CS 61A Week 1
Topic: Functional programming
Reading: Abelson & Sussman, Section 1.1 (pages 1-31)

Note: With the obvious exception of this first week, you should do each week’s reading
before the Monday lecture. So also start now on next week’s reading, Abelson & Sussman,
Section 1.3

Homework:

People who’ve taken CS 3: Don’t use the CS 3 higher-order procedures such
as every in these problems; use recursion.

1. Do exercise 1.6, page 25. This is an essay question; you needn’t hand in any computer
printout, unless you think the grader can’t read your handwriting. If you had trouble
understanding the square root program in the book, explain instead what will happen if
you use new-if instead of if in the pigl Pig Latin procedure.

2. Write a procedure squares that takes a sentence of numbers as its argument and
returns a sentence of the squares of the numbers:

> (squares ’(2 3 4 5))
(4 9 16 25)

3. Write a procedure switch that takes a sentence as its argument and returns a sentence
in which every instance of the words I or me is replaced by you, while every instance of
you is replaced by me except at the beginning of the sentence, where it’s replaced by I.
(Don’t worry about capitalization of letters.) Example:

> (switch ’(You told me that I should wake you up))
(i told you that you should wake me up)

4. Write a predicate ordered? that takes a sentence of numbers as its argument and
returns a true value if the numbers are in ascending order, or a false value otherwise.

5. Write a procedure ends-e that takes a sentence as its argument and returns a sentence
containing only those words of the argument whose last letter is E:

> (ends-e ’(please put the salami above the blue elephant))
(please the above the blue)

Continued on next page.



Week 1 continued...

6. Most versions of Lisp provide and and or procedures like the ones on page 19. In
principle there is no reason why these can’t be ordinary procedures, but some versions of
Lisp make them special forms. Suppose, for example, we evaluate

(or (=x0) (=y0) (=2 0))

If or is an ordinary procedure, all three argument expressions will be evaluated before or
is invoked. But if the variable x has the value 0, we know that the entire expression has
to be true regardless of the values of y and z. A Lisp interpreter in which or is a special
form can evaluate the arguments one by one until either a true one is found or it runs out
of arguments.

Your mission is to devise a test that will tell you whether Scheme’s and and or are special
forms or ordinary functions. This is a somewhat tricky problem, but it’ll get you thinking
about the evaluation process more deeply than you otherwise might.

Why might it be advantageous for an interpreter to treat or as a special form and evaluate
its arguments one at a time? Can you think of reasons why it might be advantageous to
treat or as an ordinary function?

Unix feature of the week: man
Emacs feature of the week: C-g, M-x apropos

There will be a “feature of the week” each week. These first features come first because they
are the ones that you use to find out about the other ones: Each provides documentation
of a Unix or Emacs feature. This week, type man man as a shell command to see the Unix
manual page on the man program. Then, in Emacs, type M-x (that’s meta-X, or ESC X if
you prefer) describe-function followed by the Return or Enter key, then apropos to see
how the apropos command works. If you want to know about a command by its keystroke
form (such as C-g) because you don’t know its long name (such as keyboard-quit), you
can say M-x describe-key then C-g.

You aren’t going to be tested on these system features, but it’ll make the rest of your life
a lot easier if you learn about them.



CS 61A Week 2
Topic: Higher-order procedures
Reading: Abelson & Sussman, Section 1.3

Note that we are skipping 1.2; we’ll get to it later. Because of this, never mind for now
the stuff about iterative versus recursive processes in 1.3 and in the exercises from that
section.

Don’t panic if you have trouble with the half-interval example on pp. 67—68; you can just
skip it. Try to read and understand everything else.

Homework:
1. Abelson & Sussman, exercises 1.31(a), 1.32(a), 1.33, 1.40, 1.41, 1.43, 1.46

ay attention to footnote 51; you’ll need to know the ideas in these exercises later in the
Pay attention to footnote 51 Il need to k the ideas in th ises later in th
semester.)

2. Last week you wrote procedures squares, that squared each number in its argument
sentence, and saw pigl-sent, that pigled each word in its argument sentence. Generalize
this pattern to create a higher-order procedure called every that applies an arbitrary
procedure, given as an argument, to each word of an argument sentence. This procedure
is used as follows:

> (every square ’(1 2 3 4))

(1 49 16)

> (every first ’(nowhere man))
(n m)

3. Our Scheme library provides versions of the every function from the last exercise and
the keep function shown in lecture. Get familiar with these by trying examples such as
the following:

(every (lambda (letter) (word letter letter)) ’purple)

(every (lambda (number) (if (even? number) (word number number) number))
»(781 5 76 909 24))

(keep even? ’(781 5 76 909 24))

(keep (lambda (letter) (member? letter ’aeiou)) ’bookkeeper)

(keep (lambda (letter) (member? letter ’aeiou)) ’syzygy)

(keep (lambda (letter) (member? letter ’aeiou)) ’(purple syzygy))

(keep (lambda (wd) (member? ’e wd)) ’(purple syzygy))

Continued on next page.



