//: instructions that (immediately) contain an argument to act with :(before "End Initialize Op Names") put_new(Name, "05", "add imm32 to EAX (add)"); :(before "End Single-Byte Opcodes") case 0x05: { // add imm32 to EAX int32_t signed_arg2 = next32(); trace(Callstack_depth+1, "run") << "add imm32 0x" << HEXWORD << signed_arg2 << " to reg EAX" << end(); int64_t signed_full_result = Reg[EAX].i + signed_arg2; Reg[EAX].i += signed_arg2; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[EAX].i << end(); SF = (Reg[EAX].i < 0); ZF = (Reg[EAX].i == 0); OF = (Reg[EAX].i != signed_full_result); // set CF uint32_t unsigned_arg1 = static_cast(Reg[EAX].i); uint32_t unsigned_arg2 = static_cast(signed_arg2); uint32_t unsigned_result = unsigned_arg1 + unsigned_arg2; uint64_t unsigned_full_result = unsigned_arg1 + unsigned_arg2; CF = (unsigned_result != unsigned_full_result); trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); break; } :(before "End Initialize Op Names") put_new(Name, "81", "combine rm32 with imm32 based on subop (add/sub/and/or/xor/cmp)"); :(code) void test_add_imm32_to_r32() { Reg[EBX].i = 1; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 81 c3 0a 0b 0c 0d\n" // add 0x0d0c0b0a to EBX // ModR/M in binary: 11 (direct mode) 000 (add imm32) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: combine imm32 with r/m32\n" "run: r/m32 is EBX\n" "run: imm32 is 0x0d0c0b0a\n" "run: subop add\n" "run: storing 0x0d0c0b0b\n" ); } :(before "End Single-Byte Opcodes") case 0x81: { // combine imm32 with r/m32 trace(Callstack_depth+1, "run") << "combine imm32 with r/m32" << end(); const uint8_t modrm = next(); int32_t* signed_arg1 = effective_address(modrm); const int32_t signed_arg2 = next32(); trace(Callstack_depth+1, "run") << "imm32 is 0x" << HEXWORD << signed_arg2 << end(); const uint8_t subop = (modrm>>3)&0x7; // middle 3 'reg opcode' bits switch (subop) { case 0: { trace(Callstack_depth+1, "run") << "subop add" << end(); int64_t signed_full_result = *signed_arg1 + signed_arg2; *signed_arg1 += signed_arg2; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end(); SF = (*signed_arg1 < 0); ZF = (*signed_arg1 == 0); OF = (*signed_arg1 != signed_full_result); // set CF uint32_t unsigned_arg1 = static_cast(*signed_arg1); uint32_t unsigned_arg2 = static_cast(signed_arg2); uint32_t unsigned_result = unsigned_arg1 + unsigned_arg2; uint64_t unsigned_full_result = unsigned_arg1 + unsigned_arg2; CF = (unsigned_result != unsigned_full_result); trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); break; } // End Op 81 Subops default: cerr << "unrecognized subop for opcode 81: " << NUM(subop) << '\n'; exit(1); } break; } //: :(code) void test_add_imm32_to_mem_at_r32() { Reg[EBX].i = 0x2000; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 81 03 0a 0b 0c 0d \n" // add 0x0d0c0b0a to *EBX // ModR/M in binary: 00 (indirect mode) 000 (add imm32) 011 (dest EBX) "== 0x2000\n" // data segment "01 00 00 00\n" // 0x00000001 ); CHECK_TRACE_CONTENTS( "run: combine imm32 with r/m32\n" "run: effective address is 0x00002000 (EBX)\n" "run: imm32 is 0x0d0c0b0a\n" "run: subop add\n" "run: storing 0x0d0c0b0b\n" ); } //:: subtract :(before "End Initialize Op Names") put_new(Name, "2d", "subtract imm32 from EAX (sub)"); :(code) void test_subtract_imm32_from_eax() { Reg[EAX].i = 0x0d0c0baa; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 2d 0a 0b 0c 0d \n" // subtract 0x0d0c0b0a from EAX ); CHECK_TRACE_CONTENTS( "run: subtract imm32 0x0d0c0b0a from EAX\n" "run: storing 0x000000a0\n" ); } :(before "End Single-Byte Opcodes") case 0x2d: { // subtract