1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
|
//: floating-point operations
//:: copy
:(before "End Initialize Op Names")
put_new(Name_f3_0f, "10", "copy xm32 to x32 (movss)");
put_new(Name_f3_0f, "11", "copy x32 to xm32 (movss)");
:(code)
void test_copy_x32_to_x32() {
Xmm[3] = 0.5;
run(
"== code 0x1\n" // code segment
// op ModR/M SIB displacement immediate
"f3 0f 11 d8 \n" // copy XMM3 to XMM0
// ModR/M in binary: 11 (direct mode) 011 (src XMM3) 000 (dest XMM0)
);
CHECK_TRACE_CONTENTS(
"run: copy XMM3 to x/m32\n"
"run: x/m32 is XMM0\n"
"run: storing 0.5\n"
);
}
:(before "End Three-Byte Opcodes Starting With f3 0f")
case 0x10: { // copy x/m32 to x32
const uint8_t modrm = next();
const uint8_t rdest = (modrm>>3)&0x7;
trace(Callstack_depth+1, "run") << "copy x/m32 to " << Xname[rdest] << end();
float* src = effective_address_float(modrm);
Xmm[rdest] = *src; // Write multiple elements of vector<uint8_t> at once. Assumes sizeof(float) == 4 on the host as well.
trace(Callstack_depth+1, "run") << "storing " << Xmm[rdest] << end();
break;
}
case 0x11: { // copy x32 to x/m32
const uint8_t modrm = next();
const uint8_t rsrc = (modrm>>3)&0x7;
trace(Callstack_depth+1, "run") << "copy " << Xname[rsrc] << " to x/m32" << end();
float* dest = effective_address_float(modrm);
*dest = Xmm[rsrc]; // Write multiple elements of vector<uint8_t> at once. Assumes sizeof(float) == 4 on the host as well.
trace(Callstack_depth+1, "run") << "storing " << *dest << end();
break;
}
:(code)
void test_copy_x32_to_mem_at_xm32() {
Xmm[3] = 0.5;
Reg[EAX].i = 0x60;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
"f3 0f 11 18 \n" // copy XMM3 to *EAX
// ModR/M in binary: 00 (indirect mode) 011 (src XMM3) 000 (dest EAX)
);
CHECK_TRACE_CONTENTS(
"run: copy XMM3 to x/m32\n"
"run: effective address is 0x00000060 (EAX)\n"
"run: storing 0.5\n"
);
}
void test_copy_mem_at_xm32_to_x32() {
Reg[EAX].i = 0x2000;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
"f3 0f 10 18 \n" // copy *EAX to XMM3
"== data 0x2000\n"
"00 00 00 3f\n" // 0x3f000000 = 0.5
);
CHECK_TRACE_CONTENTS(
"run: copy x/m32 to XMM3\n"
"run: effective address is 0x00002000 (EAX)\n"
"run: storing 0.5\n"
);
}
//:: convert to floating point
:(before "End Initialize Op Names")
put_new(Name_f3_0f, "2a", "convert integer to floating-point (cvtsi2ss)");
:(code)
void test_cvtsi2ss() {
Reg[EAX].i = 10;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
"f3 0f 2a c0 \n"
// ModR/M in binary: 11 (direct mode) 000 (XMM0) 000 (EAX)
);
CHECK_TRACE_CONTENTS(
"run: convert r/m32 to XMM0\n"
"run: r/m32 is EAX\n"
"run: XMM0 is now 10\n"
);
}
:(before "End Three-Byte Opcodes Starting With f3 0f")
case 0x2a: { // convert integer to float
const uint8_t modrm = next();
const uint8_t dest = (modrm>>3)&0x7;
trace(Callstack_depth+1, "run") << "convert r/m32 to " << Xname[dest] << end();
const int32_t* src = effective_address(modrm);
Xmm[dest] = *src;
trace(Callstack_depth+1, "run") << Xname[dest] << " is now " << Xmm[dest] << end();
break;
}
//:: convert floating point to int
:(before "End Initialize Op Names")
put_new(Name_f3_0f, "2d", "convert floating-point to int (cvtss2si)");
put_new(Name_f3_0f, "2c", "truncate floating-point to int (cvttss2si)");
:(code)
void test_cvtss2si() {
Xmm[0] = 9.8;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
"f3 0f 2d c0 \n"
// ModR/M in binary: 11 (direct mode) 000 (EAX) 000 (XMM0)
);
CHECK_TRACE_CONTENTS(
