//: Start allowing us to not specify precise addresses for the start of each //: segment. //: This gives up a measure of control in placing code and data. void test_segment_name() { run( "== code\n" "05/add-to-EAX 0x0d0c0b0a/imm32\n" // code starts at 0x08048000 + p_offset, which is 0x54 for a single-segment binary ); CHECK_TRACE_CONTENTS( "load: 0x09000054 -> 05\n" "load: 0x09000055 -> 0a\n" "load: 0x09000056 -> 0b\n" "load: 0x09000057 -> 0c\n" "load: 0x09000058 -> 0d\n" "run: add imm32 0x0d0c0b0a to reg EAX\n" "run: storing 0x0d0c0b0a\n" ); } //: Update the parser to handle non-numeric segment name. //: //: We'll also support repeated segments with non-numeric names. :(before "End Globals") map Segment_index; bool Currently_parsing_named_segment = false; // global to permit cross-layer communication int Currently_parsing_segment_index = -1; // global to permit cross-layer communication :(before "End Reset") Segment_index.clear(); Currently_parsing_named_segment = false; Currently_parsing_segment_index = -1; :(before "End Segment Parsing Special-cases(segment_title)") if (!starts_with(segment_title, "0x")) { Currently_parsing_named_segment = true; if (!contains_key(Segment_index, segment_title)) { trace(3, "parse") << "new segment '" << segment_title << "'" << end(); if (out.segments.empty() && segment_title != "code") { raise << "first segment must be 'code' but is '" << segment_title << "'\n" << end(); return; } if (SIZE(out.segments) == 1 && segment_title != "data") { raise << "second segment must be 'data' but is '" << segment_title << "'\n" << end(); return; } put(Segment_index, segment_title, SIZE(out.segments)); out.segments.push_back(segment()); } else { trace(3, "parse") << "appending to segment '" << segment_title << "'" << end(); } Currently_parsing_segment_index = get(Segment_index, segment_title); } :(before "End flush(p, lines) Special-cases") if (Currently_parsing_named_segment) { assert(!p.segments.empty()); trace(3, "parse") << "flushing segment" << end(); vector& curr_segment_data = p.segments.at(Currently_parsing_segment_index).lines; curr_segment_data.insert(curr_segment_data.end(), lines.begin(), lines.end()); lines.clear(); Currently_parsing_named_segment = false; Currently_parsing_segment_index = -1; return; } :(code) void test_repeated_segment_merges_data() { run( "== code\n" "05/add-to-EAX 0x0d0c0b0a/imm32\n" "== code\n" // again "2d/subtract-from-EAX 0xddccbbaa/imm32\n" ); CHECK_TRACE_CONTENTS( "parse: new segment 'code'\n" "parse: appending to segment 'code'\n" // first segment "load: 0x09000054 -> 05\n" "load: 0x09000055 -> 0a\n" "load: 0x09000056 -> 0b\n" "load: 0x09000057 -> 0c\n" "load: 0x09000058 -> 0d\n" // second segment "load: 0x09000059 -> 2d\n" "load: 0x0900005a -> aa\n" "load: 0x0900005b -> bb\n" "load: 0x0900005c -> cc\n" "load: 0x0900005d -> dd\n" ); } void test_error_on_missing_segment_header() { Hide_errors = true; run( "05/add-to-EAX 0/imm32\n" ); CHECK_TRACE_CONTENTS( "error: input does not start with a '==' section header\n" ); } void test_error_on_first_segment_not_code() { Hide_errors = true; run( "== data\n" "05 00 00 00 00\n" ); CHECK_TRACE_CONTENTS( "error: first segment must be 'code' but is 'data'\n" ); } void test_error_on_second_segment_not_data() { Hide_errors = true; run( "== code\n" "05/add-to-EAX 0/imm32\n" "== bss\n" "05 00 00 00 00\n" ); CHECK_TRACE_CONTENTS( "error: second segment must be 'data' but is 'bss'\n" ); } //: compute segment address :(before "End Level-2 Transforms") Transform.push_back(compute_segment_starts); :(code) void compute_segment_starts(program& p) { trace(3, "transform") << "-- compute segment addresses" << end(); uint32_t p_offset = /*size of ehdr*/0x34 + SIZE(p.segments)*0x20/*size of each phdr*/; for (size_t i = 0; i < p.segments.size(); ++i) { segment& curr = p.segments.at(i); if (curr.start == 0) { curr.start = CODE_SEGMENT + i*SPACE_FOR_SEGMENT + p_offset; trace(99, "transform") << "segment " << i << " begins at address 0x" << HEXWORD << curr.start << end(); } p_offset += size_of(curr); assert(p_offset < SEGMENT_ALIGNMENT); // for now we get less and less available space in each successive segment } } uint32_t size_of(const segment& s) { uint32_t sum = 0; for (int i = 0; i < SIZE(s.lines); ++i) sum += num_bytes(s.lines.at(i)); return sum; } // Assumes all bitfields are packed. uint32_t num_bytes(const line& inst) { uint32_t sum = 0; for (int i = 0; i < SIZE(inst.words); ++i) sum += size_of(inst.words.at(i)); return sum; } int size_of(const word& w) { if (has_operand_metadata(w, "disp32") || has_operand_metadata(w, "imm32")) return 4; else if (has_operand_metadata(w, "disp16")) return 2; // End size_of(word w) Special-cases else return 1; } //: Dependencies: //: - We'd like to compute segment addresses before setting up global variables, //: because computing addresses for global variables requires knowing where //: the data segment starts. //: - We'd like to finish expanding labels before computing segment addresses, //: because it would make computing the sizes of segments more self-contained //: (num_bytes). //: //: Decision: compute segment addresses before expanding labels, by being //: aware in this layer of certain operand types that will eventually occupy //: multiple bytes. //: //: The layer to expand labels later hooks into num_bytes() to teach this //: layer that labels occupy zero space in the binary.