imm32 from EAX const int32_t signed_arg2 = next32(); trace(Callstack_depth+1, "run") << "subtract imm32 0x" << HEXWORD << signed_arg2 << " from EAX" << end(); int64_t signed_full_result = Reg[EAX].i - signed_arg2; Reg[EAX].i -= signed_arg2; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[EAX].i << end(); SF = (Reg[EAX].i < 0); ZF = (Reg[EAX].i == 0); OF = (Reg[EAX].i != signed_full_result); // set CF uint32_t unsigned_arg2 = static_cast(signed_arg2); uint32_t unsigned_result = Reg[EAX].u - unsigned_arg2; uint64_t unsigned_full_result = Reg[EAX].u - unsigned_arg2; CF = (unsigned_result != unsigned_full_result); trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); break; } //: :(code) void test_subtract_imm32_from_mem_at_r32() { Reg[EBX].i = 0x2000; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 81 2b 01 00 00 00 \n" // subtract 1 from *EBX // ModR/M in binary: 00 (indirect mode) 101 (subtract imm32) 011 (dest EBX) "== 0x2000\n" // data segment "0a 00 00 00\n" // 0x0000000a ); CHECK_TRACE_CONTENTS( "run: combine imm32 with r/m32\n" "run: effective address is 0x00002000 (EBX)\n" "run: imm32 is 0x00000001\n" "run: subop subtract\n" "run: storing 0x00000009\n" ); } :(before "End Op 81 Subops") case 5: { trace(Callstack_depth+1, "run") << "subop subtract" << end(); int64_t signed_full_result = *signed_arg1 - signed_arg2; *signed_arg1 -= signed_arg2; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end(); SF = (*signed_arg1 < 0); ZF = (*signed_arg1 == 0); OF = (*signed_arg1 != signed_full_result); // set CF uint32_t unsigned_arg1 = static_cast(*signed_arg1); uint32_t unsigned_arg2 = static_cast(signed_arg2); uint32_t unsigned_result = unsigned_arg1 - unsigned_arg2; uint64_t unsigned_full_result = unsigned_arg1 - unsigned_arg2; CF = (unsigned_result != unsigned_full_result); trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); break; } //: :(code) void test_subtract_imm32_from_r32() { Reg[EBX].i = 10; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 81 eb 01 00 00 00 \n" // subtract 1 from EBX // ModR/M in binary: 11 (direct mode) 101 (subtract imm32) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: combine imm32 with r/m32\n" "run: r/m32 is EBX\n" "run: imm32 is 0x00000001\n" "run: subop subtract\n" "run: storing 0x00000009\n" ); } //:: shift left :(before "End Initialize Op Names") put_new(Name, "c1", "shift rm32 by imm8 bits depending on subop (sal/sar/shl/shr)"); :(code) void test_shift_left_r32_with_imm8() { Reg[EBX].i = 13; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " c1 e3 01 \n" // shift EBX left by 1 bit // ModR/M in binary: 11 (direct mode) 100 (subop shift left) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is EBX\n" "run: subop: shift left by CL bits\n" "run: storing 0x0000001a\n" ); } :(before "End Single-Byte Opcodes") case 0xc1: { const uint8_t modrm = next(); trace(Callstack_depth+1, "run") << "operate on r/m32" << end(); int32_t* arg1 = effective_address(modrm); const uint8_t subop = (modrm>>3)&0x7; // middle 3 'reg opcode' bits switch (subop) { case 4: { // shift left r/m32 by CL trace(Callstack_depth+1, "run") << "subop: shift left by CL bits" << end(); uint8_t count = next() & 0x1f; // OF is only defined if count is 1 if (count == 1) { bool msb = (*arg1 & 0x80000000) >> 1; bool pnsb = (*arg1 & 0x40000000); OF = (msb != pnsb); } *arg1 = (*arg1 << count); ZF = (*arg1 == 0); SF = (*arg1 < 0); trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << end(); break; } // End Op c1 Subops default: cerr << "unrecognized subop for opcode c1: " << NUM(subop) << '\n'; exit(1); } break; } //:: shift