From 16e5f6e90b603bc62d4c0af24d79ca5e6121ac6a Mon Sep 17 00:00:00 2001 From: Crystal Date: Tue, 17 Oct 2023 22:42:30 +0100 Subject: Finally, an update --- src/org/uni_notes/algebra1.org | 58 +++++ uni_notes/algebra.html | 505 +++++++++++++++++++++++++++-------------- 2 files changed, 389 insertions(+), 174 deletions(-) diff --git a/src/org/uni_notes/algebra1.org b/src/org/uni_notes/algebra1.org index 1126423..21e41ef 100755 --- a/src/org/uni_notes/algebra1.org +++ b/src/org/uni_notes/algebra1.org @@ -494,3 +494,61 @@ E ∩ ∅ = ∅ ; E ∪ ∅ = E E ∩ (F Δ G) = (E ∩ F) Δ (E ∩ G) *** And the last one: E Δ ∅ = E ; E Δ E = ∅ +* 5eme cours: L'ensemble des parties d'un ensemble /Oct 16/ +Let E be a set. We define P(E) as the set of all parts of E : *P(E) = {X/X ⊂ E}* + + +*** Notes : +∅ ∈ P(E) ; E ∈ P(E) + + +cardinal E = n /The number of terms in E/ , cardinal P(E) = 2^n /The number of all parts of E/ + +*** Examples : +E = {a,b,c} // P(E)={∅, {a}, {b}, {c}, {a,b}, {b,c}, {a,c}, {a,b,c}} + +** Partition of a set : +We say that *A* is a partition of E if: +a. ∀ x ∈ A , x ≠ 0 +b. All the elements of *A* are two by two disjoint. Or in other terms, there should not be two elements that intersects with each other. +c. The reunion of all elements of *A* is equal to E +** Cartesian products : +Let E and F be two sets, the set EXF = {(x,y)/ x ∈ E AND y ∈ F} is called the Cartesian product of E and F +*** Example : +A = {4,5} ; B= {4,5,6} // AxB = {(4,4), (4,5), (4,6), (5,4), (5,5), (5,6)} + + +BxA = {(4,4), (4,5), (5,4), (5,5), (6,4), (6,5)} // Therefore AxB ≠ BxA +*** Some proprieties: +1. ExF = ∅ ⇔ E=∅ OR F=∅ +2. ExF = FxE ⇔ E=F OR E=∅ OR F=∅ +3. E x (F∪G) = (ExF) ∪ (ExG) +4. (E∪F) x G = (ExG) ∪ (FxG) +5. (E∪F) ∩ (GxH) = (E ∩ G) x (F ∩ H) +6. Generally speaking : (ExF) ∪ (GxH) ≠ (E∪G) x (F∪H) +* Binary relations in a set : +** Definition : +Let E be a set and x,y ∈ E. If there exists a link between x and y, we say that they are tied by a relation *R* and we write *xRy* +** Proprieties : +Let E be a set and R a relation defined in E +1. We say that R is reflexive if ∀ x ∈ E, xRx (for any element x in E,x is related to itself) +2. We say that R is symmetrical if ∀ x,y ∈ E , xRy ⇒ yRx +3. We say that R is transitive if ∀ x,y,z ∈ E (xRy , yRz) ⇒ xRz +4. We say that R is anti-symmetrical if ∀ x,y ∈ E xRy AND yRx ⇒ x = y +** Equivalence relationship : +We say that R is a relation of equivalence in E if its reflexive, symetrical and transitive +*** Equivalence class : +Let R be a relation of equivalence in E and a ∈ E, we call equivalence class of *a*, and we write ̅a or ȧ, or cl a the following set : + + +*a̅ = {y ∈ E/ y R a}* +**** The quotient set : +E/R = {̅a , a ∈ E} +** Order relationship : +Let E be a set and R be a relation defined in E. We say that R is a relation of order if its reflexive, anti-symetrical and transitive. +1. The order R is called total if ∀ x,y ∈ E xRy OR yRx +2. The order R is called partial if ∃ x,y ∈ E xR̅y AND yR̅x +*** TODO Examples : +∀x,y ∈ ℝ , xRy ⇔ x²-y²=x-y +1. Prove that R is an equivalence relation +2. Let a ∈ ℝ, find ̅a diff --git a/uni_notes/algebra.html b/uni_notes/algebra.html index 9323119..2129e72 100755 --- a/uni_notes/algebra.html +++ b/uni_notes/algebra.html @@ -3,7 +3,7 @@ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> - + Algebra 1 @@ -47,13 +47,13 @@