Week 2 continued...

Extra for experts:

In principle, we could build a version of Scheme with no primitives except lambda. Every-
thing else can be defined in terms of lambda, although it’s not done that way in practice
because it would be so painful. But we can get a sense of the flavor of such a language by
eliminating one feature at a time from Scheme to see how to work around it.

In this problem we explore a Scheme without define. We can give things names by using
argument binding, as let does, so instead of

(define (sumsq a b)
(define (square x) (* x x))
(+ (square a) (square b)))

(sumsq 3 4)

we can say

((lambda (a b)
((lambda (square)
(+ (square a) (square b)))
(lambda (x) (* x x))))
3 4)

This works fine as long as we don’t want to use recursive procedures. But we can’t replace

(define (fact n)
(if (=n 0)
1
(* n (fact (- n 1)))))

(fact 5)
by
((lambda (n)
(if ...))
5)

because what do we do about the invocation of fact inside the body?

Your task is to find a way to express the fact procedure in a Scheme without any way to
define global names.

Unix feature of the week: pine, mail, firefox

Emacs feature of the week: M-x info, C-x u (undo)

6



CS 61A Week 3
Topic: Recursion and iteration

Reading: Abelson & Sussman, Section 1.2 through 1.2.4 (pages 31-47)

Homework:
Note: Programming project 1 will also be due next week.
1. Abelson & Sussman, exercises 1.16, 1.35, 1.37, 1.38

2. A “perfect number” is defined as a number equal to the sum of all its factors less than
itself. For example, the first perfect number is 6, because its factors are 1, 2, 3, and 6,
and 1+243=6. The second perfect number is 28, because 1+2+4+4+7+14=28. What is
the third perfect number? Write a procedure (next-perf n) that tests numbers starting
with n and continuing with n+1, n+2, etc. until a perfect number is found. Then you
can evaluate (next-perf 29) to solve the problem. Hint: you’ll need a sum-of-factors
subprocedure.

[Note: If you run this program when the system is heavily loaded, it may take half an hour
to compute the answer! Try tracing helper procedures to make sure your program is on
track, or start by computing (next-perf 1) and see if you get 6.]

3. Explain the effect of interchanging the order in which the base cases in the cc procedure
on page 41 of Abelson and Sussman are checked. That is, describe completely the set of
arguments for which the original cc procedure would return a different value or behave

differently from a cc procedure coded as given below, and explain how the returned values
would differ.

(define (cc amount kinds-of-coins)
(cond
((or (< amount 0) (= kinds-of-coins 0)) 0)
((= amount 0) 1)
(else ... ) ) ) ; as in the original version

4. Give an algebraic formula relating the values of the parameters b, n, counter, and
product of the expt and exp-iter procedures given near the top of page 45 of Abelson
and Sussman. (The kind of answer we’re looking for is “the sum of b, n, and counter times
product is always equal to 37.”)

Continued on next page.



Week 3 continued...

Extra for experts:

1. The partitions of a positive integer are the different ways to break the integer into
pieces. The number 5 has seven partitions:

(one piece)
(two pieces)
(two pieces)

NN WWHO
RN RN

1 (three pieces)
, 2, 1 (three pieces)
,» 1, 1, 1 (four pieces)
, 1,1, 1,1 (five pieces)

The order of the pieces doesn’t matter, so the partition 2, 3 is the same as the partition
3, 2 and thus isn’t counted twice. 0 has one partition.

Write a procedure number-of-partitions that computes the number of partitions of its
nonnegative integer argument.

2. Compare the number-of-partitions procedure with the count-change procedure by
completing the following statement:

Counting partitions is like making change, where the coins are ...

3. (Much harder!) Now write it to generate an iterative process; every recursive call must
be a tail call.