right arithmetic :(code) void test_shift_right_arithmetic_r32_with_imm8() { Reg[EBX].i = 26; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " c1 fb 01 \n" // shift EBX right by 1 bit // ModR/M in binary: 11 (direct mode) 111 (subop shift right arithmetic) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is EBX\n" "run: subop: shift right by CL bits, while preserving sign\n" "run: storing 0x0000000d\n" ); } :(before "End Op c1 Subops") case 7: { // shift right r/m32 by CL, preserving sign trace(Callstack_depth+1, "run") << "subop: shift right by CL bits, while preserving sign" << end(); uint8_t count = next() & 0x1f; *arg1 = (*arg1 >> count); ZF = (*arg1 == 0); SF = (*arg1 < 0); // OF is only defined if count is 1 if (count == 1) OF = false; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << end(); break; } :(code) void test_shift_right_arithmetic_odd_r32_with_imm8() { Reg[EBX].i = 27; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " c1 fb 01 \n" // shift EBX right by 1 bit // ModR/M in binary: 11 (direct mode) 111 (subop shift right arithmetic) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is EBX\n" "run: subop: shift right by CL bits, while preserving sign\n" // result: 13 "run: storing 0x0000000d\n" ); } :(code) void test_shift_right_arithmetic_negative_r32_with_imm8() { Reg[EBX].i = 0xfffffffd; // -3 run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " c1 fb 01 \n" // shift EBX right by 1 bit, while preserving sign // ModR/M in binary: 11 (direct mode) 111 (subop shift right arithmetic) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is EBX\n" "run: subop: shift right by CL bits, while preserving sign\n" // result: -2 "run: storing 0xfffffffe\n" ); } //:: shift right logical :(code) void test_shift_right_logical_r32_with_imm8() { Reg[EBX].i = 26; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " c1 eb 01 \n" // shift EBX right by 1 bit, while padding zeroes // ModR/M in binary: 11 (direct mode) 101 (subop shift right logical) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is EBX\n" "run: subop: shift right by CL bits, while padding zeroes\n" "run: storing 0x0000000d\n" ); } :(before "End Op c1 Subops") case 5: { // shift right r/m32 by CL, preserving sign trace(Callstack_depth+1, "run") << "subop: shift right by CL bits, while padding zeroes" << end(); uint8_t count = next() & 0x1f; // OF is only defined if count is 1 if (count == 1) { bool msb = (*arg1 & 0x80000000) >> 1; bool pnsb = (*arg1 & 0x40000000); OF = (msb != pnsb); } uint32_t* uarg1 = reinterpret_cast(arg1); *uarg1 = (*uarg1 >> count); ZF = (*uarg1 == 0); // result is always positive by definition SF = false; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << end(); break; } :(code) void test_shift_right_logical_odd_r32_with_imm8() { Reg[EBX].i = 27; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " c1 eb 01 \n" // shift EBX right by 1 bit, while padding zeroes ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is EBX\n" "run: subop: shift right by CL bits, while padding zeroes\n" // result: 13 "run: storing 0x0000000d\n" ); } :(code) void test_shift_right_logical_negative_r32_with_imm8() { Reg[EBX].i = 0xfffffffd; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " c1 eb 01 \n" // shift EBX right by 1 bit, while padding zeroes // ModR/M in binary: 11 (direct mode) 101 (subop shift right logical) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is EBX\n" "run: subop: shift right by CL bits, while padding zeroes\n" "run: storing 0x7ffffffe\n" ); } //:: and :(before "End Initialize Op