"run: convert x/m32 to EAX\n"
"run: x/m32 is XMM0\n"
"run: EAX is now 0x0000000a\n"
);
}
:(before "End Three-Byte Opcodes Starting With f3 0f")
case 0x2d: { // convert float to integer
const uint8_t modrm = next();
const uint8_t dest = (modrm>>3)&0x7;
trace(Callstack_depth+1, "run") << "convert x/m32 to " << rname(dest) << end();
const float* src = effective_address_float(modrm);
Reg[dest].i = round(*src);
trace(Callstack_depth+1, "run") << rname(dest) << " is now 0x" << HEXWORD << Reg[dest].i << end();
break;
}
:(code)
void test_cvttss2si() {
Xmm[0] = 9.8;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
"f3 0f 2c c0 \n"
// ModR/M in binary: 11 (direct mode) 000 (EAX) 000 (XMM0)
);
CHECK_TRACE_CONTENTS(
"run: truncate x/m32 to EAX\n"
"run: x/m32 is XMM0\n"
"run: EAX is now 0x00000009\n"
);
}
:(before "End Three-Byte Opcodes Starting With f3 0f")
case 0x2c: { // truncate float to integer
const uint8_t modrm = next();
const uint8_t dest = (modrm>>3)&0x7;
trace(Callstack_depth+1, "run") << "truncate x/m32 to " << rname(dest) << end();
const float* src = effective_address_float(modrm);
Reg[dest].i = trunc(*src);
trace(Callstack_depth+1, "run") << rname(dest) << " is now 0x" << HEXWORD << Reg[dest].i << end();
break;
}
//:: add
:(before "End Initialize Op Names")
put_new(Name_f3_0f, "58", "add floats (addss)");
:(code)
void test_addss() {
Xmm[0] = 3.0;
Xmm[1] = 2.0;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
"f3 0f 58 c1 \n"
// ModR/M in binary: 11 (direct mode) 000 (XMM0) 001 (XMM1)
);
CHECK_TRACE_CONTENTS(
"run: add x/m32 to XMM0\n"
"run: x/m32 is XMM1\n"
"run: XMM0 is now 5\n"
);
}
:(before "End Three-Byte Opcodes Starting With f3 0f")
case 0x58: { // add x/m32 to x32
const uint8_t modrm = next();
const uint8_t dest = (modrm>>3)&0x7;
trace(Callstack_depth+1, "run") << "add x/m32 to " << Xname[dest] << end();
const float* src = effective_address_float(modrm);
Xmm[dest] += *src;
trace(Callstack_depth+1, "run") << Xname[dest] << " is now " << Xmm[dest] << end();
break;
}
//:: subtract
:(before "End Initialize Op Names")
put_new(Name_f3_0f, "5c", "subtract floats (subss)");
:(code)
void test_subss() {
Xmm[0] = 3.0;
Xmm[1] = 2.0;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
"f3 0f 5c c1 \n"
// ModR/M in binary: 11 (direct mode) 000 (XMM0) 001 (XMM1)
);
CHECK_TRACE_CONTENTS(
"run: subtract x/m32 from XMM0\n"
"run: x/m32 is XMM1\n"
"run: XMM0 is now 1\n"
);
}
:(before "End Three-Byte Opcodes Starting With f3 0f")
case 0x5c: { // subtract x/m32 from x32
const uint8_t modrm = next();
const uint8_t dest = (modrm>>3)&0x7;
trace(Callstack_depth+1, "run") << "subtract x/m32 from " << Xname[dest] << end();
const float* src = effective_address_float(modrm);
Xmm[dest] -= *src;
trace(Callstack_depth+1, "run") << Xname[dest] << " is now " << Xmm[dest] << end();
break;
}
//:: multiply
:(before "End Initialize Op Names")
put_new(Name_f3_0f, "59", "multiply floats (mulss)");
:(code)
void test_mulss() {
Xmm[0] = 3.0;
Xmm[1] = 2.0;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
"f3 0f 59 c1 \n"
// ModR/M in binary: 11 (direct mode) 000 (XMM0) 001 (XMM1)
);
CHECK_TRACE_CONTENTS(
"run: multiply XMM0 by x/m32\n"
"run: x/m32 is XMM1\n"
"run: XMM0 is now 6\n"
);
}
:(before "End Three-Byte Opcodes Starting With f3 0f")
case 0x59: { // multiply x32 by x/m32
const uint8_t modrm = next();
const uint8_t dest = (modrm>>3)&0x7;
trace(Callstack_depth+1, "run") << "multiply " << Xname[dest] << " by x/m32" << end();