Unix feature of the week: mkdir, cd, pwd, 1s

Emacs feature of the week: C-M-f, C-M-b, C-M-n, C-M-p (move around Scheme code)



CS 61A Week 4
Topic: Data abstraction

Reading: Abelson & Sussman, Sections 2.1 and 2.2.1 (pages 79-106)

Homework:
Abelson & Sussman, exercises 2.7, 2.8, 2.10, 2.12, 2.17, 2.20, 2.22, 2.23
(Note: “Spans zero” means that one bound is < zero and the other is > zero!)

e Write a procedure substitute that takes three arguments: a list, an old word, and a
new word. It should return a copy of the list, but with every occurrence of the old word
replaced by the new word, even in sublists. For example:

> (substitute ’((lead guitar) (bass guitar) (rhythm guitar) drums)
‘guitar ’axe)
((lead axe) (bass axe) (rhythm axe) drums)

e Now write substitute2 that takes a list, a list of old words, and a list of new words; the
last two lists should be the same length. It should return a copy of the first argument, but
with each word that occurs in the second argument replaced by the corresponding word of
the third argument:

> (substitute2 ’((4 calling birds) (3 french hens) (2 turtle doves))
’(1 2 3 4) ’(one two three four))
((four calling birds) (three french hens) (two turtle doves))

Note: The first midterm is next week.

Extra for experts:

Write the procedure cxr-function that takes as its argument a word starting with c,
ending with r, and having a string of letters a and/or d in between, such as cdddadaadar.
It should return the corresponding function.

Abelson & Sussman, exercise 2.6. Besides addition, invent multiplication and exponentia-
tion of nonnegative integers. If you’re really enthusiastic, see if you can invent subtraction.
(Remember, the rule of this game is that you have only lambda as a starting point.) Read
“cs6la/lib/church-hint for some suggestions.

Unix feature of the week: rm, mv, cp, rmdir, In -s

Emacs feature of the week: M-% (find and replace text)



CS 61A Week 5
Topic: Hierarchical data
Midterm Wednesday , 7-9pm.

Reading: Abelson & Sussman, Section 2.2.2-2.2.3, 2.3.1, 2.3.3

Homework:
e Abelson & Sussman, exercises 2.24, 2.26, 2.29, 2.30, 2.31, 2.32, 2.36, 2.37, 2.38, 2.54.

Some of these exercises are harder than they look; don’t give up in frustration if your early
attempts fail.

e Extend the calculator program from lecture to include words as data, providing the
operations first, butfirst, last, butlast, and word. Unlike Scheme, your calculator
should treat words as self-evaluating expressions except when seen as the operator
of a compound expression. That is, it should work like these examples:

calc: foo

foo

calc: (first foo)

f

calc: (first (butfirst hello))
e

The program is in “cs6la/lib/calc.scm

Note: Programming project 2 is also due next week. It consists of all the
exercises in Section 2.2.4 of the text. You can’t actually draw anything until you
finish the project! To begin, copy the file “cs61la/1ib/picture.scm to your directory. To
draw pictures, once you’ve completed the exercises:

> (cs)
> (ht)
> (===your-painter=== full-frame)

For example:

> (wave full-frame)
> ((square-limit wave 3) full-frame)

Continued on next page.

10



Week 5 continued...

Extra for experts:
Read section 2.3.4 and do exercises 2.67-2.72.

Programming by example: In some programming systems, instead of writing an algorithm,
you give examples of how you’d like the program to behave, and the language figures out
the algorithm itself:

> (define pairup (regroup ’((1 2) (3 4) ...)))
> (pairup ’(the rain in spain stays mainly on the plain))
((the rain) (in spain) (stays mainly) (on the))

Write regroup. Read ~“cs61a/1ib/regroup.problem for details.

Unix feature of the week: head, tail, more, cat

Emacs feature of the week: M-x search-forward-regexp, M-x query-replace-regexp

11



CS 61A Week 6
Topic: Generic Operators

Reading: Abelson & Sussman, Sections 2.4 through 2.5.2 (pages 169-200)

Homework:
Abelson & Sussman, exercises 2.74, 2.75, 2.76, 2.77, 2.79, 2.80, 2.81, 2.83

Note: Some of these are thought-exercises; you needn’t actually run any Scheme programs
for them! (Some don’t ask you to write procedures at all; others ask for modifications to
a program that isn’t online.)

e If you haven’t already finished this week’s lab exercises that involve the scheme-1 in-
terpreter, do it now. Then write a map primitive for scheme-1 (call it map-1 so you and
Scheme don’t get confused about which is which) that works correctly for all mapped
procedures.

e Modify the scheme-1 interpreter to add the let special form. Hint: Like a procedure
call, 1et will have to use substitute to replace certain variables with their values. Don’t
forget to evaluate the expressions that provide those values!