Names") put_new(Name, "25", "EAX = bitwise AND of imm32 with EAX (and)"); :(code) void test_and_imm32_with_eax() { Reg[EAX].i = 0xff; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 25 0a 0b 0c 0d \n" // and 0x0d0c0b0a with EAX ); CHECK_TRACE_CONTENTS( "run: and imm32 0x0d0c0b0a with EAX\n" "run: storing 0x0000000a\n" ); } :(before "End Single-Byte Opcodes") case 0x25: { // and imm32 with EAX // bitwise ops technically operate on unsigned numbers, but it makes no // difference const int32_t signed_arg2 = next32(); trace(Callstack_depth+1, "run") << "and imm32 0x" << HEXWORD << signed_arg2 << " with EAX" << end(); Reg[EAX].i &= signed_arg2; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[EAX].i << end(); SF = (Reg[EAX].i >> 31); ZF = (Reg[EAX].i == 0); CF = false; OF = false; trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); break; } //: :(code) void test_and_imm32_with_mem_at_r32() { Reg[EBX].i = 0x2000; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 81 23 0a 0b 0c 0d \n" // and 0x0d0c0b0a with *EBX // ModR/M in binary: 00 (indirect mode) 100 (and imm32) 011 (dest EBX) "== 0x2000\n" // data segment "ff 00 00 00\n" // 0x000000ff ); CHECK_TRACE_CONTENTS( "run: combine imm32 with r/m32\n" "run: effective address is 0x00002000 (EBX)\n" "run: imm32 is 0x0d0c0b0a\n" "run: subop and\n" "run: storing 0x0000000a\n" ); } :(before "End Op 81 Subops") case 4: { trace(Callstack_depth+1, "run") << "subop and" << end(); // bitwise ops technically operate on unsigned numbers, but it makes no // difference *signed_arg1 &= signed_arg2; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end(); SF = (*signed_arg1 >> 31); ZF = (*signed_arg1 == 0); CF = false; OF = false; trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); break; } //: :(code) void test_and_imm32_with_r32() { Reg[EBX].i = 0xff; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 81 e3 0a 0b 0c 0d \n" // and 0x0d0c0b0a with EBX // ModR/M in binary: 11 (direct mode) 100 (and imm32) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: combine imm32 with r/m32\n" "run: r/m32 is EBX\n" "run: imm32 is 0x0d0c0b0a\n" "run: subop and\n" "run: storing 0x0000000a\n" ); } //:: or :(before "End Initialize Op Names") put_new(Name, "0d", "EAX = bitwise OR of imm32 with EAX (or)"); :(code) void test_or_imm32_with_eax() { Reg[EAX].i = 0xd0c0b0a0; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 0d 0a 0b 0c 0d \n" // or 0x0d0c0b0a with EAX ); CHECK_TRACE_CONTENTS( "run: or imm32 0x0d0c0b0a with EAX\n" "run: storing 0xddccbbaa\n" ); } :(before "End Single-Byte Opcodes") case 0x0d: { // or imm32 with EAX // bitwise ops technically operate on unsigned numbers, but it makes no // difference const int32_t signed_arg2 = next32(); trace(Callstack_depth+1, "run") << "or imm32 0x" << HEXWORD << signed_arg2 << " with EAX" << end(); Reg[EAX].i |= signed_arg2; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[EAX].i << end(); SF = (Reg[EAX].i >> 31); ZF = (Reg[EAX].i == 0); CF = false; OF = false; trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); break; } //: :(code) void test_or_imm32_with_mem_at_r32() { Reg[EBX].i = 0x2000; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 81 0b 0a 0b 0c 0d \n" // or 0x0d0c0b0a with *EBX // ModR/M in binary: 00 (indirect mode) 001 (or imm32) 011 (dest EBX) "== 0x2000\n" // data segment "a0 b0 c0 d0\n" // 0xd0c0b0a0 ); CHECK_TRACE_CONTENTS( "run: combine imm32 with r/m32\n" "run: effective address is 0x00002000 (EBX)\n" "run: imm32 is 0x0d0c0b0a\n" "run: subop or\n" "run: storing 0xddccbbaa\n" ); } :(before "End Op 81 Subops") case 1: { trace(Callstack_depth+1, "run") << "subop or" << end(); // bitwise ops technically operate on unsigned numbers, but it makes no // difference *signed_arg1 |= signed_arg2; \ trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end(); \ SF = (*signed_arg1 >> 31); \ ZF = (*signed_arg1 == 0); \ CF = false; \ OF = false; \ trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); \ break; } :(code) void test_or_imm32_with_r32() { Reg[EBX].i = 0xd0c0b0a0; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 81 cb 0a 0b 0c 0d \n" // or 0x0d0c0b0a with EBX // ModR/M in binary: 11 (direct mode) 001 (or imm32) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: combine imm32 with r/m32\n" "run: r/m32 is EBX\n" "run: imm32 is 0x0d0c0b0a\n" "run: subop or\n" "run: storing 0xddccbbaa\n" ); } //:: xor :(before "End Initialize Op Names") put_new(Name, "35", "EAX = bitwise XOR of imm32 with EAX (xor)"); :(code) void test_xor_imm32_with_eax() { Reg[EAX].i = 0xddccb0a0; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 35 0a 0b 0c 0d \n" // xor 0x0d0c0b0a with EAX ); CHECK_TRACE_CONTENTS( "run: xor imm32 0x0d0c0b0a with EAX\n" "run: storing 0xd0c0bbaa\n" ); } :(before "End Single-Byte Opcodes") case 0x35: { // xor imm32 with EAX // bitwise ops technically operate on unsigned numbers, but it makes no // difference const int32_t signed_arg2 = next32(); trace(Callstack_depth+1, "run") << "xor imm32 0x" << HEXWORD << signed_arg2 << " with EAX" << end(); Reg[EAX].i ^= signed_arg2; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[EAX].i << end(); SF = (Reg[EAX].i >> 31); ZF = (Reg[EAX].i == 0); CF = false; OF = false; trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); break; } //: :(code) void test_xor_imm32_with_mem_at_r32() { Reg[EBX].i = 0x2000; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 81 33 0a 0b 0c 0d \n" // xor 0x0d0c0b0a with *EBX // ModR/M in binary: 00 (indirect mode) 110 (xor imm32) 011 (dest EBX) "== 0x2000\n" // data segment "a0 b0 c0 d0\n" // 0xd0c0b0a0 ); CHECK_TRACE_CONTENTS( "run: combine imm32 with r/m32\n" "run: effective address is 0x00002000 (EBX)\n" "run: imm32 is 0x0d0c0b0a\n" "run: subop xor\n" "run: storing 0xddccbbaa\n" ); } :(before "End Op 81 Subops") case 6: { trace(Callstack_depth+1, "run") << "subop xor" << end(); // bitwise ops technically operate on unsigned numbers, but it makes no // difference *signed_arg1 ^= signed_arg2; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end(); SF = (*signed_arg1 >> 31); ZF = (*signed_arg1 == 0); CF = false; OF = false; trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); break; } :(code) void test_xor_imm32_with_r32() { Reg[EBX].i = 0xd0c0b0a0; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 81 f3 0a 0b 0c 0d \n" // xor 0x0d0c0b0a with EBX // ModR/M in binary: 11 (direct mode) 110 (xor imm32) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: combine imm32 with r/m32\n" "run: r/m32 is EBX\n" "run: imm32 is 0x0d0c0b0a\n" "run: subop xor\n" "run: storing 0xddccbbaa\n" ); } //:: compare (cmp) :(before "End Initialize Op Names") put_new(Name, "3d", "compare: set SF if EAX < imm32 (cmp)"); :(code) void test_compare_imm32_with_eax_greater() { Reg[EAX].i = 0x0d0c0b0a; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 3d 07 0b 0c 0d \n" // compare 0x0d0c0b07 with EAX ); CHECK_TRACE_CONTENTS( "run: compare EAX and imm32 0x0d0c0b07\n" "run: SF=0; ZF=0; CF=0; OF=0\n" ); } :(before "End Single-Byte Opcodes") case 0x3d: { // compare EAX with imm32 const int32_t signed_arg1 = Reg[EAX].i; const int32_t signed_arg2 = next32(); trace(Callstack_depth+1, "run") << "compare