//: Since we're tagging operands with their types, let's start checking these //: operand types for each instruction. :(scenario check_missing_imm8_operand) % Hide_errors = true; == 0x1 # instruction effective address operand displacement immediate # op subop mod rm32 base index scale r32 # 1-3 bytes 3 bits 2 bits 3 bits 3 bits 3 bits 2 bits 2 bits 0/1/2/4 bytes 0/1/2/4 bytes cd # int ?? +error: 'cd' (software interrupt): missing imm8 operand :(before "Pack Operands(segment code)") check_operands(code); if (trace_contains_errors()) return; :(code) void check_operands(const segment& code) { trace(99, "transform") << "-- check operands" << end(); for (int i = 0; i < SIZE(code.lines); ++i) { check_operands(code.lines.at(i)); if (trace_contains_errors()) return; // stop at the first mal-formed instruction } } void check_operands(const line& inst) { word op = preprocess_op(inst.words.at(0)); if (op.data == "0f") { check_operands_0f(inst); return; } if (op.data == "f3") { check_operands_f3(inst); return; } check_operands(inst, op); } word preprocess_op(word/*copy*/ op) { op.data = tolower(op.data.c_str()); if (starts_with(op.data, "0x")) op.data = op.data.substr(2); return op; } //: To check the operands for an opcode, we'll track the permitted operands //: for each supported opcode in a bitvector. That way we can often compute the //: bitvector for each instruction's operands and compare it with the expected. :(before "End Types") enum operand_type { // start from the least significant bit MODRM, // more complex, may also involve disp8 or disp32 SUBOP, DISP8, DISP16, DISP32, IMM8, IMM32, NUM_OPERAND_TYPES }; :(before "End Globals") vector Operand_type_name; map Operand_type; :(before "End One-time Setup") init_op_types(); :(code) void init_op_types() { assert(NUM_OPERAND_TYPES <= /*bits in a uint8_t*/8); Operand_type_name.resize(NUM_OPERAND_TYPES); #define DEF(type) Operand_type_name.at(type) = tolower(#type), put(Operand_type, tolower(#type), type); DEF(MODRM); DEF(SUBOP); DEF(DISP8); DEF(DISP16); DEF(DISP32); DEF(IMM8); DEF(IMM32); #undef DEF } :(before "End Globals") map Permitted_operands; const uint8_t INVALID_OPERANDS = 0xff; // no instruction uses all the operand types :(before "End One-time Setup") init_permitted_operands(); :(code) void init_permitted_operands() { //// Class A: just op, no operands // halt put(Permitted_operands, "f4", 0x00); // push put(Permitted_operands, "50", 0x00); put(Permitted_operands, "51", 0x00); put(Permitted_operands, "52", 0x00); put(Permitted_operands, "53", 0x00); put(Permitted_operands, "54", 0x00); put(Permitted_operands, "55", 0x00); put(Permitted_operands, "56", 0x00); put(Permitted_operands, "57", 0x00); // pop put(Permitted_operands, "58", 0x00); put(Permitted_operands, "59", 0x00); put(Permitted_operands, "5a", 0x00); put(Permitted_operands, "5b", 0x00); put(Permitted_operands, "5c", 0x00); put(Permitted_operands, "5d", 0x00); put(Permitted_operands, "5e", 0x00); put(Permitted_operands, "5f", 0x00); // return put(Permitted_operands, "c3", 0x00); //// Class B: just op and disp8 // imm32 imm8 disp32 |disp16 disp8 subop modrm // 0 0 0 |0 1 0 0 // jump put(Permitted_operands, "eb", 0x04); put(Permitted_operands, "74", 0x04); put(Permitted_operands, "75", 0x04); put(Permitted_operands, "7c", 0x04); put(Permitted_operands, "7d", 0x04); put(Permitted_operands, "7e", 0x04); put(Permitted_operands, "7f", 0x04); //// Class C: just op and disp16 // imm32 imm8 disp32 |disp16 disp8 subop modrm // 0 0 0 |1 0 0 0 put(Permitted_operands, "e9", 0x08); // jump //// Class D: just op and disp32 // imm32 imm8 disp32 |disp16 disp8 subop modrm // 0 0 1 |0 0 0 0 put(Permitted_operands, "e8", 0x10); // call //// Class E: just op and imm8 // imm32 imm8 disp32 |disp16 disp8 subop modrm // 0 1 0 |0 0 0 0 put(Permitted_operands, "cd", 0x20); // software interrupt //// Class F: just op and imm32 // imm32 imm8 disp32 |disp16 disp8 subop modrm // 1 0 0 |0 0 0 0 put(Permitted_operands, "05", 0x40); // add put(Permitted_operands, "2d", 0x40); // subtract put(Permitted_operands, "25", 0x40); // and put(Permitted_operands, "0d", 0x40); // or put(Permitted_operands, "35", 0x40); // xor put(Permitted_operands, "3d", 0x40); // compare put(Permitted_operands, "68", 0x40); // push // copy put(Permitted_operands, "b8", 0x40); put(Permitted_operands, "b9", 0x40); put(Permitted_operands, "ba", 0x40); put(Permitted_operands, "bb", 0x40); put(Permitted_operands, "bc", 0x40); put(Permitted_operands, "bd", 0x40); put(Permitted_operands, "be", 0x40); put(Permitted_operands, "bf", 0x40); //// Class M: using ModR/M byte // imm32 imm8 disp32 |disp16 disp8 subop modrm // 0 0 0 |0 0 0 1 // add put(Permitted_operands, "01", 0x01); put(Permitted_operands, "03", 0x01); // subtract put(Permitted_operands, "29", 0x01); put(Permitted_operands, "2b", 0x01); // and put(Permitted_operands, "21", 0x01); put(Permitted_operands, "23", 0x01); // or put(Permitted_operands, "09", 0x01); put(Permitted_operands, "0b", 0x01); // complement put(Permitted_operands, "f7", 0x01); // xor put(Permitted_operands, "31", 0x01); put(Permitted_operands, "33", 0x01); // compare put(Permitted_operands, "39", 0x01); put(Permitted_operands, "3b", 0x01); // copy put(Permitted_operands, "89", 0x01); put(Permitted_operands, "8b", 0x01); // swap put(Permitted_operands, "87", 0x01); // pop put(Permitted_operands, "8f", 0x01); //// Class O: op, ModR/M and subop (not r32) // imm32 imm8 disp32 |disp16 disp8 subop modrm // 0 0 0 |0 0 1 1 put(Permitted_operands, "ff", 0x03); // jump/push/call //// Class N: op, ModR/M and imm32 // imm32 imm8 disp32 |disp16 disp8 subop modrm // 1 0 0 |0 0 0 1 put(Permitted_operands, "c7", 0x41); // copy //// Class P: op, ModR/M, subop (not r32) and imm32 // imm32 imm8 disp32 |disp16 disp8 subop modrm // 1 0 0 |0 0 1 1 put(Permitted_operands, "81", 0x43); // combine // End Init Permitted Operands } :(code) #define HAS(bitvector, bit) ((bitvector) & (1 << (bit))) #define SET(bitvector, bit) ((bitvector) | (1 << (bit))) #define CLEAR(bitvector, bit) ((bitvector) & (~(1 << (bit)))) void check_operands(const line& inst, const word& op) { if (!is_hex_byte(op)) return; uint8_t expected_bitvector = get(Permitted_operands, op.data); if (HAS(expected_bitvector, MODRM)) { check_operands_modrm(inst, op); compare_bitvector_modrm(inst, expected_bitvector, op); } else { compare_bitvector(inst, expected_bitvector, op); } } //: Many instructions can be checked just by comparing bitvectors. void compare_bitvector(const line& inst, uint8_t expected, const word& op) { if (all_hex_bytes(inst) && has_operands(inst)) return; // deliberately programming in raw hex; we'll raise a warning elsewhere uint8_t bitvector = compute_operand_bitvector(inst); if (trace_contains_errors()) return; // duplicate operand type if (bitvector == expected) return; // all good with this instruction for (int i = 