Extra for experts:

Another approach to the problem of type-handling is type inference. If, for instance,
a procedure includes the expression (+ n k), one can infer that n and k have numeric
values. Similarly, the expression (£ a b) indicates that the value of £ is a procedure.

Write a procedure called inferred-types that, given a definition of a Scheme procedure
as argument, returns a list of information about the parameters of the procedure. The
information list should contain one element per parameter; each element should be a two-
element list whose first element is the parameter name and whose second element is a word
indicating the type inferred for the parameter. Possible types are listed on the next page.

Continued on next page.

12



Week 6 continued...

? (the type can’t be inferred)

procedure (the parameter appeared as the first word in an unquoted expres-
sion or as the first argument of map or every)

number (the parameter appeared as an argument of +, -, max, or min)

list (the parameter appeared as an argument of append or as the
second argument of map or member)

sentence-or-word (the parameter appeared as an argument of first, butfirst,
sentence, or member?, or as the second argument of every)

x (conflicting types were inferred)

You should assume for this problem that the body of the procedure to be examined does
not contain any occurrences of if or cond, although it may contain arbitrarily nested and
quoted expressions. (A more ambitious inference procedure both would examine a more
comprehensive set of procedures and could infer conditions like ”"nonempty list”.)

Here’s an example of what your inference procedure should return.

(inferred-types
’(define (foo a b c d e f)
(f (append (a b) ¢ (b ¢)) (+ 5 d) (sentence (first e) £f)) ) )

should return

((a procedure) (b ?) (c list) (d number)
(e sentence-or-word) (f x))

If you’re really ambitious, you could maintain a database of inferred argument types and
use it when a procedure you’ve seen is invoked by another procedure you're examining!

Unix feature of the week: du, df, quota

Emacs feature of the week: M-q (format paragraphs), C-M-q (format Scheme code)

13



CS 61A Week 7
Topic: Object-oriented programming
Reading:

Read “Object-Oriented Programming—Above-the-line view” (in course reader).

Homework:

Note: To use the OOP language you must first
(load "“cs6la/lib/obj.scm")

before using define-class, etc.

1. For a statistical project you need to compute lots of random numbers in various ranges.
(Recall that (random 10) returns a random number between 0 and 9.) Also, you need
to keep track of how many random numbers are computed in each range. You decide to
use object-oriented programming. Objects of the class random-generator will accept two
messages. The message number means “give me a random number in your range” while
count means “how many number requests have you had?” The class has an instantiation
argument that specifies the range of random numbers for this object, so

(define r10 (instantiate random-generator 10))

will create an object such that (ask r10 ’number) will return a random number between
0 and 9, while (ask r10 ’count) will return the number of random numbers r10 has
created.

2. Define the class coke-machine. The instantiation arguments for a coke-machine are
the number of Cokes that can fit in the machine and the price (in cents) of a Coke:

(define my-machine (instantiate coke-machine 80 70))

creates a machine that can hold 80 Cokes and will sell them for 70 cents each. The machine
is initially empty. Coke-machine objects must accept the following messages:

Continued on next page.

14



Week 7 continued...

(ask my-machine ’deposit 25) means deposit 25 cents. You can deposit several coins
and the machine should remember the total.

(ask my-machine ’coke) means push the button for a Coke. This either gives a Not
enough money or Machine empty error message or returns the amount of change you get.

(ask my-machine ’fill 60) means add 60 Cokes to the machine.

Here’s an example:

(ask my-machine ’£ill 60)
(ask my-machine ’deposit 25)
(ask my-machine ’coke)

NOT ENOUGH MONEY

(ask my-machine ’deposit 25) ;; Now there’s 50 cents in there.
(ask my-machine ’deposit 25) ;; Now there’s 75 cents.

(ask my-machine ’coke)

5 ;; return val is 5 cents change.

You may assume that the machine has an infinite supply of change.

3. We are going to use objects to represent decks of cards. You are given the list
ordered-deck containing 52 cards in standard order:

(define ordered-deck ’(AH 2H 3H ... QH KH AS 2S ... QC KC))

You are also given a function to shuffle the elements of a list:

(define (shuffle deck)
(if (null? deck)
a0
(let ((card (nth (random (length deck)) deck)))
(cons card (shuffle (remove card deck))) )))

A deck object responds to two messages: deal and empty?. It responds to deal by
returning the top card of the deck, after removing that card from the deck; if the deck is
empty, it responds to deal by returning (). It responds to empty? by returning #t or #f,
according to whether all cards have been dealt.

Write a class definition for deck. When instantiated, a deck object should contain a shuffled
deck of 52 cards.

