signed_result; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[arg1].i << end(); break; } :(code) void test_add_mem_at_r32_to_r32_signed_overflow() { Reg[EAX].i = 0x2000; Reg[EBX].i = 0x7fffffff; // largest positive signed integer run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 03 18 \n" // add *EAX to EBX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) "== 0x2000\n" // data segment "01 00 00 00\n" // 1 ); CHECK_TRACE_CONTENTS( "run: add r/m32 to EBX\n" "run: effective address is 0x00002000 (EAX)\n" "run: effective address contains 1\n" "run: SF=1; ZF=0; CF=0; OF=1\n" "run: storing 0x80000000\n" ); } void test_add_mem_at_r32_to_r32_unsigned_overflow() { Reg[EAX].u = 0x2000; Reg[EBX].u = 0xffffffff; // largest unsigned number run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 03 18 \n" // add *EAX to EBX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) "== 0x2000\n" // data segment "01 00 00 00\n" ); CHECK_TRACE_CONTENTS( "run: add r/m32 to EBX\n" "run: effective address is 0x00002000 (EAX)\n" "run: effective address contains 1\n" "run: SF=0; ZF=1; CF=1; OF=0\n" "run: storing 0x00000000\n" ); } void test_add_mem_at_r32_to_r32_unsigned_and_signed_overflow() { Reg[EAX].u = 0x2000; Reg[EBX].u = 0x80000000; // smallest negative signed integer run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 03 18 \n" // add *EAX to EBX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) "== 0x2000\n" // data segment "00 00 00 80\n" // smallest negative signed integer ); CHECK_TRACE_CONTENTS( "run: add r/m32 to EBX\n" "run: effective address is 0x00002000 (EAX)\n" "run: effective address contains 80000000\n" "run: SF=0; ZF=1; CF=1; OF=1\n" "run: storing 0x00000000\n" ); } //:: subtract :(code) void test_subtract_r32_from_mem_at_r32() { Reg[EAX].i = 0x2000; Reg[EBX].i = 1; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 29 18 \n" // subtract EBX from *EAX // ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX) "== 0x2000\n" // data segment "0a 00 00 00\n" // 0x0000000a ); CHECK_TRACE_CONTENTS( "run: subtract EBX from r/m32\n" "run: effective address is 0x00002000 (EAX)\n" "run: storing 0x00000009\n" ); } //: :(before "End Initialize Op Names") put_new(Name, "2b", "subtract rm32 from r32 (sub)"); :(code) void test_subtract_mem_at_r32_from_r32() { Reg[EAX].i = 0x2000; Reg[EBX].i = 10; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 2b 18 \n" // subtract *EAX from EBX // ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX) "== 0x2000\n" // data segment "01 00 00 00\n" // 0x00000001 ); CHECK_TRACE_CONTENTS( "run: subtract r/m32 from EBX\n" "run: effective address is 0x00002000 (EAX)\n" "run: storing 0x00000009\n" ); } :(before "End Single-Byte Opcodes") case 0x2b: { // subtract r/m32 from r32 const uint8_t modrm = next(); const uint8_t arg1 = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "subtract r/m32 from " << rname(arg1) << end(); const int32_t* signed_arg2 = effective_address(modrm); int64_t signed_full_result = Reg[arg1].i - *signed_arg2; Reg[arg1].i -= *signed_arg2; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[arg1].i << end(); SF = (Reg[arg1].i < 0); ZF = (Reg[arg1].i == 0); OF = (Reg[arg1].i != signed_full_result); // set CF uint32_t unsigned_arg2 = static_cast(*signed_arg2); uint32_t unsigned_result = Reg[arg1].u - unsigned_arg2; uint64_t unsigned_full_result = Reg[arg1].u - unsigned_arg2; CF = (unsigned_result != unsigned_full_result); trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); break; } //:: and :(code) void test_and_r32_with_mem_at_r32() { Reg[EAX].i = 0x2000; Reg[EBX].i = 0xff; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 21 18 \n" // and EBX with *EAX // ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX) "== 0x2000\n" // data segment "0d 0c 0b 0a\n" // 0x0a0b0c0d ); CHECK_TRACE_CONTENTS( "run: and EBX with r/m32\n" "run: effective address is 0x00002000 (EAX)\n" "run: storing 0x0000000d\n" ); } //: :(before "End Initialize Op Names") put_new(Name, "23", "r32 = bitwise AND of r32 with rm32 (and)"); :(code) void test_and_mem_at_r32_with_r32() { Reg[EAX].i = 0x2000; Reg[EBX].i = 0x0a0b0c0d; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 23 18 \n" // and *EAX with EBX // ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX) "== 0x2000\n" // data segment "ff 00 00 00\n" // 0x000000ff ); CHECK_TRACE_CONTENTS( "run: and r/m32 with EBX\n" "run: effective address is 0x00002000 (EAX)\n" "run: storing 0x0000000d\n" ); } :(before "End Single-Byte Opcodes") case 0x23: { // and r/m32 with r32 const uint8_t modrm = next(); const uint8_t arg1 = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "and r/m32 with " << rname(arg1) << end(); // bitwise ops technically operate on unsigned numbers, but it makes no // difference const int32_t* signed_arg2 = effective_address(modrm); Reg[arg1].i &= *signed_arg2; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[arg1].i << end(); SF = (Reg[arg1].i >> 31); ZF = (Reg[arg1].i == 0); CF = false; OF = false; trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); break; } //:: or :(code) void test_or_r32_with_mem_at_r32() { Reg[EAX].i = 0x2000; Reg[EBX].i = 0xa0b0c0d0; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 09 18 #\n" // EBX with *EAX // ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX) "== 0x2000\n" // data segment "0d 0c 0b 0a\n" // 0x0a0b0c0d ); CHECK_TRACE_CONTENTS( "run: or EBX with r/m32\n" "run: effective address is 0x00002000 (EAX)\n" "run: storing 0xaabbccdd\n" ); } //: :(before "End Initialize Op Names") put_new(Name, "0b", "r32 = bitwise OR of r32 with rm32 (or)"); :(code) void test_or_mem_at_r32_with_r32() { Reg[EAX].i = 0x2000; Reg[EBX].i = 0xa0b0c0d0; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 0b 18 \n" // or *EAX with EBX // ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX) "== 0x2000\n" // data segment "0d 0c 0b 0a\n" // 0x0a0b0c0d ); CHECK_TRACE_CONTENTS( "run: or r/m32 with EBX\n" "run: effective address is 0x00002000 (EAX)\n" "run: storing 0xaabbccdd\n" ); } :(before "End Single-Byte Opcodes") case 0x0b: { // or r/m32 with r32 const uint8_t modrm = next(); const uint8_t arg1 = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "or r/m32 with " << rname(arg1) << end(); // bitwise ops technically operate on unsigned numbers, but it makes no // difference const int32_t* signed_arg2 = effective_address(modrm); Reg[arg1].i |= *signed_arg2; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[arg1].i << end(); SF = (Reg[arg1].i >> 31); ZF = (Reg[arg1].i == 0); CF = false; OF = false; trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); break; } //:: xor :(code) void test_xor_r32_with_mem_at_r32() { Reg[EAX].i = 0x2000; Reg[EBX].i = 0xa0b0c0d0; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 31 18 \n" // xor EBX with *EAX "== 0x2000\n" // data segment "0d 0c bb aa\n" // 0xaabb0c0d ); CHECK_TRACE_CONTENTS( "run: xor EBX with r/m32\n" "run: effective address is 0x00002000 (EAX)\n" "run: storing 0x0a0bccdd\n" ); } //: :(before "End Initialize Op Names") put_new(Name, "33", "r32 = bitwise XOR of r32 with rm32 (xor)"); :(code) void test_xor_mem_at_r32_with_r32() { Reg[EAX].i = 0x2000; Reg[EBX].i = 0xa0b0c0d0; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 33 18 \n" // xor *EAX with EBX // ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX) "== 0x2000\n" // data segment "0d 0c 0b 0a\n" // 0x0a0b0c0d ); CHECK_TRACE_CONTENTS( "run: xor r/m32 with EBX\n" "run: effective address is 0x00002000 (EAX)\n" "run: storing 0xaabbccdd\n" ); } :(before "End Single-Byte Opcodes") case 0x33: { // xor r/m32 with r32 const uint8_t modrm = next(); const uint8_t arg1 = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "xor r/m32 with " << rname(arg1) << end(); // bitwise ops technically operate on unsigned numbers, but it makes no // difference const int32_t* signed_arg2 = effective_address(modrm); Reg[arg1].i |= *signed_arg2; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[arg1].i << end(); SF = (Reg[arg1].i >> 31); ZF = (Reg[arg1].i == 0); CF = false; OF = false; trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); break; } //:: not :(code) void test_not_of_mem_at_r32() { Reg[EBX].i = 0x2000; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " f7 13 \n" // not *EBX // ModR/M in binary: 00 (indirect mode) 010 (subop not) 011 (dest EBX) "== 0x2000\n" // data segment "ff 00 0f 0f\n" // 0x0f0f00ff ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: effective address is 0x00002000 (EBX)\n" "run: subop: not\n" "run: storing 0xf0f0ff00\n" ); } //:: compare (cmp) :(code) void test_compare_mem_at_r32_with_r32_greater() { Reg[EAX].i = 0x2000; Reg[EBX].i = 0x0a0b0c07; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 39 18 \n" // compare *EAX with EBX // ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX) "== 0x2000\n" // data segment "0d 0c 0b 0a\n" // 0x0a0b0c0d ); CHECK_TRACE_CONTENTS( "run: compare r/m32 with EBX\n" "run: effective address is 0x00002000 (EAX)\n" "run: SF=0; ZF=0; CF=0; OF=0\n" ); } :(code) void test_compare_mem_at_r32_with_r32_lesser() { Reg[EAX].i = 0x2000; Reg[EBX].i = 0x0a0b0c0d; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 39 18 \n" // compare *EAX with EBX // ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX) "== 0x2000\n" // data segment "07 0c 0b 0a\n" // 0x0a0b0c0d ); CHECK_TRACE_CONTENTS( "run: compare r/m32 with EBX\n" "run: effective address is 0x00002000 (EAX)\n" "run: SF=1; ZF=0; CF=1; OF=0\n" ); } :(code) void test_compare_mem_at_r32_with_r32_equal() { Reg[EAX].i = 0x2000; Reg[EBX].i = 0x0a0b0c0d; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 39 18 \n" // compare *EAX and EBX // ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX) "== 0x2000\n" // data segment "0d 0c 0b 0a\n" // 0x0a0b0c0d ); CHECK_TRACE_CONTENTS( "run: compare r/m32 with EBX\n" "run: effective address is 0x00002000 (EAX)\n" "run: SF=0; ZF=1; CF=0; OF=0\n" ); } //: :(before "End Initialize Op Names") put_new(Name, "3b", "compare: set SF if r32 < rm32 (cmp)"); :(code) void test_compare_r32_with_mem_at_r32_greater() { Reg[EAX].i = 0x2000; Reg[EBX].i = 0x0a0b0c0d; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 3b 18 \n" // compare EBX with *EAX // ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX) "== 