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Logo is more than a programming language. It is a learning environment where children explore mathematical

ideas and create projects of their own design. Logo, the first programming language explicitly designed for

children, was invented by Seymour Papert, Wallace Feurzeig, Daniel Bobrow, and Cynthia Solomon in 1966 at

Bolt, Beranek and Newman, Inc. (BBN).

Logo’s design drew upon two theoretical frameworks: Jean Piaget’s constructivism and Marvin Minsky’s

artificial intelligence research at MIT. One of Logo’s foundational ideas was that children should have a

powerful programming environment. Early Lisp served as a model with its symbolic computation, recursive

functions, operations on linked lists, and dynamic scoping of variables.

Logo became a symbol for change in elementary mathematics education and in the nature of school itself.

The search for harnessing the computer’s potential to provide new ways of teaching and learning became a

central focus and guiding principle in Logo language development. It encompassed a widening scope that

included natural language, music, graphics, animation, story telling, turtle geometry, robots, and other physical

devices.
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1 INTRODUCTION
“I believe with Dewey, Montessori and Piaget that children learn by doing and by

thinking about what they do. And so the fundamental ingredients of educational

innovation must be better things to do and better ways to think about oneself

doing these things.”

· · ·

“We can give children unprecedented power to invent and carry out exciting

projects by providing them with access to computers, with a suitably clear and

intelligible programming language and with peripheral devices capable of pro-

ducing on-line real-time action.”

· · ·

“. . . in its embodiment as the physical computer, computation opens a vast uni-

verse of things to do. But the real magic comes when this is combined with

the conceptual power of theoretical ideas associated with computation.” [Papert

1972a]

Logo was to be a language for learning, for exploration, and especially for mathematics.

In 1966 computers were few, large, and sprawling; programmers interacted with them either by

submitting card decks to a feeder or by using terminals situated outside of the computer area. But

computers’ power and promise as a tool for understanding intelligence was in the air. This vision

permeated the two labs in which Logo was initially crafted: Bolt, Beranek and Newman, Inc. (BBN)

and the MIT Artificial Intelligence Lab.

1.1 The Logo Environment
From its inception Logo was more than just a programming language. It was also a computer

environment made up of people, things, ideas. And it was a computer culture: a way of thinking

about computers and about learning and about talking about what you were doing.

Functionally, the Logo environment is comprised of the following:

(1) a computer

(2) a programming language

(3) a collection of computer peripherals, usually including a robot called a “turtle” (and a graphical

simulation of it, called a “display turtle”)
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(4) a collection of projects

(5) a meta-language: a consistent way of talking about the language, the projects, etc.

(6) a rich learning culture

(7) a collection of “bridge activities” such as juggling and puzzle-solving

All of these components are interdependent and the special virtues of the environment follow

from their synergy. For example, one would expect very limited educational benefits to arise from

merely teaching programming, even Logo programming, in a completely abstracted context, or

from using turtles as toys without the insight one derives from the underlying computer culture.

The design of the environment as a whole was strongly influenced by several ideas that are

central to Logo work with young children: procedurization, anthropomorphization (Papert later

talked about body syntonics), and debugging.

A timeline of notable Logo events is in Appendix A.

1.2 Logo Programming: An Example
Here is an example of some Logo code. The earliest programs focused on playing with words and

sentences. The turtle, which became iconic for Logo, appeared later.

TO introduces a procedure definition. OUTPUT sends a value back to the caller of the procedure.

PICK chooses an item at random from a list.

TO NOUN
OUTPUT PICK [BIRDS DOGS WORMS DONKEYS GEESE CATS [GUINEA PIGS]]
END

TO VERB
OUTPUT PICK [HATE TRIP BITE LOVE]
END

TO ADJECTIVE
OUTPUT PICK [RED PECULIAR JUMPING FAT FUZZY [FUZZY WUZZY]]
END

TO SENGEN
PRINT (SENTENCE ADJECTIVE NOUN VERB ADJECTIVE NOUN)
SENGEN
END

When SENGEN is invoked,1 this code produces sentences such as

RED GUINEA PIGS TRIP FUZZY WUZZY DONKEYS
PECULIAR BIRDS HATE JUMPING DOGS
FAT WORMS HATE PECULIAR WORMS
FAT GEESE BITE JUMPING CATS

You might ask: does SENGEN make up sentences the way we do as adults or the way we did

when we first learned to talk or write? You might also ask: what relationship does SENGEN have
to understanding grammar? The first question is open to research and speculation. The second

question might be an easier one to answer. Often when we discussed this project with children

they did not relate the programming process to grammar. Later as they used their programs, the

1
One way to try this is to copy and paste this program into an online Logo such as https://www.calormen.com/jslogo/ and

then type SENGEN.