Algebra 1

-
-

Contenu de la Matiére

-
+
+

Contenu de la Matiére

+
-
-

Rappels et compléments (11H)

-
+
+

Rappels et compléments (11H)

+
  • Logique mathématique et méthodes du raisonnement mathématique
  • Ensembles et Relations
  • @@ -61,9 +61,9 @@
-
-

Structures Algébriques (11H)

-
+
+

Structures Algébriques (11H)

+
  • Groupes et morphisme de groupes
  • Anneaux et morphisme d’anneaux
  • @@ -71,9 +71,9 @@
-
-

Polynômes et fractions rationnelles

-
+
+

Polynômes et fractions rationnelles

+
  • Notion du polynôme à une indéterminée á coefficients dans un anneau
  • Opérations Algébriques sur les polynômes
  • @@ -86,9 +86,9 @@
-
-

Premier cours : Logique mathématique et méthodes du raisonnement mathématique Sep 25 :

-
+
+

Premier cours : Logique mathématique et méthodes du raisonnement mathématique Sep 25 :

+

Let P Q and R be propositions which can either be True or False. And let’s also give the value 1 to each True proposition and 0 to each false one.

@@ -438,13 +438,13 @@ A proposition is equivalent to another only when both of them have the same v Note: P implying Q is equivalent to P̅ implying Q̅, or: (P ⇒ Q) ⇔ (P̅ ⇒ Q̅)

-
-

Properties:

-
+
+

Properties:

+
-
-

Absorption:

-
+
+

Absorption:

+

(P ∨ P) ⇔ P

@@ -454,9 +454,9 @@ A proposition is equivalent to another only when both of them have the same v

-
-

Commutativity:

-
+
+

Commutativity:

+

(P ∧ Q) ⇔ (Q ∧ P)

@@ -466,9 +466,9 @@ A proposition is equivalent to another only when both of them have the same v

-
-

Associativity:

-
+
+

Associativity:

+

P ∧ (Q ∧ R) ⇔ (P ∧ Q) ∧ R

@@ -478,9 +478,9 @@ P ∨ (Q ∨ R) ⇔ (P ∨ Q) ∨ R

-
-

Distributivity:

-
+
+

Distributivity:

+

P ∧ (Q ∨ R) ⇔ (P ∧ Q) ∨ (P ∧ R)

@@ -490,9 +490,9 @@ P ∨ (Q ∧ R) ⇔ (P ∨ Q) ∧ (P ∨ R)

-
-

Neutral element:

-
+
+

Neutral element:

+

We define proposition T to be always true and F to be always false

@@ -506,9 +506,9 @@ P ∨ F ⇔ P

-
-

Negation of a conjunction & a disjunction:

-
+
+

Negation of a conjunction & a disjunction:

+

Now we won’t use bars here because my lazy ass doesn’t know how, so instead I will use not()!!!

@@ -526,25 +526,25 @@ not(P ∨ Q) ⇔ P̅ ∧ Q̅

-
-

Transitivity:

-
+
+

Transitivity:

+

[(P ⇒ Q) AND (Q ⇒ R)] ⇔ P ⇒ R

-
-

Contraposition:

-
+
+

Contraposition:

+

(P ⇒ Q) ⇔ (Q̅ ⇒ P̅)

-
-

God only knows what this property is called:

-
+
+

God only knows what this property is called:

+

If

@@ -571,17 +571,17 @@ Q is always true
-
-

Some exercices I found online :

-
+
+

Some exercices I found online :

+
-
-

USTHB 2022/2023 Section B :

-
+
+

USTHB 2022/2023 Section B :