Continued on next page.

15



Week 7 continued...

4. We want to promote politeness among our objects. Write a class miss-manners that
takes an object as its instantiation argument. The new miss-manners object should accept
only one message, namely please. The arguments to the please message should be, first,
a message understood by the original object, and second, an argument to that message.
(Assume that all messages to the original object require exactly one additional
argument.) Here is an example using the person class from the upcoming adventure
game project:

> (define BH (instantiate person ’Brian BH-office))

> (ask BH ’go ’down)
BRIAN MOVED FROM BH-OFFICE TO SODA

> (define fussy-BH (instantiate miss-manners BH))

> (ask fussy-BH ’go ’east)
ERROR: NO METHOD GO

> (ask fussy-BH ’please ’go ’east)
BRIAN MOVED FROM SODA TO PSL

Extra for experts:

The technique of multiple inheritance is described on pages 9 and 10 of “Object-Oriented
Programming — Above-the-line view”. That section discusses the problem of resolving
ambiguous patterns of inheritance, and mentions in particular that it might be better to
choose a method inherited directly from a second-choice parent over one inherited from a
first-choice grandparent.

Devise an example of such a situation. Describe the inheritance hierarchy of your example,
listing the methods that each class provides. Also describe why it would be more appropri-
ate in this example for an object to inherit a given method from its second-choice parent
rather than its first-choice grandparent.

Unix feature of the week: | (pipes in the shell)
Emacs feature of the week: M-x spell-buffer

Note: The second midterm exam is next week.

16



CS 61A Week 8

Topic: Assignment, state, environments
Midterm Wednesday , 7-9pm.

Reading: Abelson & Sussman, Section 3.1, 3.2

Also read “Object-Oriented Programming—Below-the-line view” (in course reader).

Homework:
Abelson & Sussman, exercises 3.3, 3.4, 3.7, 3.8, 3.10, 3.11

Note: Part I of programming project 3 is also due next week.

Extra for experts:

The purpose of the environment model is to represent the scope of variables; when you see
an x in a program, which variable x does it mean?

Another way to solve this problem would be to rename all the local variables so that
there are never two variables with the same name. Write a procedure unique-rename that
takes a (quoted) lambda expression as its argument, and returns an equivalent lambda
expression with the variables renamed to be unique:

> (unique-rename ’(lambda (x) (lambda (y) (x (lambda (x) (y x))))))
(lambda (g1l) (lambda (g2) (gl (lambda (g3) (g2 g3)))))

Note that the original expression had two variables named x, and in the returned expression
it’s clear from the names which is which. You’ll need a modified counter object to generate
the unique names.

You may assume that there are no quote, let, or define expressions, so that every symbol
is a variable reference, and variables are created only by lambda.

Describe how you’d use unique-rename to allow the evaluation of Scheme programs with
only a single (global) frame.

Unix feature of the week: foreach, grep, find

Emacs feature of the week: C-t (transpose), M-c, M-u, M-1 (change case)

17



CS 61A Week 9
Topic: Mutable data, vectors
Reading: Abelson & Sussman, Section 3.3.1-3

(If you are a hardware type you might enjoy reading 3.3.4 even though it isn’t required.)

Homework:

Abelson & Sussman, exercises 3.16, 3.17, 3.21, 3.25, 3.27

You don’t need to draw the environment diagram for exercise 3.27; use a trace to provide
the requested explanations. Treat the table procedures lookup and insert! as primitive;
i.e. don’t trace the procedures they call. Also, assume that those procedures work in
constant time. We’re interested to know about the number of times memo-£fib is invoked.

Vector questions: In all these exercises, don’t use a list as an intermediate value. (That
is, don’t convert the vectors to lists!)

1. Write vector-append, which takes two vectors as arguments and returns a new vector
containing the elements of both arguments, analogous to append for lists.

2. Write vector-filter, which takes a predicate function and a vector as arguments,
and returns a new vector containing only those elements of the argument vector for which
the predicate returns true. The new vector should be exactly big enough for the chosen
elements. Compare the running time of your program to this version:

(define (vector-filter pred vec)
(1ist->vector (filter pred (vector->list vec))))
3. Sorting a vector.

(a) Write bubble-sort!, which takes a vector of numbers and rearranges them to be in
increasing order. (You’'ll modify the argument vector; don’t create a new one.) It uses the
following algorithm:

[1] Go through the array, looking at two adjacent elements at a time, starting with elements
0 and 1. If the earlier element is larger than the later element, swap them. Then look at
the next overlapping pair (0 and 1, then 1 and 2, etc.).