Proc. ACM Program. Lang., Vol. 4, No. HOPL, Article 79. Publication date: June 2020.



79:6 Solomon et al.

children frequently exclaimed “So this is why they call them nouns and verbs!” The children also

began to appreciate formal systems. Studying grammar by generating sentences that obey certain

rules requires the programmer to become aware of rules as well as exceptions.

Since this program seems tomake sensible sentences without knowing verymuch about grammar,

children often develop an appreciation for cleverness. For example, SENGEN doesn’t know that some

words are singular and some are plural, or that singular nouns should be matched with singular

verbs. It does not know about verb tenses or pronominal relations. Its apparent intelligence comes

from the programmer’s choice of words and categories. SENGEN builds sentences from vocabulary

lists of nouns, verbs, adjectives, connectives, and so on. It then assembles its selections according

to some rules of grammar.

In 1968-69 a class of seventh graders (12 year olds) tackled SENGEN. The major bug they encoun-

tered was in not paying attention to whether a word or phrase was a noun, a verb or an adjective.

It was relatively straightforward for the children to make procedures to output lists of words from

which another procedure could select a word but they were completely taken aback when their

sentences looked like this:

GEESE FAT WORMS GEESE JUMPING
DOGS JUMPING CATS FUZZY FAT
DOGS PECULIAR FUZZY DOGS FAT
GEESE HATE DONKEYS DOGS BIRDS
FUZZY WUZZY HATE FUZZY FUZZY BIRDS
FUZZY WUZZY PIGS DONKEYS FUZZY BIRDS

when they expected this:

FUZZY GUINEA PIGS LOVE JUMPING DOGS
RED WORMS TRIP RED DONKEYS
FAT GUINEA PIGS BITE FAT CATS
RED GUINEA PIGS LOVE FUZZY GUINEA PIGS
FUZZY GUINEA PIGS HATE RED WORMS
PECULIAR GUINEA PIGS HATE FAT WORMS

That’s when they seemed to explode with surprise and realize that they do need to separate

verbs from nouns. No one had to tell them what the bugs were. They knew enough about sentence

construction to see the bugs, and now they were learning explicitly some rules of grammar that

they already knew implicitly. They were, after all, seasoned creators of understandable sentences.

A second example makes algebraic sentences instead of English sentences and makes a quiz out

of the result.

TO GETNUM
OUTPUT 1 + RANDOM 10
END

TO GEN
MAKE "NUM1 GETNUM
MAKE "NUM2 GETNUM
MAKE "TRIAL GETNUM
MAKE "ANSWER :NUM1 * :TRIAL + :NUM2
PRINT (SENTENCE :NUM1 [* BOX +] :NUM2 [=] :ANSWER)
GETBOX
END
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TO GETBOX
QUESTION [WHAT IS BOX?]
IF ANSWER = :TRIAL [PRINT [GREAT! YOU GOT IT!] STOP]
GETBOX
END

Trying it out:

GEN
5 * BOX + 10 = 35
WHAT IS BOX?
5
GREAT! YOU GOT IT!

GEN
9 * BOX + 8 = 89
WHAT IS BOX?
5
WHAT IS BOX?
19
WHAT IS BOX?
9
GREAT! YOU GOT IT!

2 EARLY INFLUENCES ON LOGO
2.1 People
2.1.1 Wallace (Wally) Feurzeig. Feurzeig was originally from the Chicago area having worked

at Argonne National Lab and attended University of Chicago and Illinois Institute of Technology.

He was a mathematician and a musician (pianist). He joined BBN in 1962 as part of Tom Marill’s

Artificial Intelligence Department. He first worked on Mentor, an intelligent teaching system.

(Later Cynthia Solomon was hired to make a Lisp version of Mentor.) In 1965 Feurzeig formed

BBN’s Educational Technology Department and started working on programming languages as

educational environments. Then in collaboration with Papert and others he started the project that

became Logo. He said [Feurzeig 2006] this about it:

The need for a new language designed for, and dedicated to, education was

evident. The basic requirements for the language were:

(1) Third-graders with very little preparation should be able to use it for simple

tasks.

(2) Its structure should embody mathematically important concepts with minimal

interference from programming conventions.

(3) It should permit the expression of mathematically rich non-numerical algo-

rithms, as well as numerical ones.

2.1.2 Seymour Papert. Seymour Papert grew up in SouthAfrica. His father was an entomologist. For

his first couple of years Papert and his parents chased after the tsetse fly. Papert went to University

of Witwatersrand in Johannesburg where he pursued mathematics and philosophy. He got a first

doctorate in mathematics there and then was awarded a scholarship to a mathematics doctoral

program at University of Cambridge, UK. Towards the end of his doctoral work at Cambridge Papert

moved to Paris to work on functional analysis. In Paris Papert attended lectures by Jean Piaget at
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La Sorbonne. Piaget liked having mathematicians in his research group in Geneva, Switzerland and

asked Papert to join.