+
    -
  • Exercice 1: Démontrer les équivalences suivantes:
    -
    +
  • Exercice 1: Démontrer les équivalences suivantes:
    +
    1. (P ⇒ Q) ⇔ (Q̅ ⇒ P̅) @@ -635,8 +635,8 @@ Literally the same as above 🩷

  • -
  • Exercice 2: Dire si les propositions suivantes sont vraies ou fausses, et les nier:
    -
    +
  • Exercice 2: Dire si les propositions suivantes sont vraies ou fausses, et les nier:
    +
    1. ∀x ∈ ℝ ,∃y ∈ ℝ*+, tels que e^x = y @@ -769,13 +769,13 @@ y + x < 8

-
-

2éme cours Oct 2

-
+
+

2éme cours Oct 2

+
-
-

Quantifiers

-
+
+

Quantifiers

+

A propriety P can depend on a parameter x

@@ -791,8 +791,8 @@ A propriety P can depend on a parameter x

    -
  • Example
    -
    +
  • Example
    +

    P(x) : x+1≥0

    @@ -803,13 +803,13 @@ P(X) is True or False depending on the values of x
-
-

Proprieties

-
+
+

Proprieties

+
    -
  • Propriety Number 1:
    -
    +
  • Propriety Number 1:
    +

    The negation of the universal quantifier is the existential quantifier, and vice-versa :

    @@ -820,8 +820,8 @@ The negation of the universal quantifier is the existential quantifier, and vice
    -
  • Example:
    -
    +
  • Example:
    +

    ∀ x ≥ 1 x² > 5 ⇔ ∃ x ≥ 1 x² < 5

    @@ -829,8 +829,8 @@ The negation of the universal quantifier is the existential quantifier, and vice
-
  • Propriety Number 2:
    -
    +
  • Propriety Number 2:
    +

    ∀x ∈ E, [P(x) ∧ Q(x)] ⇔ [∀ x ∈ E, P(x)] ∧ [∀ x ∈ E, Q(x)]

    @@ -841,8 +841,8 @@ The propriety “For any value of x from a set E , P(x) and Q(x)” is e

      -
    • Example :
      -
      +
    • Example :
      +

      P(x) : sqrt(x) > 0 ; Q(x) : x ≥ 1

      @@ -860,8 +860,8 @@ P(x) : sqrt(x) > 0 ; Q(x) : x ≥ 1
  • -
  • Propriety Number 3:
    -
    +
  • Propriety Number 3:
    +

    ∃ x ∈ E, [P(x) ∧ Q(x)] [∃ x ∈ E, P(x)] ∧ [∃ x ∈ E, Q(x)]

    @@ -872,8 +872,8 @@ P(x) : sqrt(x) > 0 ; Q(x) : x ≥ 1

      -
    • Example of why it’s NOT an equivalence :
      -
      +
    • Example of why it’s NOT an equivalence :
      +

      P(x) : x > 5 ; Q(x) : x < 5

      @@ -886,8 +886,8 @@ Of course there is no value of x such as its inferior and superior to 5 at the s
  • -
  • Propriety Number 4:
    -
    +
  • Propriety Number 4:
    +

    [∀ x ∈ E, P(x)] ∨ [∀ x ∈ E, Q(x)] ∀x ∈ E, [P(x) ∨ Q(x)]

    @@ -901,16 +901,16 @@ Of course there is no value of x such as its inferior and superior to 5 at the s
  • -
    -

    Multi-parameter proprieties :

    -
    +
    +

    Multi-parameter proprieties :

    +

    A propriety P can depend on two or more parameters, for convenience we call them x,y,z…etc

      -
    • Example :
      -
      +
    • Example :
      +

      P(x,y): x+y > 0

      @@ -926,8 +926,8 @@ P(-2,-1) is a False one

    • -
    • WARNING :
      -
      +
    • WARNING :
      +

      ∀x ∈ E, ∃y ∈ F , P(x,y)

      @@ -943,8 +943,8 @@ Are different because in the first one y depends on x, while in the second one,

