
CS 61A A&S Section 3.212Object-Oriented Programming | Below the line viewThis document documents the Object Oriented Programming system for CS 61A in terms of itsimplementation in Scheme. It assumes that you already know what the system does, i.e. that you'veread \Object-Oriented Programming | Above the line view." Also, this handout will assume aknowledge of how to implement message passing and local state variables in Scheme, from chapters2.3 and 3.1 of A&S. (Chapter 3.2 from A&S will also be helpful.)Almost all of the work of the object system is handled by the special form define-class. Whenyou type a list that begins with the symbol define-class, Scheme translates your class de�nitioninto Scheme code to implement that class. This translated version of your class de�nition is writtenentirely in terms of define, let, lambda, set!, and other Scheme functions that you already knowabout.We will focus on the implementation of the three main technical ideas in OOP: message passing,local state, and inheritance.Message PassingThe text introduces message-passing with this example from Section 2.3.3 (page 141):(define (make-rectangular x y)(define (dispatch m)(cond ((eq? m 'real-part) x)((eq? m 'imag-part) y)((eq? m 'magnitude)(sqrt (+ (square x) (square y))))((eq? m 'angle) (atan y x))(else(error "Unknown op -- MAKE-RECTANGULAR" m))))dispatch)In this example, a complex number object is represented by a dispatch procedure. The proceduretakes a message as its argument, and returns a number as its result. Later, in Section 3.1.1 (page173), the text uses a re�nement of this representation in which the dispatch procedure returns aprocedure instead of a number. The reason they make this change is to allow for extra argumentsto what we are calling the method that responds to a message. The user says((acc 'withdraw) 100)Evaluating this expression requires a two-step process: First, the dispatch procedure (named acc) isinvoked with the message withdraw as its argument. The dispatch procedure returns the withdrawmethod procedure, and that second procedure is invoked with 100 as its argument to do the actualwork. All of an object's activity comes from invoking its method procedures; the only job of theobject itself is to return the right procedure when it gets sent a message.Any OOP system that uses the message-passing model must have some below-the-line mechanismfor associating methods with messages. In Scheme, with its �rst-class procedures, it is very natural14

to use a dispatch procedure as the association mechanism. In some other language the object mightinstead be represented as an array of message-method pairs.If we are treating objects as an abstract data type, programs that use objects shouldn't have toknow that we happen to be representing objects as procedures. The two-step notation for invokinga method violates this abstraction barrier. To �x this we invent the ask procedure:(define (ask object message . args)(let ((method (object message))) ; Step 1: invoke dispatch procedure(if (method? method)(apply method args) ; Step 2: invoke the method(error "No method" message (cadr method)))))Ask carries out essentially the same steps as the explicit notation used in the text. First it invokesthe dispatch procedure (that is, the object itself) with the message as its argument. This shouldreturn a method (another procedure). The second step is to invoke that method procedure withwhatever extra arguments have been provided to ask.The body of ask looks more complicated than the earlier version, but most of that has to do witherror-checking: What if the object doesn't recognize the message we send it? These details aren'tvery important. Ask does use two features of Scheme that we haven't discussed before:The dot notation used in the formal parameter list of ask means that it accepts any number ofarguments. The �rst two are associated with the formal parameters object and message; allthe remaining arguments (zero or more of them) are put in a list and associated with the formalparameter args.The procedure apply takes a procedure and a list of arguments and applies the procedure to thearguments. The reason we need it here is that we don't know in advance how many arguments themethod will be given; if we said (method args) we would be giving the method one argument,namely, a list.In our OOP system, you generally send messages to instances, but you can also send some messagesto classes, namely the ones to examine class variables. When you send a message to a class, just aswhen you send one to an instance, you get back a method. That's why we can use ask with bothinstances and classes. (The OOP system itself also sends the class an instantiate message whenyou ask it to create a new instance.) Therefore, both the class and each instance is represented bya dispatch procedure. The overall structure of a class de�nition looks something like this:(define (class-dispatch-procedure class-message)(cond ((eq? class-message 'some-var-name) (lambda () (get-the-value)))(...)((eq? class-message 'instantiate)(lambda (instantiation-var ...)(define (instance-dispatch-procedure instance-message)(cond ((eq? instance-message 'foo) (lambda ...))(...)(else (error "No method in instance"))))instance-dispatch-procedure))(else (error "No method in class"))))15

