//: operating on memory at the address provided by some register plus optional scale and offset :(code) void test_add_r32_to_mem_at_rm32_with_sib() { Reg[EBX].i = 0x10; Reg[EAX].i = 0x2000; run( "== code 0x1\n" // op ModR/M SIB displacement immediate " 01 1c 20 \n" // add EBX to *EAX // ModR/M in binary: 00 (indirect mode) 011 (src EBX) 100 (dest in SIB) // SIB in binary: 00 (scale 1) 100 (no index) 000 (base EAX) "== data 0x2000\n" "01 00 00 00\n" // 1 ); CHECK_TRACE_CONTENTS( "run: add EBX to r/m32\n" "run: effective address is initially 0x00002000 (EAX)\n" "run: effective address is 0x00002000\n" "run: storing 0x00000011\n" ); } :(before "End Mod 0 Special-cases(addr)") case 4: // exception: mod 0b00 rm 0b100 => incoming SIB (scale-index-base) byte addr = effective_address_from_sib(mod); break; :(code) uint32_t effective_address_from_sib(uint8_t mod) { const uint8_t sib = next(); const uint8_t base = sib&0x7; uint32_t addr = 0; if (base != EBP || mod != 0) { addr = Reg[base].u; trace(Callstack_depth+1, "run") << "effective address is initially 0x" << HEXWORD << addr << " (" << rname(base) << ")" << end(); } else { // base == EBP && mod == 0 addr = next32(); // ignore base trace(Callstack_depth+1, "run") << "effective address is initially 0x" << HEXWORD << addr << " (disp32)" << end(); } const uint8_t index = (sib>>3)&0x7; if (index == ESP) { // ignore index and scale trace(Callstack_depth+1, "run") << "effective address is 0x" << HEXWORD << addr << end(); } else { const uint8_t scale = (1 << (sib>>6)); addr += Reg[index].i*scale; // treat index register as signed. Maybe base as well? But we'll always ensure it's non-negative. trace(Callstack_depth+1, "run") << "effective address is 0x" << HEXWORD << addr << " (after adding " << rname(index) << "*" << NUM(scale) << ")" << end(); } return addr; } :(code) void test_add_r32_to_mem_at_base_r32_index_r32() { Reg[EBX].i = 0x10; // source Reg[EAX].i = 0x1ffe; // dest base Reg[ECX].i = 0x2; // dest index run( "== code 0x1\n" // op ModR/M SIB displacement immediate " 01 1c 08 \n" // add EBX to *(EAX+ECX) // ModR/M in binary: 00 (indirect mode) 011 (src EBX) 100 (dest in SIB) // SIB in binary: 00 (scale 1) 001 (index ECX) 000 (base EAX) "== data 0x2000\n" "01 00 00 00\n" // 1 ); CHECK_TRACE_CONTENTS( "run: add EBX to r/m32\n" "run: effective address is initially 0x00001ffe (EAX)\n" "run: effective address is 0x00002000 (after adding ECX*1)\n" "run: storing 0x00000011\n" ); } :(code) void test_add_r32_to_mem_at_displacement_using_sib() { Reg[EBX].i = 0x10; // source run( "== code 0x1\n" // op ModR/M SIB displacement immediate " 01 1c 25 00 20 00 00 \n" // add EBX to *0x2000 // ModR/M in binary: 00 (indirect mode) 011 (src EBX) 100 (dest in SIB) // SIB in binary: 00 (scale 1) 100 (no index) 101 (not EBP but disp32) "== data 0x2000\n" "01 00 00 00\n" // 1 ); CHECK_TRACE_CONTENTS( "run: add EBX to r/m32\n" "run: effective address is initially 0x00002000 (disp32)\n" "run: effective address is 0x00002000\n" "run: storing 0x00000011\n" ); } //: :(code) void test_add_r32_to_mem_at_base_r32_index_r32_plus_disp8() { Reg[EBX].i = 0x10; // source Reg[EAX].i = 0x1ff9; // dest base Reg[ECX].i = 0x5; // dest index run( "== code 0x1\n" // op ModR/M SIB displacement immediate " 01 5c 08 02 \n" // add EBX to *(EAX+ECX+2) // ModR/M in