0; i < NUM_OPERAND_TYPES; ++i, bitvector >>= 1, expected >>= 1) { //? cerr << "comparing " << HEXBYTE << NUM(bitvector) << " with " << NUM(expected) << '\n'; if ((bitvector & 0x1) == (expected & 0x1)) continue; // all good with this operand const string& optype = Operand_type_name.at(i); if ((bitvector & 0x1) > (expected & 0x1)) raise << "'" << to_string(inst) << "'" << maybe_name(op) << ": unexpected " << optype << " operand\n" << end(); else raise << "'" << to_string(inst) << "'" << maybe_name(op) << ": missing " << optype << " operand\n" << end(); // continue giving all errors for a single instruction } // ignore settings in any unused bits } string maybe_name(const word& op) { if (!is_hex_byte(op)) return ""; if (!contains_key(name, op.data)) return ""; return " ("+get(name, op.data)+')'; } uint32_t compute_operand_bitvector(const line& inst) { uint32_t bitvector = 0; for (int i = /*skip op*/1; i < SIZE(inst.words); ++i) { bitvector = bitvector | bitvector_for_operand(inst.words.at(i)); if (trace_contains_errors()) return INVALID_OPERANDS; // duplicate operand type } return bitvector; } bool has_operands(const line& inst) { return SIZE(inst.words) > first_operand(inst); } int first_operand(const line& inst) { if (inst.words.at(0).data == "0f") return 2; if (inst.words.at(0).data == "f3") { if (inst.words.at(1).data == "0f") return 3; else return 2; } return 1; } // Scan the metadata of 'w' and return the bit corresponding to any operand type. // Also raise an error if metadata contains multiple operand types. uint32_t bitvector_for_operand(const word& w) { uint32_t bv = 0; bool found = false; for (int i = 0; i < SIZE(w.metadata); ++i) { const string& curr = w.metadata.at(i); if (!contains_key(Operand_type, curr)) continue; // ignore unrecognized metadata if (found) { raise << "'" << w.original << "' has conflicting operand types; it should have only one\n" << end(); return INVALID_OPERANDS; } bv = (1 << get(Operand_type, curr)); found = true; } return bv; } :(scenario conflicting_operand_type) % Hide_errors = true; == 0x1 cd/software-interrupt 80/imm8/imm32 +error: '80/imm8/imm32' has conflicting operand types; it should have only one //: Instructions computing effective addresses have more complex rules, so //: we'll hard-code a common set of instruction-decoding rules. :(scenario check_missing_mod_operand) % Hide_errors = true; == 0x1 81 0/add/subop 3/rm32/ebx 1/imm32 +error: '81 0/add/subop 3/rm32/ebx 1/imm32' (combine rm32 with imm32 based on subop): missing mod operand :(code) void check_operands_modrm(const line& inst, const word& op) { if (all_hex_bytes(inst)) return; // deliberately programming in raw hex; we'll raise a warning elsewhere check_metadata_present(inst, "mod", op); check_metadata_present(inst, "rm32", op); // no check for r32; some instructions don't use it; just assume it's 0 if missing if (op.data == "81" || op.data == "8f" || op.data == "ff") { // keep sync'd with 'help subop' check_metadata_present(inst, "subop", op); check_metadata_absent(inst, "r32", op, "should be replaced by subop"); } if (trace_contains_errors()) return; if (metadata(inst, "rm32").data != "4") return; // SIB byte checks uint8_t mod = hex_byte(metadata(inst, "mod").data); if (mod != /*direct*/3) { check_metadata_present(inst, "base", op); check_metadata_present(inst, "index", op); // otherwise why go to SIB? } else { check_metadata_absent(inst, "base", op, "direct