[2] Recursively bubble-sort all but the last element (which is now the largest element).
[3] Stop when you have only one element to sort.

(b) Prove that this algorithm really does sort the vector. Hint: Prove the parenthetical
claim in step [2].

(c) What is the order of growth of the running time of this algorithm?
Note: Part II of programming project 3 is also due next week.

Continued on next page.

18



Week 9 continued...

Extra for experts:
1. Abelson and Sussman, exercises 3.19 and 3.23.

Exercise 3.19 is incredibly hard but if you get it, you’ll feel great about yourself. You’ll
need to look at some of the other exercises you skipped in this section.

Exercise 3.23 isn’t quite so hard, but be careful about the O(1)—i.e. constant—time re-
quirement.

2. Write the procedure cxr-name. Its argument will be a function made by composing
cars and cdrs. It should return the appropriate name for that function:

> (cxr-name (lambda (x) (cadr (cddar (cadar x)))))
CADDDAADAR

Unix feature of the week: alias, unalias

Emacs feature of the week: C-x 4 (split window)

19



CS 61A Week 10

Topic: client/server, concurrency

Reading: Abelson & Sussman, Section 3.4

Homework:
These exercises use the Instant Message program, found in the following files:

~“cs6la/lib/im-client.scm
~“cs6la/lib/im-server.scm
~“cs6la/lib/im—common.scm

1. Invent the capability to send a message to a list of clients as well as to a single client. Do
this entirely in the client program, so what actually goes to the server is multiple requests.

2. Invent the capability to broadcast a message to every client. Do this by inventing a
broadcast command that the server understands.

3. Could #1 have been done with the server doing part of the work? Could #2 have been
done entirely in the client code? Compare the virtues of the two approaches.

4. Invent the capability of refusing messages from specific people. The sender of a refused
message should be notified of the refusal. Decide whether to do it entirely in the client or
with the server’s cooperation, and explain why.

5. Why is the 3-way handshake necessary when connecting to the server?
e Abelson & Sussman, exercises 3.38, 3.39, 3.40, 3.41, 3.42, 3.44, 3.46, 3.48

Extra for experts:

Using the Instant Message program as a starting point, write a mail server and client. The
mail server should maintain a database of messages for all users. (This can just be a list;
don’t worry about efficient lookup.) The client should be able to do the following:

(mail username message)
(get-mail)

Get-mail should return a list of messages, which should be deleted from the server.

If you want, you can improve this in several ways: Make deletion from the server be
explicitly requested by the client, invent a subject header (another argument to mail) and
have the client show just headers in get-mail and provide another command to read the
text of a specific message, and so on.

e Read Section 3.3.5 and do exercises 3.33-3.37.

Unix feature of the week: &, “Z, fg, bg, jobs, kill

Emacs feature of the week: M-x abbrev-mode, M-x add-mode-abbrev

20



CS 61A Week 11
Topic: Streams
Reading: Abelson & Sussman, Section 3.5.1-3, 3.5.5

Homework:
1. Abelson & Sussman, exercises 3.50, 3.51, 3.52, 3.53, 3.54, 3.55, 3.56, 3.64, 3.66, 3.68

2. Write and test two functions to manipulate nonnegative proper fractions. The first
function, fract-stream, will take as its argument a list of two nonnegative integers, the
numerator and the denominator, in which the numerator is less than the denominator. It
will return an infinite stream of decimal digits representing the decimal expansion of the
fraction. The second function, approximation, will take two arguments: a fraction stream
and a nonnegative integer numdigits. It will return a list (not a stream) containing the
first numdigits digits of the decimal expansion.

(fract-stream ’ (1 7)) should return the stream representing the decimal expansion of
%, which is 0.142857142857142857...

(stream-car (fract-stream ’(1 7))) should return 1.

(stream-car (stream-cdr (stream-cdr (fract-stream ’(1 7))))) should return 2.
(approximation (fract-stream ’(1 7)) 4) should return (1 4 2 8).
(approximation (fract-stream ’(1 2)) 4) should return (5 0 0 0).

Note: Next week is the third midterm.

Extra for experts:
1. Do exercises 3.59-3.62.
2. Consider this procedure:

(define (hanoi-stream n)
(if (=n 0)
the-empty-stream
(stream-append (hanoi-stream (- n 1))
(cons-stream n (hanoi-stream (- n 1))))))

It generates finite streams; here are the first few values:

(hanoi-stream 1) (1)

(hanoi-stream 2) 121D

(hanoi-stream 3) (1213121)

(hanoi-stream 4) 121312141213121)

Notice that each of these starts with the same values as the one above it, followed by some
more values. There is no reason why this pattern can’t be continued to generate an infinite
stream whose first 2" — 1 elements are (hanoi-stream n). Generate this stream.