const float* src = effective_address_float(modrm);
Xmm[dest] *= *src;
trace(Callstack_depth+1, "run") << Xname[dest] << " is now " << Xmm[dest] << end();
break;
}
//:: divide
:(before "End Initialize Op Names")
put_new(Name_f3_0f, "5e", "divide floats (divss)");
:(code)
void test_divss() {
Xmm[0] = 3.0;
Xmm[1] = 2.0;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
"f3 0f 5e c1 \n"
// ModR/M in binary: 11 (direct mode) 000 (XMM0) 001 (XMM1)
);
CHECK_TRACE_CONTENTS(
"run: divide XMM0 by x/m32\n"
"run: x/m32 is XMM1\n"
"run: XMM0 is now 1.5\n"
);
}
:(before "End Three-Byte Opcodes Starting With f3 0f")
case 0x5e: { // divide x32 by x/m32
const uint8_t modrm = next();
const uint8_t dest = (modrm>>3)&0x7;
trace(Callstack_depth+1, "run") << "divide " << Xname[dest] << " by x/m32" << end();
const float* src = effective_address_float(modrm);
Xmm[dest] /= *src;
trace(Callstack_depth+1, "run") << Xname[dest] << " is now " << Xmm[dest] << end();
break;
}
//:: min
:(before "End Initialize Op Names")
put_new(Name_f3_0f, "5d", "minimum of two floats (minss)");
:(code)
void test_minss() {
Xmm[0] = 3.0;
Xmm[1] = 2.0;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
"f3 0f 5d c1 \n"
// ModR/M in binary: 11 (direct mode) 000 (XMM0) 001 (XMM1)
);
CHECK_TRACE_CONTENTS(
"run: minimum of XMM0 and x/m32\n"
"run: x/m32 is XMM1\n"
"run: XMM0 is now 2\n"
);
}
:(before "End Three-Byte Opcodes Starting With f3 0f")
case 0x5d: { // minimum of x32, x/m32
const uint8_t modrm = next();
const uint8_t dest = (modrm>>3)&0x7;
trace(Callstack_depth+1, "run") << "minimum of " << Xname[dest] << " and x/m32" << end();
const float* src = effective_address_float(modrm);
Xmm[dest] = min(Xmm[dest], *src);
trace(Callstack_depth+1, "run") << Xname[dest] << " is now " << Xmm[dest] << end();
break;
}
//:: max
:(before "End Initialize Op Names")
put_new(Name_f3_0f, "5f", "maximum of two floats (maxss)");
:(code)
void test_maxss() {
Xmm[0] = 3.0;
Xmm[1] = 2.0;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
"f3 0f 5f c1 \n"
// ModR/M in binary: 11 (direct mode) 000 (XMM0) 001 (XMM1)
);
CHECK_TRACE_CONTENTS(
"run: maximum of XMM0 and x/m32\n"
"run: x/m32 is XMM1\n"
"run: XMM0 is now 3\n"
);
}
:(before "End Three-Byte Opcodes Starting With f3 0f")
case 0x5f: { // maximum of x32, x/m32
const uint8_t modrm = next();
const uint8_t dest = (modrm>>3)&0x7;
trace(Callstack_depth+1, "run") << "maximum of " << Xname[dest] << " and x/m32" << end();
const float* src = effective_address_float(modrm);
Xmm[dest] = max(Xmm[dest], *src);
trace(Callstack_depth+1, "run") << Xname[dest] << " is now " << Xmm[dest] << end();
break;
}
//:: reciprocal
:(before "End Initialize Op Names")
put_new(Name_f3_0f, "53", "reciprocal of float (rcpss)");
:(code)
void test_rcpss() {
Xmm[1] = 2.0;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
"f3 0f 53 c1 \n"
// ModR/M in binary: 11 (direct mode) 000 (XMM0) 001 (XMM1)
);
CHECK_TRACE_CONTENTS(
"run: reciprocal of x/m32 into XMM0\n"
"run: x/m32 is XMM1\n"
"run: XMM0 is now 0.5\n"
);
}
:(before "End Three-Byte Opcodes Starting With f3 0f")
case 0x53: { // reciprocal of x/m32 into x32
const uint8_t modrm = next();
const uint8_t dest = (modrm>>3)&0x7;
trace(Callstack_depth+1, "run") << "reciprocal of x/m32 into " << Xname[dest] << end();
const float* src = effective_address_float(modrm);
Xmm[dest] = 1.0 / *src;
trace(Callstack_depth+1, "run") << Xname[dest] << " is now " << Xmm[dest] << end();