0x2000\n" // data segment "07 0c 0b 0a\n" // 0x0a0b0c0d ); CHECK_TRACE_CONTENTS( "run: compare EBX with r/m32\n" "run: effective address is 0x00002000 (EAX)\n" "run: SF=0; ZF=0; CF=0; OF=0\n" ); } :(before "End Single-Byte Opcodes") case 0x3b: { // set SF if r32 < r/m32 const uint8_t modrm = next(); const uint8_t reg1 = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "compare " << rname(reg1) << " with r/m32" << end(); const int32_t signed_arg1 = Reg[reg1].i; const int32_t* signed_arg2 = effective_address(modrm); const int32_t signed_difference = signed_arg1 - *signed_arg2; SF = (signed_difference < 0); ZF = (signed_difference == 0); int64_t full_signed_difference = signed_arg1 - *signed_arg2; OF = (signed_difference != full_signed_difference); const uint32_t unsigned_arg1 = static_cast(signed_arg1); const uint32_t unsigned_arg2 = static_cast(*signed_arg2); const uint32_t unsigned_difference = unsigned_arg1 - unsigned_arg2; const uint64_t full_unsigned_difference = unsigned_arg1 - unsigned_arg2; CF = (unsigned_difference != full_unsigned_difference); trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); break; } :(code) void test_compare_r32_with_mem_at_r32_lesser() { Reg[EAX].i = 0x2000; Reg[EBX].i = 0x0a0b0c07; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 3b 18 \n" // compare *EAX with EBX // ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX) "== 0x2000\n" // data segment "0d 0c 0b 0a\n" // 0x0a0b0c0d ); CHECK_TRACE_CONTENTS( "run: compare EBX with r/m32\n" "run: effective address is 0x00002000 (EAX)\n" "run: SF=1; ZF=0; CF=0; OF=0\n" ); } :(code) void test_compare_r32_with_mem_at_r32_equal() { Reg[EAX].i = 0x2000; Reg[EBX].i = 0x0a0b0c0d; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 3b 18 \n" // compare *EAX with EBX // ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX) "== 0x2000\n" // data segment "0d 0c 0b 0a\n" // 0x0a0b0c0d ); CHECK_TRACE_CONTENTS( "run: compare EBX with r/m32\n" "run: effective address is 0x00002000 (EAX)\n" "run: SF=0; ZF=1; CF=0; OF=0\n" ); } //:: copy (mov) :(code) void test_copy_r32_to_mem_at_r32() { Reg[EBX].i = 0xaf; Reg[EAX].i = 0x60; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 89 18 \n" // copy EBX to *EAX // ModR/M in binary: 00 (indirect mode) 011 (src EAX) 000 (dest EAX) ); CHECK_TRACE_CONTENTS( "run: copy EBX to r/m32\n" "run: effective address is 0x00000060 (EAX)\n" "run: storing 0x000000af\n" ); } //: :(before "End Initialize Op Names") put_new(Name, "8b", "copy rm32 to r32 (mov)"); :(code) void test_copy_mem_at_r32_to_r32() { Reg[EAX].i = 0x2000; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 8b 18 \n" // copy *EAX to EBX "== 0x2000\n" // data segment "af 00 00 00\n" // 0x000000af ); CHECK_TRACE_CONTENTS( "run: copy r/m32 to EBX\n" "run: effective address is 0x00002000 (EAX)\n" "run: storing 0x000000af\n" ); } :(before "End Single-Byte Opcodes") case 0x8b: { // copy r32 to r/m32 const uint8_t modrm = next(); const uint8_t rdest = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "copy r/m32 to " << rname(rdest) << end(); const int32_t* src = effective_address(modrm); Reg[rdest].i = *src; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *src << end(); break; } //:: jump :(code) void test_jump_mem_at_r32() { Reg[EAX].i = 0x2000; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " ff 20 \n" // jump to *EAX // ModR/M in binary: 00 (indirect mode) 100 (jump to r/m32) 000 (src EAX) " 05 00 00 00 01\n" " 05 00 00 00 02\n" "== 0x2000\n" // data segment "08 00 00 00\n" // 0x00000008 ); CHECK_TRACE_CONTENTS( "run: 0x00000001 opcode: ff\n" "run: jump to r/m32\n" "run: effective address is 0x00002000 (EAX)\n" "run: jumping to 0x00000008\n" "run: 0x00000008 opcode: 05\n" ); CHECK_TRACE_DOESNT_CONTAIN("run: 0x00000003 opcode: 05"); } :(before "End Op ff Subops") case 4: { // jump to r/m32 trace(Callstack_depth+1, "run") << "jump to r/m32" << end(); const int32_t* arg2 = effective_address(modrm); EIP = *arg2; trace(Callstack_depth+1, "run") << "jumping to 0x" << HEXWORD << EIP << end(); break; } //:: push :(code) void test_push_mem_at_r32() { Reg[EAX].i = 0x2000; Mem.push_back(vma(0x7d000000)); // manually allocate memory Reg[ESP].u = 0x7d000014; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " ff 30 \n" // push *EAX to stack "== 0x2000\n" // data segment "af 00 00 00\n" // 0x000000af ); CHECK_TRACE_CONTENTS( "run: push r/m32\n" "run: effective address is 0x00002000 (EAX)\n" "run: decrementing ESP to 0x7d000010\n" "run: pushing value 0x000000af\n" ); } :(before "End Op ff Subops") case 6: { // push r/m32 to stack trace(Callstack_depth+1, "run") << "push r/m32" << end(); const int32_t* val = effective_address(modrm); push(*val); break; } //:: pop :(before "End Initialize Op Names") put_new(Name, "8f", "pop top of stack to rm32 (pop)"); :(code) void test_pop_mem_at_r32() { Reg[EAX].i = 0x60; Mem.push_back(vma(0x7d000000)); // manually allocate memory Reg[ESP].u = 0x7d000000; write_mem_i32(0x7d000000, 0x00000030); run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 8f 00 \n" // pop stack into *EAX // ModR/M in binary: 00 (indirect mode) 000 (pop r/m32) 000 (dest EAX) ); CHECK_TRACE_CONTENTS( "run: pop into r/m32\n" "run: effective address is 0x00000060 (EAX)\n" "run: popping value 0x00000030\n" "run: incrementing ESP to 0x7d000004\n" ); } :(before "End Single-Byte Opcodes") case 0x8f: { // pop stack into r/m32 const uint8_t modrm = next(); const uint8_t subop = (modrm>>3)&0x7; switch (subop) { case 0: { trace(Callstack_depth+1, "run") << "pop into r/m32" << end(); int32_t* dest = effective_address(modrm); *dest = pop(); break; } } break; } //:: special-case for loading address from disp32 rather than register :(code) void test_add_r32_to_mem_at_displacement() { Reg[EBX].i = 0x10; // source run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 01 1d 00 20 00 00 \n" // add EBX to *0x2000 // ModR/M in binary: 00 (indirect mode) 011 (src EBX) 101 (dest in disp32) "== 0x2000\n" // data segment "01 00 00 00\n" // 0x00000001 ); CHECK_TRACE_CONTENTS( "run: add EBX to r/m32\n" "run: effective address is 0x00002000 (disp32)\n" "run: storing 0x00000011\n" ); } :(before "End Mod 0 Special-cases(addr)") case 5: // exception: mod 0b00 rm 0b101 => incoming disp32 addr = next32(); trace(Callstack_depth+1, "run") << "effective address is 0x" << HEXWORD << addr << " (disp32)" << end(); break; //: :(code) void test_add_r32_to_mem_at_r32_plus_disp8() { Reg[EBX].i = 0x10; // source Reg[EAX].i = 0x1ffe; // dest run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 01 58 02 \n" // add EBX to *(EAX+2) // ModR/M in binary: 01 (indirect+disp8 mode) 011 (src EBX) 000 (dest EAX) "== 0x2000\n" // data segment "01 00 00 00\n" // 0x00000001 ); CHECK_TRACE_CONTENTS( "run: add EBX to r/m32\n" "run: effective address is initially 0x00001ffe (EAX)\n" "run: effective address is 0x00002000 (after adding disp8)\n" "run: storing 0x00000011\n" ); } :(before "End Mod Special-cases(addr)") case 1: // indirect + disp8 addressing switch (rm) { default: addr = Reg[rm].u; trace(Callstack_depth+1, "run") << "effective address is initially 0x" << HEXWORD << addr << " (" << rname(rm) << ")" << end(); break; // End Mod 1 Special-cases(addr) } if (addr > 0) { addr += static_cast(next()); trace(Callstack_depth+1, "run") << "effective address is 0x" << HEXWORD << addr << " (after adding disp8)" << end(); } break; :(code) void test_add_r32_to_mem_at_r32_plus_negative_disp8() { Reg[EBX].i = 0x10; // source Reg[EAX].i = 0x2001; // dest run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 01 58 ff \n" // add EBX to *(EAX-1) // ModR/M in binary: 01 (indirect+disp8 mode) 011 (src EBX) 000 (dest EAX) "== 0x2000\n" // data segment "01 00 00 00\n" // 0x00000001 ); CHECK_TRACE_CONTENTS( "run: add EBX to r/m32\n" "run: effective address is initially 0x00002001 (EAX)\n" "run: effective address is 0x00002000 (after adding disp8)\n" "run: storing 0x00000011\n" ); } //: :(code) void test_add_r32_to_mem_at_r32_plus_disp32() { Reg[EBX].i = 0x10; // source Reg[EAX].i = 0x1ffe; // dest run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 01 98 02 00 00 00 \n" // add EBX to *(EAX+2) // ModR/M in binary: 10 (indirect+disp32 mode) 011 (src EBX) 000 (dest EAX) "== 0x2000\n" // data segment "01 00 00 00\n" // 0x00000001 ); CHECK_TRACE_CONTENTS( "run: add EBX to r/m32\n" "run: effective address is initially 0x00001ffe (EAX)\n" "run: effective address is 0x00002000 (after adding disp32)\n" "run: storing 0x00000011\n" ); } :(before "End Mod Special-cases(addr)") case 2: // indirect + disp32 addressing switch (rm) { default: addr = Reg[rm].u; trace(Callstack_depth+1, "run") << "effective address is initially 0x" << HEXWORD << addr << " (" << rname(rm) << ")" << end(); break; // End Mod 2 Special-cases(addr) } if (addr > 0) { addr += next32(); trace(Callstack_depth+1, "run") << "effective address is 0x" << HEXWORD << addr << " (after adding disp32)" << end(); } break; :(code) void test_add_r32_to_mem_at_r32_plus_negative_disp32() { Reg[EBX].i = 0x10; // source Reg[EAX].i = 0x2001; // dest run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 01 98 ff ff ff ff \n" // add EBX to *(EAX-1) // ModR/M in binary: 10 (indirect+disp32 mode) 011 (src EBX) 000 (dest EAX) "== 0x2000\n" // data segment "01 00 00 00\n" // 0x00000001 ); CHECK_TRACE_CONTENTS( "run: add EBX to r/m32\n" "run: effective address is initially 0x00002001 (EAX)\n" "run: effective address is 0x00002000 (after adding disp32)\n" "run: storing 0x00000011\n" ); } //:: copy address (lea) :(before "End Initialize Op Names") put_new(Name, "8d", "copy address in rm32 into r32 (lea)"); :(code) void test_copy_address() { Reg[EAX].u = 0x2000; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 8d 18 \n" // copy address in EAX into EBX // ModR/M in binary: 00 (indirect mode) 011 (dest EBX) 000 (src EAX) ); CHECK_TRACE_CONTENTS( "run: copy address into EBX\n" "run: effective address is 0x00002000 (EAX)\n" ); } :(before "End Single-Byte Opcodes") case 0x8d: { // copy address of m32 to r32 const uint8_t modrm = next(); const uint8_t arg1 = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "copy address into " << rname(arg1) << end(); Reg[arg1].u = effective_address_number(modrm); break; }