EAX and imm32 0x" << HEXWORD << signed_arg2 << end(); const int32_t signed_difference = signed_arg1 - signed_arg2; SF = (signed_difference < 0); ZF = (signed_difference == 0); const int64_t full_signed_difference = signed_arg1 - signed_arg2; OF = (signed_difference != full_signed_difference); const uint32_t unsigned_arg1 = static_cast(signed_arg1); const uint32_t unsigned_arg2 = static_cast(signed_arg2); const uint32_t unsigned_difference = unsigned_arg1 - unsigned_arg2; const uint64_t full_unsigned_difference = unsigned_arg1 - unsigned_arg2; CF = (unsigned_difference != full_unsigned_difference); trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); break; } :(code) void test_compare_imm32_with_eax_lesser() { Reg[EAX].i = 0x0d0c0b07; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 3d 0a 0b 0c 0d \n" // compare 0x0d0c0b0a with EAX ); CHECK_TRACE_CONTENTS( "run: compare EAX and imm32 0x0d0c0b0a\n" "run: SF=1; ZF=0; CF=0; OF=0\n" ); } :(code) void test_compare_imm32_with_eax_equal() { Reg[EAX].i = 0x0d0c0b0a; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 3d 0a 0b 0c 0d \n" // compare 0x0d0c0b0a with EAX ); CHECK_TRACE_CONTENTS( "run: compare EAX and imm32 0x0d0c0b0a\n" "run: SF=0; ZF=1; CF=0; OF=0\n" ); } //: :(code) void test_compare_imm32_with_r32_greater() { Reg[EBX].i = 0x0d0c0b0a; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 81 fb 07 0b 0c 0d \n" // compare 0x0d0c0b07 with EBX // ModR/M in binary: 11 (direct mode) 111 (compare imm32) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: combine imm32 with r/m32\n" "run: r/m32 is EBX\n" "run: imm32 is 0x0d0c0b07\n" "run: SF=0; ZF=0; CF=0; OF=0\n" ); } :(before "End Op 81 Subops") case 7: { trace(Callstack_depth+1, "run") << "subop compare" << end(); const int32_t tmp1 = *signed_arg1 - signed_arg2; SF = (tmp1 < 0); ZF = (tmp1 == 0); const int64_t tmp2 = *signed_arg1 - signed_arg2; OF = (tmp1 != tmp2); trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); break; } :(code) void test_compare_imm32_with_r32_lesser() { Reg[EBX].i = 0x0d0c0b07; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 81 fb 0a 0b 0c 0d \n" // compare 0x0d0c0b0a with EBX // ModR/M in binary: 11 (direct mode) 111 (compare imm32) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: combine imm32 with r/m32\n" "run: r/m32 is EBX\n" "run: imm32 is 0x0d0c0b0a\n" "run: SF=1; ZF=0; CF=0; OF=0\n" ); } :(code) void test_compare_imm32_with_r32_equal() { Reg[EBX].i = 0x0d0c0b0a; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 81 fb 0a 0b 0c 0d \n" // compare 0x0d0c0b0a with EBX // ModR/M in binary: 11 (direct mode) 111 (compare imm32) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: combine imm32 with r/m32\n" "run: r/m32 is EBX\n" "run: imm32 is 0x0d0c0b0a\n" "run: SF=0; ZF=1; CF=0; OF=0\n" ); } :(code) void test_compare_imm32_with_mem_at_r32_greater() { Reg[EBX].i = 0x2000; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 81 3b 07 0b 0c 0d \n" // compare 0x0d0c0b07 with *EBX // ModR/M in binary: 00 (indirect mode) 111 (compare imm32) 011 (dest EBX) "== 0x2000\n" // data segment "0a 0b 0c 0d\n" // 0x0d0c0b0a ); CHECK_TRACE_CONTENTS( "run: combine imm32 with r/m32\n" "run: effective address is 0x00002000 (EBX)\n" "run: imm32 is 0x0d0c0b07\n" "run: SF=0; ZF=0; CF=0; OF=0\n" ); } :(code) void test_compare_imm32_with_mem_at_r32_lesser() { Reg[EBX].i = 0x2000; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 81 3b 0a 0b 0c 0d \n" // compare 0x0d0c0b0a with *EBX // ModR/M in binary: 00 (indirect mode) 111 (compare imm32) 011 (dest EBX) "== 0x2000\n" // data segment "07 0b 