        -
      • Example :
        -
        +
      • Example :
        +

        ∀ x ∈ ℕ , ∃ y ∈ ℕ y > x -–— True

        @@ -958,8 +958,8 @@ Are different because in the first one y depends on x, while in the second one,
    -
  • Proprieties :
    -
    +
  • Proprieties :
    +
    1. not(∀x ∈ E ,∃y ∈ F P(x,y)) ⇔ ∃x ∈ E, ∀y ∈ F not(P(x,y))
    2. not(∃x ∈ E ,∀y ∈ F P(x,y)) ⇔ ∀x ∈ E, ∃y ∈ F not(P(x,y))
    3. @@ -968,20 +968,20 @@ Are different because in the first one y depends on x, while in the second one,
    -
    -

    Methods of mathematical reasoning :

    -
    +
    +

    Methods of mathematical reasoning :

    +
    -
    -

    Direct reasoning :

    -
    +
    +

    Direct reasoning :

    +

    To show that an implication P ⇒ Q is true, we suppose that P is true and we show that Q is true

      -
    • Example:
      -
      +
    • Example:
      +

      Let a,b be two Real numbers, we have to prove that a² + b² = 1 ⇒ |a + b| ≤ 2

      @@ -1024,9 +1024,9 @@ a²+b²=1 ⇒ |a + b| ≤ 2 Which is what we wanted to prove, therefor the im
    -
    -

    Reasoning by the Absurd:

    -
    +
    +

    Reasoning by the Absurd:

    +

    To prove that a proposition is True, we suppose that it’s False and we must come to a contradiction

    @@ -1037,8 +1037,8 @@ And to prove that an implication P ⇒ Q is true using the reasoning by the absu

      -
    • Example:
      -
      +
    • Example:
      +

      Prove that this proposition is correct using the reasoning by the absurd : ∀x ∈ ℝ* , sqrt(1+x²) ≠ 1 + x²/2

      @@ -1056,17 +1056,17 @@ sqrt(1+x²) = 1 + x²/2 ; 1 + x² = (1+x²/2)² ; 1 + x² = 1 + x^4/4 + x² ;
    -
    -

    Reasoning by contraposition:

    -
    +
    +

    Reasoning by contraposition:

    +

    If an implication P ⇒ Q is too hard to prove, we just have to prove not(Q) ⇒ not(P) is true !!! or in other words that both not(P) and not(Q) are true

    -
    -

    Reasoning by counter example:

    -
    +
    +

    Reasoning by counter example:

    +

    To prove that a proposition ∀x ∈ E, P(x) is false, all we have to do is find a single value of x from E such as not(P(x)) is true

    @@ -1074,20 +1074,20 @@ To prove that a proposition ∀x ∈ E, P(x) is false, all we have to do is find
    -
    -

    3eme Cours : Oct 9

    -
    +
    +

    3eme Cours : Oct 9

    +
    -
    -

    Reasoning by recurrence :

    -
    +
    +

    Reasoning by recurrence :

    +

    P is a propriety dependent of n ∈ ℕ. If for n0 ∈ ℕ P(n0) is true, and if for n ≥ n0 (P(n) ⇒ P(n+1)) is true. Then P(n) is true for n ≥ n0

      -
    • Example:
      -
      +
    • Example:
      +

      Let’s prove that ∀ n ≥ 1 , (n,k=1)Σk = [n(n+1)]/2

      @@ -1123,21 +1123,21 @@ For n ≥ 1. We assume that P(n) is true, OR : (n, k=1)Σk = n(n+1)/2. We
    -
    -

    4eme Cours : Chapitre 2 : Sets and Operations

    -
    +
    +

    4eme Cours : Chapitre 2 : Sets and Operations

    +
    -
    -

    Definition of a set :

    -
    +
    +

    Definition of a set :

    +

    A set is a collection of objects that share the sane propriety

    -
    -

    Belonging, inclusion, and equality :

    -
    +
    +

    Belonging, inclusion, and equality :