mode"); check_metadata_absent(inst, "index", op, "direct mode"); } // no check for scale; 0 (2**0 = 1) by default } // same as compare_bitvector, with a couple of exceptions for modrm-based instructions // exception 1: ignore modrm bit since we already checked it above // exception 2: modrm instructions can use a displacement on occasion void compare_bitvector_modrm(const line& inst, uint8_t expected, const word& op) { if (all_hex_bytes(inst) && has_operands(inst)) return; // deliberately programming in raw hex; we'll raise a warning elsewhere uint8_t bitvector = compute_operand_bitvector(inst); if (trace_contains_errors()) return; // duplicate operand type expected = CLEAR(expected, MODRM); // exception 1 if (bitvector == expected) return; // all good with this instruction for (int i = 0; i < NUM_OPERAND_TYPES; ++i, bitvector >>= 1, expected >>= 1) { //? cerr << "comparing for modrm " << HEXBYTE << NUM(bitvector) << " with " << NUM(expected) << '\n'; if ((bitvector & 0x1) == (expected & 0x1)) continue; // all good with this operand if (i == DISP8 || i == DISP32) continue; // exception 2 const string& optype = Operand_type_name.at(i); if ((bitvector & 0x1) > (expected & 0x1)) raise << "'" << to_string(inst) << "'" << maybe_name(op) << ": unexpected " << optype << " operand\n" << end(); else raise << "'" << to_string(inst) << "'" << maybe_name(op) << ": missing " << optype << " operand\n" << end(); // continue giving all errors for a single instruction } // ignore settings in any unused bits } void check_metadata_present(const line& inst, const string& type, const word& op) { if (!has_metadata(inst, type)) raise << "'" << to_string(inst) << "' (" << get(name, op.data) << "): missing " << type << " operand\n" << end(); } void check_metadata_absent(const line& inst, const string& type, const word& op, const string& msg) { if (has_metadata(inst, type)) raise << "'" << to_string(inst) << "' (" << get(name, op.data) << "): unexpected " << type << " operand (" << msg << ")\n" << end(); } :(scenarios transform) :(scenario modrm_with_displacement) % Reg[EAX].u = 0x1; == 0x1 # just avoid null pointer 8b/copy 1/mod/lookup+disp8 0/rm32/EAX 2/r32/EDX 4/disp8 # copy *(EAX+4) to EDX $error: 0 :(scenarios run) :(scenario conflicting_operands_in_modrm_instruction) % Hide_errors = true; == 0x1 01/add 0/mod 3/mod +error: '01/add 0/mod 3/mod' has conflicting mod operands :(scenario conflicting_operand_type_modrm) % Hide_errors = true; == 0x1 01/add 0/mod 3/rm32/r32 +error: '3/rm32/r32' has conflicting operand types; it should have only one :(scenario check_missing_rm32_operand) % Hide_errors = true; == 0x1 81 0/add/subop 0/mod 1/imm32 +error: '81 0/add/subop 0/mod 1/imm32' (combine rm32 with imm32 based on subop): missing rm32 operand :(scenario check_missing_subop_operand) % Hide_errors = true; == 0x1 81 0/mod 3/rm32/ebx 1/imm32 +error: '81 0/mod 3/rm32/ebx 1/imm32' (combine rm32 with imm32 based on subop): missing subop operand :(scenario check_missing_base_operand) % Hide_errors = true; == 0x1 81 0/add/subop 0/mod/indirect 4/rm32/use-sib 1/imm32 +error: '81 0/add/subop 0/mod/indirect 4/rm32/use-sib 1/imm32' (combine rm32 with imm32 based on subop): missing base operand :(scenario check_missing_index_operand) % Hide_errors = true; == 0x1 81 0/add/subop 0/mod/indirect 4/rm32/use-sib 0/base 1/imm32 +error: '81 0/add/subop 0/mod/indirect 4/rm32/use-sib 0/base 1/imm32' (combine rm32 with imm32 based on