break;
}
//:: square root
:(before "End Initialize Op Names")
put_new(Name_f3_0f, "51", "square root of float (sqrtss)");
:(code)
void test_sqrtss() {
Xmm[1] = 2.0;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
"f3 0f 51 c1 \n"
// ModR/M in binary: 11 (direct mode) 000 (XMM0) 001 (XMM1)
);
CHECK_TRACE_CONTENTS(
"run: square root of x/m32 into XMM0\n"
"run: x/m32 is XMM1\n"
"run: XMM0 is now 1.41421\n"
);
}
:(before "End Three-Byte Opcodes Starting With f3 0f")
case 0x51: { // square root of x/m32 into x32
const uint8_t modrm = next();
const uint8_t dest = (modrm>>3)&0x7;
trace(Callstack_depth+1, "run") << "square root of x/m32 into " << Xname[dest] << end();
const float* src = effective_address_float(modrm);
Xmm[dest] = sqrt(*src);
trace(Callstack_depth+1, "run") << Xname[dest] << " is now " << Xmm[dest] << end();
break;
}
:(before "End Includes")
#include <math.h>
//:: inverse square root
:(before "End Initialize Op Names")
put_new(Name_f3_0f, "52", "inverse square root of float (rsqrtss)");
:(code)
void test_rsqrtss() {
Xmm[1] = 0.01;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
"f3 0f 52 c1 \n"
// ModR/M in binary: 11 (direct mode) 000 (XMM0) 001 (XMM1)
);
CHECK_TRACE_CONTENTS(
"run: inverse square root of x/m32 into XMM0\n"
"run: x/m32 is XMM1\n"
"run: XMM0 is now 10\n"
);
}
:(before "End Three-Byte Opcodes Starting With f3 0f")
case 0x52: { // inverse square root of x/m32 into x32
const uint8_t modrm = next();
const uint8_t dest = (modrm>>3)&0x7;
trace(Callstack_depth+1, "run") << "inverse square root of x/m32 into " << Xname[dest] << end();
const float* src = effective_address_float(modrm);
Xmm[dest] = 1.0 / sqrt(*src);
trace(Callstack_depth+1, "run") << Xname[dest] << " is now " << Xmm[dest] << end();
break;
}
:(code)
float* effective_address_float(uint8_t modrm) {
const uint8_t mod = (modrm>>6);
// ignore middle 3 'reg opcode' bits
const uint8_t rm = modrm & 0x7;
if (mod == 3) {
// mod 3 is just register direct addressing
trace(Callstack_depth+1, "run") << "x/m32 is " << Xname[rm] << end();
return &Xmm[rm];
}
uint32_t addr = effective_address_number(modrm);
trace(Callstack_depth+1, "run") << "effective address contains " << read_mem_f32(addr) << end();
return mem_addr_f32(addr);
}
//: compare
:(before "End Initialize Op Names")
put_new(Name_0f, "2f", "compare: set CF if x32 < xm32 (comiss)");
:(code)
void test_compare_x32_with_mem_at_rm32() {
Reg[EAX].i = 0x2000;
Xmm[3] = 0.5;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 0f 2f 18 \n" // compare XMM3 with *EAX
// ModR/M in binary: 00 (indirect mode) 011 (lhs XMM3) 000 (rhs EAX)
"== data 0x2000\n"
"00 00 00 00\n" // 0x00000000 = 0.0
);
CHECK_TRACE_CONTENTS(
"run: compare XMM3 with x/m32\n"
"run: effective address is 0x00002000 (EAX)\n"
"run: SF=0; ZF=0; CF=0; OF=0\n"
);
}
:(before "End Two-Byte Opcodes Starting With 0f")
case 0x2f: { // set SF if x32 < x/m32
const uint8_t modrm = next();
const uint8_t reg1 = (modrm>>3)&0x7;
trace(Callstack_depth+1, "run") << "compare " << Xname[reg1] << " with x/m32" << end();
const float* arg2 = effective_address_float(modrm);
// Flag settings carefully copied from the Intel manual.
// See also https://stackoverflow.com/questions/7057501/x86-assembler-floating-point-compare/7057771#7057771
SF = ZF = CF = OF = false;
if (Xmm[reg1] == *arg2) ZF = true;
if (Xmm[reg1] < *arg2) CF = true;
trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
break;
}
|