    +
    1. Let E be a set. If x is an element of E, we say that x belongs to E we write x ∈ E, and if it doesn’t, we write x ∉ E
    2. A set E is included in a set F if all elements of E are elements of F and we write E ⊂ F ⇔ (∀x , x ∈ E ⇒ x ∈ F). We say that E is a subset of F, or a part of F. The negation of this propriety is : E ⊄ F ⇔ ∃x , x ∈ E and x ⊄ F
    3. @@ -1146,13 +1146,13 @@ A set is a collection of objects that share the sane propriety
    -
    -

    Intersections and reunions :

    -
    +
    +

    Intersections and reunions :

    +
    -
    -

    Intersection:

    -
    +
    +

    Intersection:

    +

    E ∩ F = {x / x ∈ E AND x ∈ F} ; x ∈ E ∩ F ⇔ x ∈ F AND x ∈ F

    @@ -1163,9 +1163,9 @@ x ∉ E ∩ F ⇔ x ∉ E OR x ∉ F

    -
    -

    Union:

    -
    +
    +

    Union:

    +

    E ∪ F = {x / x ∈ E OR x ∈ F} ; x ∈ E ∪ F ⇔ x ∈ F OR x ∈ F

    @@ -1176,17 +1176,17 @@ x ∉ E ∪ F ⇔ x ∉ E AND x ∉ F

    -
    -

    Difference between two sets:

    -
    +
    +

    Difference between two sets:

    +

    E\F(Which is also written as : E - F) = {x / x ∈ E and x ∉ F}

    -
    -

    Complimentary set:

    -
    +
    +

    Complimentary set:

    +

    If F ⊂ E. E - F is the complimentary of F in E.

    @@ -1197,52 +1197,52 @@ FCE = {x /x ∈ E AND x ∉ F} ONLY WHEN F IS A SUBSET OF E

    -
    -

    Symentrical difference

    -
    +
    +

    Symentrical difference

    +

    E Δ F = (E - F) ∪ (F - E) ; = (E ∪ F) - (E ∩ F)

    -
    -

    Proprieties :

    -
    +
    +

    Proprieties :

    +

    Let E,F and G be 3 sets. We have :

    -
    -

    Commutativity:

    -
    +
    +

    Commutativity:

    +

    E ∩ F = F ∩ E E ∪ F = F ∪ E

    -
    -

    Associativity:

    -
    +
    +

    Associativity:

    +

    E ∩ (F ∩ G) = (E ∩ F) ∩ G E ∪ (F ∪ G) = (E ∪ F) ∪ G

    -
    -

    Distributivity:

    -
    +
    +

    Distributivity:

    +

    E ∩ (F ∪ G) = (E ∩ F) ∪ (E ∩ G) E ∪ (F ∩ G) = (E ∪ F) ∩ (E ∪ G)

    -
    -

    Lois de Morgan:

    -
    +
    +

    Lois de Morgan:

    +

    If E ⊂ G and F ⊂ G ;

    @@ -1252,33 +1252,33 @@ If E ⊂ G and F ⊂ G ;

    -
    -

    An other one:

    -
    +
    +

    An other one:

    +

    E - (F ∩ G) = (E-F) ∪ (E-G) ; E - (F ∪ G) = (E-F) ∩ (E-G)

    -
    -

    An other one:

    -
    +
    +

    An other one:

    +

    E ∩ ∅ = ∅ ; E ∪ ∅ = E

    -
    -

    And an other one:

    -
    +
    +

    And an other one:

    +

    E ∩ (F Δ G) = (E ∩ F) Δ (E ∩ G)

    -
    -

    And the last one:

    -
    +
    +

    And the last one:

    +

    E Δ ∅ = E ; E Δ E = ∅

    @@ -1286,10 +1286,167 @@ E Δ ∅ = E ; E Δ E = ∅
    +
    +

    5eme cours: L’ensemble des parties d’un ensemble Oct 16

    +
    +

    +Let E be a set. We define P(E) as the set of all parts of E : P(E) = {X/X ⊂ E} +

    +
    +
    +

    Notes :

    +
    +

    +∅ ∈ P(E) ; E ∈ P(E) +

    + + +

    +cardinal E = n The number of terms in E , cardinal P(E) = 2^n The number of all parts of E +

    +
    +
    +
    +

    Examples :