0c 0d\n" // 0x0d0c0b07 ); CHECK_TRACE_CONTENTS( "run: combine imm32 with r/m32\n" "run: effective address is 0x00002000 (EBX)\n" "run: imm32 is 0x0d0c0b0a\n" "run: SF=1; ZF=0; CF=0; OF=0\n" ); } :(code) void test_compare_imm32_with_mem_at_r32_equal() { Reg[EBX].i = 0x0d0c0b0a; Reg[EBX].i = 0x2000; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 81 3b 0a 0b 0c 0d \n" // compare 0x0d0c0b0a with *EBX // ModR/M in binary: 00 (indirect mode) 111 (compare imm32) 011 (dest EBX) "== 0x2000\n" // data segment "0a 0b 0c 0d\n" // 0x0d0c0b0a ); CHECK_TRACE_CONTENTS( "run: combine imm32 with r/m32\n" "run: effective address is 0x00002000 (EBX)\n" "run: imm32 is 0x0d0c0b0a\n" "run: SF=0; ZF=1; CF=0; OF=0\n" ); } //:: copy (mov) :(before "End Initialize Op Names") // b8 defined earlier to copy imm32 to EAX put_new(Name, "b9", "copy imm32 to ECX (mov)"); put_new(Name, "ba", "copy imm32 to EDX (mov)"); put_new(Name, "bb", "copy imm32 to EBX (mov)"); put_new(Name, "bc", "copy imm32 to ESP (mov)"); put_new(Name, "bd", "copy imm32 to EBP (mov)"); put_new(Name, "be", "copy imm32 to ESI (mov)"); put_new(Name, "bf", "copy imm32 to EDI (mov)"); :(code) void test_copy_imm32_to_r32() { run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " bb 0a 0b 0c 0d \n" // copy 0x0d0c0b0a to EBX ); CHECK_TRACE_CONTENTS( "run: copy imm32 0x0d0c0b0a to EBX\n" ); } :(before "End Single-Byte Opcodes") case 0xb9: case 0xba: case 0xbb: case 0xbc: case 0xbd: case 0xbe: case 0xbf: { // copy imm32 to r32 const uint8_t rdest = op & 0x7; const int32_t src = next32(); trace(Callstack_depth+1, "run") << "copy imm32 0x" << HEXWORD << src << " to " << rname(rdest) << end(); Reg[rdest].i = src; break; } //: :(before "End Initialize Op Names") put_new(Name, "c7", "copy imm32 to rm32 (mov)"); :(code) void test_copy_imm32_to_mem_at_r32() { Reg[EBX].i = 0x60; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " c7 03 0a 0b 0c 0d \n" // copy 0x0d0c0b0a to *EBX // ModR/M in binary: 00 (indirect mode) 000 (unused) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: copy imm32 to r/m32\n" "run: effective address is 0x00000060 (EBX)\n" "run: imm32 is 0x0d0c0b0a\n" ); } :(before "End Single-Byte Opcodes") case 0xc7: { // copy imm32 to r32 const uint8_t modrm = next(); trace(Callstack_depth+1, "run") << "copy imm32 to r/m32" << end(); const uint8_t subop = (modrm>>3)&0x7; // middle 3 'reg opcode' bits if (subop != 0) { cerr << "unrecognized subop for opcode c7: " << NUM(subop) << " (only 0/copy currently implemented)\n"; exit(1); } int32_t* dest = effective_address(modrm); const int32_t src = next32(); trace(Callstack_depth+1, "run") << "imm32 is 0x" << HEXWORD << src << end(); *dest = src; break; } //:: push :(before "End Initialize Op Names") put_new(Name, "68", "push imm32 to stack (push)"); :(code) void test_push_imm32() { Mem.push_back(vma(0x7d000000)); // manually allocate memory Reg[ESP].u = 0x7d000014; run( "== 0x1\n" // code segment // op ModR/M SIB displacement immediate " 68 af 00 00 00 \n" // push *EAX to stack ); CHECK_TRACE_CONTENTS( "run: push imm32 0x000000af\n" "run: ESP is now 0x7d000010\n" "run: contents at ESP: 0x000000af\n" ); } :(before "End Single-Byte Opcodes") case 0x68: { const uint32_t val = static_cast(next32()); trace(Callstack_depth+1, "run") << "push imm32 0x" << HEXWORD << val << end(); //? cerr << "push: " << val << " => " << Reg[ESP].u << '\n'; push(val); trace(Callstack_depth+1, "run") << "ESP is now 0x" << HEXWORD << Reg[ESP].u << end(); trace(Callstack_depth+1, "run") << "contents at ESP: 0x" << HEXWORD << read_mem_u32(Reg[ESP].u) << end(); break; }