(Please note that this is not exactly what a class really looks like. In this simpli�ed version wehave left out many details. The only crucial point here is that there are two dispatch procedures,one inside the other.) In each dispatch procedure, there is a cond with a clause for each allow-able message. The consequent expression of each clause is a lambda expression that de�nes thecorresponding method. (In the text, the examples often use named method procedures, and theconsequent expressions are names rather than lambdas. We found it more convenient this way, butit doesn't really matter.)Local StateYou learned in section 3.1 that the way to give a procedure a local state variable is to de�ne thatprocedure inside another procedure that establishes the variable. That outer procedure might bethe implicit procedure in the let special form, as in this example from page 171:(define new-withdraw(let ((balance 100))(lambda (amount)(if (>= balance amount)(begin (set! balance (- balance amount))balance) "Insufficient funds"))))In the OOP system, there are three kinds of local state variables: class variables, instance variables,and instantiation variables. Although instantiation variables are just a special kind of instancevariable above the line, they are implemented di�erently. Here is another simpli�ed view of a classde�nition, this time leaving out all the message passing stu� and focusing on the variables:(define class-dispatch-procedure(LET ((CLASS-VAR1 VAL1)(CLASS-VAR2 VAL2) ...)(lambda (class-message)(cond ((eq? class-message 'class-var1) (lambda () class-var1))...((eq? class-message 'instantiate)(lambda (INSTANTIATION-VARIABLE1 ...)(LET ((INSTANCE-VAR1 VAL1)(INSTANCE-VAR2 VAL2) ...)(define (instance-dispatch-procedure instance-message)...)instance-dispatch-procedure)))))))The scope of a class variable includes the class dispatch procedure, the instance dispatch procedure,and all of the methods within those. The scope of an instance variable does not include the classdispatch procedure in its methods. Each invocation of the class instantiate method gives rise toa new set of instance variables, just as each new bank account in the book has its own local statevariables. 16

Why are class variables and instance variables implemented using let, but not instantiation vari-ables? The reason is that class and instance variables are given their (initial) values by the classde�nition itself. That's what let does: It establishes the connection between a name and a value.Instantiation variables, however, don't get values until each particular instance of the class is cre-ated, so we implement these variables as the formal parameters of a lambda that will be invokedto create an instance.Inheritance and DelegationInheritance is the mechanism through which objects of a child class can use methods from a parentclass. Ideally, all such methods would just be part of the repertoire of the child class; the parent'sprocedure de�nitions would be \copied into" the Scheme implementation of the child class.The actual implementation in our OOP system, although it has the same purpose, uses a somewhatdi�erent technique called delegation. Each object's dispatch procedure contains entries only for themethods of its own class, not its parent classes. But each object has, in an instance variable, anobject of its parent class. To make it easier to talk about all these objects and classes, let's takean example that we looked at before:(define-class (checking-account init-balance)(parent (account init-balance))(method (write-check amount)(ask self 'withdraw (+ amount 0.10))))Let's create an instance of that class:(define Gerry-account (instantiate checking-account 20000))Then the object named Gerry-account will have an instance variable named my-account whosevalue is an instance of the account class. (The variables my-whatever are created automaticallyby define-class.)What good is this parent instance? If the dispatch procedure for Gerry-account doesn't recognizesome message, then it reaches the else clause of the cond. In an object without a parent, thatclause will generate an error message. But if the object does have a parent, the else clause passesthe message on to the parent's dispatch procedure:(define (make-checking-account-instance init-balance)(LET ((MY-ACCOUNT (INSTANTIATE ACCOUNT INIT-BALANCE)))(lambda (message)(cond ((eq? message 'write-check) (lambda (amount) ...))((eq? message 'init-balance) (lambda () init-balance))(ELSE (MY-ACCOUNT MESSAGE))))))(Naturally, this is a vastly simpli�ed picture. We've left out the class dispatch procedure, amongother details. There isn't really a procedure named make-checking-account-instance in theimplementation; this procedure is really the instantiate method for the class, as we explainedearlier.) 17

When we send Gerry-account a write-check message, it's handled in the straightforward waywe've been talking about before this section. But when we send Gerry-account a depositmessage,we reach the else clause of the cond and the message is delegated to the parent account object.That object (that is, its dispatch procedure) returns a method, and Gerry-account returns themethod too.The crucial thing to understand is why the else clause does not say(else (ask my-parent message))The Gerry-account dispatch procedure takes a message as its argument, and returns a method asits result. Ask, you'll recall, carries out a two-step process in which it �rst gets the method and theninvokes that method. Within the dispatch procedure we only want to get the method, not invokeit. (Somewhere there is an invocation of ask waiting for Gerry-account's dispatch procedure toreturn a method, which ask will then invoke.)There is one drawback to the delegation technique. As we mentioned in the above-the-line handout,when we ask Gerry-account to deposit some money, the deposit method only has access to thelocal state variables of the account class, not those of the checking-account class. Similarly, thewrite-check method doesn't have access to the account local state variables like balance. Youcan see why this limitation occurs: Each method is a procedure de�ned within the scope of one orthe other class procedure, and Scheme's lexical scoping rules restrict each method to the variableswhose scope contains it. The technical distinction between inheritance and delegation is that aninheritance-based OOP system does not have this restriction.We can get around the limitation by using messages that ask the other class (the child asks theparent, or vice versa) to return (or modify) one of its variables. The (ask self 'withdraw ...)in the write-check method is an example.Bells and WhistlesThe simpli�ed Scheme implementation shown above hides several complications in the actual OOPsystem. What we have explained so far is really the most important part of the implementation,and you shouldn't let the details that follow confuse you about the core ideas. We're giving prettybrief explanations of these things, leaving out the gory details.One complication is multiple inheritance. Instead of delegating an unknown message to just oneparent, we have to try more than one. The real else clauses invoke a procedure called get-methodthat accepts any number of objects (i.e., dispatch procedures) as arguments, in addition to themessage. Get-method tries to �nd a method in each object in turn; only if all of the parents fail toprovide a method does it give an error message. (There will be a my-whatever variable for each ofthe parent classes.)Another complication that a�ects the else clause is the possible use of a default-method in theclass de�nition. If this optional feature is used, the body of the default-method clause becomespart of the object's else clause.When an instance is created, the instantiate procedure sends it an initialize message. Everydispatch procedure automatically has a corresponding method. If the initialize clause is used18