Unix feature of the week: diff, wc

Emacs feature of the week: M-a, M-e, M-{, M-}, M-<, M-> (move around buffer)

21



CS 61A Week 12
Topic: Metacircular evaluator

Midterm Wednesday , 7-9pm.
Reading:
Abelson & Sussman, 4.1.1-6

MapReduce paper in course reader.
(metacircular evaluator: “cs6la/lib/mceval.scm)

Homework:

Some students have complained that this week’s homework is very time-consuming. Ac-
cordingly, with some reluctance, I’ve marked a few exercises as optional; these are the ones
to leave out if you're really pressed for time. But it’s much better if you do all of them!
The optional ones have * next to them.

1. A&S exercises 4.3, 4.6, 4.7x, 4.10*, 4.11%, 4.13, 4.14, 4.15

2x. Modify the metacircular evaluator to allow type-checking of arguments to procedures.
Here is how the feature should work. When a new procedure is defined, a formal parameter
can be either a symbol as usual or else a list of two elements. In this case, the second
element is a symbol, the name of the formal parameter. The first element is an expression
whose value is a predicate function that the argument must satisfy. That function should
return #t if the argument is valid. For example, here is a procedure foo that has type-
checked parameters num and list:

> (define (foo (integer? num) ((lambda (x) (not (null? x))) list))
(list-ref 1list num))

FOO

> (foo 3 ’(a b cde))

D

> (foo 3.5 ’(a b c d e))

Error: wrong argument type -- 3.5
> (foo 2 7())

Error: wrong argument type -- ()

In this example we define a procedure foo with two formal parameters, named num and
list. When foo is invoked, the evaluator will check to see that the first actual argument
is an integer and that the second actual argument is not empty. The expression whose
value is the desired predicate function should be evaluated with respect to foo’s defining
environment. (Hint: Think about extend-environment.)

Extra for experts:
Abelson & Sussman, exercises 4.16 through 4.21

Unix feature of the week: echo, set, setenv, printenv

Emacs feature of the week: M-! (run shell command)

22



CS 61A Week 13

Topic: Analyzing evaluator, MapReduce

Reading: Therac paper in course reader.
analyzing evaluator: “cs6la/lib/analyze.scm

Homework:
A&S exercises 4.22, 4.23, 4.24
MapReduce exercises:

1(a). Google uses MapReduce for a variety of search-engine-related tasks involving pro-
cessing large data sets. An example of such a task is building an inverted word index. For
each word in a given set of documents, we want to generate a key-value pair, where the key
is the word and the value is all documents in which the word appears. Write a procedure
that takes a directory name as argument and returns the inverted index stream.

1(b). The list above will include words like “a,” “so,” “the,” etc. Suppose now that we
only want “important words.” We can use word length as a measure of importance (a
real search engine would use a more complex heuristic). Write a procedure that returns
an index where all the words are N or more letters long, taking the filename and N as
arguments.

2. Google also manages the GMail e-mail service, and they would like to filter out as many
spammers as possible. In this problem you will implement a simple spam filtering idea
with mapreduce so that it can be efficiently applied to the multitudes of e-mail messages
in GMail.

We want to produce a “blacklist” of e-mail addresses that are spamming GMail users. Spam
messages are sent to many addresses at once, and so a spam message can be identified by
having one of the most commonly-used subject lines. If an address sends many messages
with the most common subject lines, it is likely a spammer address. We would like to find
the top ten addresses that have sent the most messages with frequently-recurring subject
lines.

The input data is a collection of e-mail records in the file /sample-emails. (These are
simulated messages, not actual GMail datal) Each e-mail record is a list with the format

(from-address to-address subject body)

where each element is a double-quoted string. The mapper function will be applied to each
e-mail record. An small example set of e-mail records is below.

("cs6la-tb" "cs6la-tc" "mapreduce" "mapreduce is great! lucky students!")
("bot1337" "csb6la-ta" "free ipod now!" "buy herbal ipod enhancer!")
("bot1338" "csblc-tf" "free ipod now!" "buy herbal ipod enhancer!")

Problem continues on next page...

23



Week 13 continued:

2(a). Our first step is to produce a table with subject lines as keys and counts of occurrences
as values. Identify the intermediate key-value pairs and write the mapper and reducer
functions.