    +
    +

    +E = {a,b,c} // P(E)={∅, {a}, {b}, {c}, {a,b}, {b,c}, {a,c}, {a,b,c}} +

    +
    +
    +
    +

    Partition of a set :

    +
    +

    +We say that A is a partition of E if: +

    +
      +
    1. ∀ x ∈ A , x ≠ 0
    2. +
    3. All the elements of A are two by two disjoint. Or in other terms, there should not be two elements that intersects with each other.
    4. +
    5. The reunion of all elements of A is equal to E
    6. +
    +
    +
    +
    +

    Cartesian products :

    +
    +

    +Let E and F be two sets, the set EXF = {(x,y)/ x ∈ E AND y ∈ F} is called the Cartesian product of E and F +

    +
    +
    +

    Example :

    +
    +

    +A = {4,5} ; B= {4,5,6} // AxB = {(4,4), (4,5), (4,6), (5,4), (5,5), (5,6)} +

    + + +

    +BxA = {(4,4), (4,5), (5,4), (5,5), (6,4), (6,5)} // Therefore AxB ≠ BxA +

    +
    +
    +
    +

    Some proprieties:

    +
    +
      +
    1. ExF = ∅ ⇔ E=∅ OR F=∅
    2. +
    3. ExF = FxE ⇔ E=F OR E=∅ OR F=∅
    4. +
    5. E x (F∪G) = (ExF) ∪ (ExG)
    6. +
    7. (E∪F) x G = (ExG) ∪ (FxG)
    8. +
    9. (E∪F) ∩ (GxH) = (E ∩ G) x (F ∩ H)
    10. +
    11. Generally speaking : (ExF) ∪ (GxH) ≠ (E∪G) x (F∪H)
    12. +
    +
    +
    +
    +
    +
    +

    Binary relations in a set :

    +
    +
    +
    +

    Definition :

    +
    +

    +Let E be a set and x,y ∈ E. If there exists a link between x and y, we say that they are tied by a relation R and we write xRy +

    +
    +
    +
    +

    Proprieties :

    +
    +

    +Let E be a set and R a relation defined in E +

    +
      +
    1. We say that R is reflexive if ∀ x ∈ E, xRx (for any element x in E,x is related to itself)
    2. +
    3. We say that R is symmetrical if ∀ x,y ∈ E , xRy ⇒ yRx
    4. +
    5. We say that R is transitive if ∀ x,y,z ∈ E (xRy , yRz) ⇒ xRz
    6. +
    7. We say that R is anti-symmetrical if ∀ x,y ∈ E xRy AND yRx ⇒ x = y
    8. +
    +
    +
    +
    +

    Equivalence relationship :

    +
    +

    +We say that R is a relation of equivalence in E if its reflexive, symetrical and transitive +

    +
    +
    +

    Equivalence class :

    +
    +

    +Let R be a relation of equivalence in E and a ∈ E, we call equivalence class of a, and we write ̅a or ȧ, or cl a the following set : +

    + + +

    +a̅ = {y ∈ E/ y R a} +

    +
    +
      +
    • The quotient set :
      +
      +

      +E/R = {̅a , a ∈ E} +

      +
      +
    • +
    +
    +
    +
    +

    Order relationship :

    +
    +

    +Let E be a set and R be a relation defined in E. We say that R is a relation of order if its reflexive, anti-symetrical and transitive. +

    +
      +
    1. The order R is called total if ∀ x,y ∈ E xRy OR yRx
    2. +
    3. The order R is called partial if ∃ x,y ∈ E xR̅y AND yR̅x
    4. +
    +
    +
    +

    TODO Examples :

    +
    +

    +∀x,y ∈ ℝ , xRy ⇔ x²-y²=x-y +

    +
      +
    1. Prove that R is an equivalence relation
    2. +
    3. Let a ∈ ℝ, find ̅a
    4. +
    +
    +
    +
    +

    Author: Crystal

    -

    Created: 2023-10-13 Fri 16:58

    +

    Created: 2023-10-17 Tue 22:32

    \ No newline at end of file -- cgit 1.4.1-2-gfad0