
Reference Manual for the OOP LanguageThere are only three procedures that you need to use: define-class, which de�nes a class;instantiate, which takes a class as its argument and returns an instance of the class; and ask,which asks an object to do something. Here are the explanations of the procedures:ASK: (ask object message . args)Ask gets a method from object corresponding to message. If the object has such a method, invokeit with the given args ; otherwise it's an error.INSTANTIATE: (instantiate class . arguments)Instantiate creates a new instance of the given class, initializes it, and returns it. To initializea class, instantiate runs the initialize clauses of all the parent classes of the object and thenruns the initialize clause of this class.The extra arguments to instantiate give the values of the new object's instantiation variables.So if you say(define-class (account balance) ...)then saying(define my-acct (instantiate account 100))will cause my-acct's balance variable to be bound to 100.DEFINE-CLASS:(define-class (class-name args...) clauses...)This de�nes a new class named class-name. The instantiation arguments for this class are args.(See the explanation of instantiate above.)The rest of the arguments to define-class are various clauses of the following types. All clausesare optional. You can have any number of method clauses, in any order.(METHOD (message arguments...) body)(METHOD (message arguments...) body)(METHOD (message arguments...) body)A method clause gives the class a method corresponding to the message, with the givenarguments and body. A class de�nition may contain any number of method clauses. Youinvoke methods with ask. For example, say there's an object with a(method (add x y) (+ x y))clause. Then (ask object 'add 2 5) returns 7.Inside a method, the variable self is bound to the object whose method this is. (Notethat self might be an instance of a child class of the class in which the method isde�ned.) A method de�ned within a particular class has access to the instantiation11



variables, instance variables, and class variables that are de�ned within the same class,but does not have access to variables de�ned in parent or child classes. (This is similarto the scope rules for variables within procedures outside of the OOP system.)Any method that is usable within a given object can invoke any other such method byinvoking (ask self message). However, if a method wants to invoke the method ofthe same name within a parent class, it must instead ask for that explicitly by saying(usual message args...)where message is the name of the method you want and args... are the arguments tothe method.(INSTANCE-VARS (var1 value1) (var2 value2) ...)(INSTANCE-VARS (var1 value1) (var2 value2) ...)(INSTANCE-VARS (var1 value1) (var2 value2) ...)Instance-vars sets up local state variables var1, var2, etc. Each instance of the classwill have its own private set of variables with these names. These are visible inside thebodies of the methods and the initialization code within the same class de�nition. Theinitial values of the variables are calculated when an instance is created by evaluatingthe expressions value1, value2, etc. There can be any number of variables. Also, amethod is automatically created for each variable that returns its value. If there is noinstance-vars clause then the instances of this class won't have any instance variables.It is an error for a class de�nition to contain more than one instance-vars clause.(CLASS-VARS (var1 value1) (var2 value2) ...)(CLASS-VARS (var1 value1) (var2 value2) ...)(CLASS-VARS (var1 value1) (var2 value2) ...)Class-vars sets up local state variables var1, var2, etc. The class has only one setof variables with these names, shared by every instance of the class. (Compare theinstance-vars clause described above.) These variables are visible inside the bodiesof the methods and the initialization code within the same class de�nition. The initialvalues of the variables are calculated when the class is de�ned by evaluating the expres-sions value1, value2, etc. There can be any number of variables. Also, a method isautomatically created for each variable that returns its value. If there is no class-varsclause then the class won't have any class variables. It is an error for a class de�nitionto contain more than one class-vars clause.(PARENT (parent1 args...) (parent2 args...))(PARENT (parent1 args...) (parent2 args...))(PARENT (parent1 args...) (parent2 args...))Parent de�nes the parents of a class. The args are the arguments used to instantiatethe parent objects. For example, let's say that the rectangle class has two arguments:height and width:(define-class (rectangle height width) ...)A square is a kind of rectangle; the height and width of the square's rectangle areboth the side-length of the square:(define-class (square side-length)(parent (rectangle side-length side-length))...) 12



When an object class doesn't have an explicit method for a message it receives, it looksfor methods of that name (or default methods, as explained below) in the de�nitions ofthe parent classes, in the order they appear in the parent clause. The method that getsinvoked is from the �rst parent class that recognizes the message.A method can invoke a parent's method of the same name with usual; see the notes onthe method clause above.(DEFAULT-METHOD body)(DEFAULT-METHOD body)(DEFAULT-METHOD body)A default-method clause speci�es the code that an object should execute if it receivesan unrecognized message (i.e., a message that does not name a method in this class orany of its superclasses). When the body is executed, the variable message is bound tothe message, and the variable args is bound to a list of the additional arguments toask.(INITIALIZE body)(INITIALIZE body)(INITIALIZE body)The body of the initialize clause contains code that is executed whenever an instanceof this class is created.If the class has parents, their initialize code gets executed before the initializeclause in the class itself. If the class has two or more parents, their initialize code isexecuted in the order that they appear in the parent clause.

13