2(b). From our tabulation of subject line occurrences in 2(a), we want to find the most
common subject lines in the table. We can perform a sort by using the fact that MapReduce
sorts by intermediate keys into the reducer groups. Identify the intermediate key-value
pairs and write the mapper and reducer functions.

2(c). Finally, assuming you’ve moved the ten most common subject lines into a list, we
want to make a table with from-addresses as keys and counts of e-mails sent with common
subject lines as values. You don’t need to sort the table, since the procedures would be
identical to those in 2(b). Identify the intermediate key-value pairs and write the mapper
and reducer functions.

3. Sometimes either the map or reduce operation is trivial, such as an identity function.
Is MapReduce still the best way to handle those cases, or would it be better to provide
separate map and groupreduce functions as we did for the non-parallel toy version? Why?
4. Could you use MapReduce to perform a parallelized Sieve of Eratosthenes? If so, de-
scribe the process briefly. If not, why not? (Don’t try to solve this problem by quizmanship;
there’s a case to be made for both answers!)

Note: Part I of project 4 is also due next week.

Unix feature of the week: sort, cut, paste, join
Emacs feature of the week: C-x C-o, M-\ (delete blank space)

24



CS 61A Week 14

Topic: lazy evaluator, nondeterministic evaluator

Reading: Abelson & Sussman, Section 4.2, 4.3

A version of the lazy evaluator is online in “cs61a/lib/lazy.scm

A version of the nondeterministic evaluator is online in “cs61a/1ib/ambeval.scm

A modified version of the nondeterministic evaluator, based on the vanilla metacircular
evaluator rather than on the analyzing evaluator, is online in “cs61a/lib/vambeval.scm

Homework:

There are a lot of exercises this week, because we are covering a lot of material. These
are all great exercises, from which you’ll learn a lot, but for those who find the homework
time-consuming, we’re dividing them into two categories, crucial and less-crucial. Again,
I recommend all of them!

crucial: 4.25, 4.26, 4.28, 4.42, 4.45, 4.49, 4.50, 4.52
less crucial: 4.30, 4.32, 4.33, 4.36, 4.47, 4.48

Note: Part II of the fourth programming project is also due next week.

Extra for experts:

Exercise 4.31 in Abelson and Sussman. This exercise doesn’t require great brilliance, but
it’s a lot of work and involves a lot of debugging of details. On the other hand, completing
this exercise will teach you a lot about the evaluator.

Fix the handle-infix procedure from project 4 to handle infix precedence for arithmetic
operators properly. That is, multiplications and divisions should be done before additions
and subtractions. Comparison operators like = come last of all.

Unix feature of the week: !, history

Emacs feature of the week: C-x (, C-x ), C-x e (keyboard macros)

25



CS 61A Week 15
Topic: Logic programming
Reading: Abelson & Sussman, Section 4.4.1-3

We are not assigning section 4.4.4, which discusses the implementation of the query system
in detail. Feel free to read it just for interest; besides deepening your understanding of
logic programming, it provides an example of using streams in a large project.

Homework:
Abelson & Sussman, exercises 4.56, 4.57, 4.58, 4.65

For all problems that involve writing queries or rules, test your solutions. To run the query
system and load in the sample data:

% stk

> (load ""cs6la/lib/query.scm")

> (initialize-data-base microshaft-data-base)
> (query-driver-loop)

You’re now in the query system’s interpreter. To add an assertion:

(assert! (foo bar))

To add a rule:
(assert! (rule (foo) (bar)))

Anything else is a query.

Extra for experts:

The lecture notes for this week describe rules that allow inference of the reverse relation
in one direction, i.e.,

;35 Query input:
(forward-reverse (a b c) ?what)

;35 Query results:
(FORWARD-REVERSE (A B C) (C B A))

Continued on next page.

26



Week 15 continued...
;33 Query input:
(forward-reverse ?what (a b c))

;35 Query results:
... infinite loop

or

;35 Query input:
(backward-reverse ?what (a b c))

;35 Query results:
(BACKWARD-REVERSE (C B A) (A B C))

;35 Query input:
(backward-reverse (a b c¢) 7?what)

;55 Query results:
... infinite loop

Define rules that allow inference of the reverse relation in both directions, to produce the
following dialog;:

;55 Query input:
(reverse ?what (a b c))

;55 Query results:
(REVERSE (C B A) (A B C))

;35 Query input:
(reverse (a b c) ?what)

;55 Query results:
(REVERSE (A B C) (C B A))

Unix feature of the week: perl, awk, sed

Emacs feature of the week: M-x shell-command-on-region

27