in define-class, then the method includes that code. But even if there is no initialize clause,the OOP system has some initialization tasks of its own to perform.In particular, the initialization must provide a value for the self variable. Every initializemethod takes the desired value for self as an argument. If there are no parents or childreninvolved, self is just another name for the object's own dispatch procedure. But if an instance isthe my-whatever of some child instance, then self should mean that child. The solution is thatthe child's initialize method invokes the parent's initializemethod with the child's own selfas the argument. (Where does the child get its self argument? It is provided by the instantiateprocedure.)Finally, usual involves some complications. Each object has a send-usual-to-parent methodthat essentially duplicates the job of the ask procedure, except that it only looks for methods inthe parents, as the else clause does. Invoking usual causes this method to be invoked.A useful featureTo aid in your understanding of the below-the-line functioning of this system, we have provided away to look at the translated Scheme code directly, i.e., to look at the below-the-line version of aclass de�nition. To look at the de�nition of the class foo, for example, you type(show-class 'foo)If you do this, you will see the complete translation of a define-class, including all the detailswe've been glossing over. But you should now understand the central issues well enough to be ableto make sense of it.We end this document with one huge example showing every feature of the object system. Hereare the above-the-line class de�nitions:(define-class (person) (method (smell-flowers) 'Mmm!))(define-class (fruit-lover fruit) (method (favorite-food) fruit))(define-class (banana-holder name)(class-vars (list-of-banana-holders '()))(instance-vars (bananas 0))(method (get-more-bananas amount)(set! bananas (+ bananas amount)))(default-method 'sorry)(parent (person) (fruit-lover 'banana))(initialize(set! list-of-banana-holders (cons self list-of-banana-holders))))On the next page we show the translation of the banana-holder class de�nition into ordinaryScheme. Of course this is hideously long, since we have arti�cially de�ned the class to use everypossible feature at once. The translations aren't meant to be read by people, ordinarily. Thecomments in the translated version were added just for this handout; you won't see comments ifyou use show-class yourself. 19

(define banana-holder(let ((list-of-banana-holders '())) ;; class vars set up(lambda (class-message) ;; class dispatch proc(cond((eq? class-message 'list-of-banana-holders)(lambda () list-of-banana-holders))((eq? class-message 'instantiate)(lambda (name) ;; Instantiation vars(let ((self '()) ;; Instance vars(my-person (instantiate-parent person))(my-fruit-lover (instantiate-parent fruit-lover 'banana))(bananas 0))(define (dispatch message) ;; Object dispatch proc(cond((eq? message 'initialize) ;; Initialize method:(lambda (value-for-self) ;; set up self variable(set! self value-for-self)(ask my-person 'initialize self)(ask my-fruit-lover 'initialize self)(set! list-of-banana-holders ;; user's init code(cons self list-of-banana-holders))))((eq? message 'send-usual-to-parent) ;; How USUAL works(lambda (message . args)(let ((method (get-method'banana-holdermessagemy-personmy-fruit-lover)))(if (method? method)(apply method args)(error "No USUAL method" message 'banana-holder)))))((eq? message 'name) (lambda () name))((eq? message 'bananas) (lambda () bananas))((eq? message 'list-of-banana-holders)(lambda () list-of-banana-holders))((eq? message 'get-more-bananas)(lambda (amount) (set! bananas (+ bananas amount))))(else ;; Else clause:(let ((method (get-method'banana-holdermessagemy-personmy-fruit-lover)))(if (method? method) ;; Try delegating...method(lambda args 'sorry)))))) ;; default-methoddispatch))) ;; Class' instantiate;; proc returns object(else (error "Bad message to class" class-message))))))20