subop): missing index operand :(scenario check_missing_base_operand_2) % Hide_errors = true; == 0x1 81 0/add/subop 0/mod/indirect 4/rm32/use-sib 2/index 3/scale 1/imm32 +error: '81 0/add/subop 0/mod/indirect 4/rm32/use-sib 2/index 3/scale 1/imm32' (combine rm32 with imm32 based on subop): missing base operand :(scenario check_base_operand_not_needed_in_direct_mode) == 0x1 81 0/add/subop 3/mod/indirect 4/rm32/use-sib 1/imm32 $error: 0 //:: similarly handle multi-byte opcodes :(code) void check_operands_0f(const line& inst) { assert(inst.words.at(0).data == "0f"); if (SIZE(inst.words) == 1) { raise << "opcode '0f' requires a second opcode\n" << end(); return; } word op = preprocess_op(inst.words.at(1)); if (!contains_key(name_0f, op.data)) { raise << "unknown 2-byte opcode '0f " << op.data << "'\n" << end(); return; } check_operands_0f(inst, op); } void check_operands_f3(const line& /*unused*/) { raise << "no supported opcodes starting with f3\n" << end(); } :(scenario check_missing_disp16_operand) % Hide_errors = true; == 0x1 # instruction effective address operand displacement immediate # op subop mod rm32 base index scale r32 # 1-3 bytes 3 bits 2 bits 3 bits 3 bits 3 bits 2 bits 2 bits 0/1/2/4 bytes 0/1/2/4 bytes 0f 84 # jmp if ZF to ?? +error: '0f 84' (jump disp16 bytes away if ZF is set): missing disp16 operand :(before "End Globals") map Permitted_operands_0f; :(before "End Init Permitted Operands") //// Class C: just op and disp16 // imm32 imm8 disp32 |disp16 disp8 subop modrm // 0 0 0 |1 0 0 0 put(Permitted_operands_0f, "84", 0x08); put(Permitted_operands_0f, "85", 0x08); put(Permitted_operands_0f, "8c", 0x08); put(Permitted_operands_0f, "8d", 0x08); put(Permitted_operands_0f, "8e", 0x08); put(Permitted_operands_0f, "8f", 0x08); //// Class M: using ModR/M byte // imm32 imm8 disp32 |disp16 disp8 subop modrm // 0 0 0 |0 0 0 1 put(Permitted_operands_0f, "af", 0x01); :(code) void check_operands_0f(const line& inst, const word& op) { uint8_t expected_bitvector = get(Permitted_operands_0f, op.data); if (HAS(expected_bitvector, MODRM)) check_operands_modrm(inst, op); compare_bitvector_0f(inst, CLEAR(expected_bitvector, MODRM), op); } void compare_bitvector_0f(const line& inst, uint8_t expected, const word& op) { if (all_hex_bytes(inst) && has_operands(inst)) return; // deliberately programming in raw hex; we'll raise a warning elsewhere uint8_t bitvector = compute_operand_bitvector(inst); if (trace_contains_errors()) return; // duplicate operand type if (bitvector == expected) return; // all good with this instruction for (int i = 0; i < NUM_OPERAND_TYPES; ++i, bitvector >>= 1, expected >>= 1) { //? cerr << "comparing " << HEXBYTE << NUM(bitvector) << " with " << NUM(expected) << '\n'; if ((bitvector & 0x1) == (expected & 0x1)) continue; // all good with this operand const string& optype = Operand_type_name.at(i); if ((bitvector & 0x1) > (expected & 0x1)) raise << "'" << to_string(inst) << "' (" << get(name_0f, op.data) << "): unexpected " << optype << " operand\n" << end(); else raise << "'" << to_string(inst) << "' (" << get(name_0f, op.data) << "): missing " << optype << " operand\n" << end(); // continue giving all errors for a single instruction } // ignore settings in any unused bits } string tolower(const char* s) { ostringstream out; for (/*nada*/; *s; ++s) out << static_cast(tolower(*s)); return out.str(); } #undef HAS #undef SET #undef CLEAR :(before "End Includes") #include