2.1.3 Jean Piaget. Papert was a researcher in Piaget’s Genetic Epistemology Group from 1958

through 1963. Genetic Epistemology according to Piaget, its originator, “attempts to explain knowl-

edge and in particular scientific knowledge, on the basis of its history, its sociogenesis, and especially

the psychological origins of the notions and operations upon which it is based.” [Piaget 1971]

Fig. 1. Jean Piaget in the Swiss Alps (Ioanna Papandropoulou, 1973, courtesy of © Fondation Jean Piaget /
Ioanna Papandropoulou)

Papert comments on Piaget: “when he died at age 84, Piaget had created several new fields of sci-

ence: developmental psychology, cognitive theory and evolutionary epistemology. He championed

a new way of thinking about children. One might say that Piaget was the first to take children’s

thinking seriously.”

Papert goes on to say that Piaget “is revered by generations of teachers inspired by the belief

that children are not empty vessels to be filled with knowledge (as traditional pedagogical theory

has it), but active builders of knowledge—little scientists who are constantly creating and testing

their own theories of the world.” [Papert 1999, p. 105]

Papert talks about number as an example of Piagetian thinking. “Number is not something

with an independent objective existence that children happen to have a particular conception of.

Instead, the study of number is the study of something in evolution, something in the process of

construction. Children don’t conceive number, they make it. And they don’t make it all at once or

out of nothing. There is a long process of building intellectual structures that change and interact

and combine.” [Papert 1988, p. 4]

Many educators consider the important ideas from Piaget to be about stages of development.

Not so for Papert who found Piaget most enlightening when he talked about children constructing

structures of knowledge. Papert said “In my Piaget, stages and even most senses of ‘active learning’

are quite secondary. I focus instead on his constructivism and structuralism.” [Papert 1988, p. 4]

“The core of Piaget is his belief that looking carefully at how knowledge develops in children

will elucidate the nature of knowledge in general.” [Papert 1999, p. 105]

2.1.4 Marvin Minsky. In 1961 Marvin Minsky and Papert met at a conference in England. They

each presented papers on reinforcement learning mechanisms with changing probabilities. The

two papers were surprisingly similar in both their findings and their ways of thinking. From this

meeting they decided to work together. In January 1964 Papert arrived at MIT and joined Minsky’s

Artificial Intelligence Group (later to become the AI Lab).

Proc. ACM Program. Lang., Vol. 4, No. HOPL, Article 79. Publication date: June 2020.



History of Logo 79:9

They collaborated very closely for about 20 years and then less closely for another 20 years.

Papert and Minsky thought about thinking, about children’s thinking and about machine’s thinking.

Initially their collaboration focused on machine vision, robotics, computational geometry and

advising students. Their discussions about how to make machines intelligent included discussions

about children’s acquisition of knowledge and the contributions of computers to children’s learning.

Minsky describes programming:

Programs “make things come to be, where nothing ever was before. Some people

find a new experience in this, a feeling of freedom, a power to do anything you

want. Not just a lot—but anything. I don’t mean like getting what you want by just

wishing. I don’t mean like having a faster-than-light spaceship, or a time machine.

I mean like giving a child enough kindergarten blocks to build a full-sized city

without ever running out of them. You still have to decide what to do with the

blocks. But there aren’t any outside obstacles. The only limits are the ones inside

you.” [Minsky 2019a, page 5; Solomon et al. 1986]

“Making Logo programs is a lot like building with construction toys—but it’s

even better. You can make drawings of things and structures, but you can make

procedures, too. You can make them use words. You can make things change

their forms. And you can make them interact: just make the properties of some of

your objects depend on some features of other objects. As toys, those programs

have their faults: you can’t take Logo cars outside and roll them down a real

hill—but, in exchange, their parts don’t get loose and fall out and get lost. And

the basic experience is still there: to see how simple things can interact to make

more wonderful things.” [Minsky 2019a, page 8; Solomon et al. 1986]

During his collaboration with Papert, Minsky continued to write about children, computers, and

school. Six of his essays can be found in Inventive Minds: Marvin Minsky on Education edited by

Cynthia Solomon†2 and Xiao Xiao [Minsky 2019b].

2.1.5 Other Early Contributors. Daniel Bobrow was one of Minsky and Papert’s students and upon

finishing his doctorate in 1964 became head of the Artificial Intelligence Group at BBN. At the time

Feurzeig was leading the BBN education group. Around 1965 Papert began consulting with Bobrow

and then Feurzeig at BBN, and discussed with them the idea of a computer language for children.

Cynthia Solomon† had joined the MIT AI group in 1962. She wanted to learn to program. A

friend introduced her to Marvin Minsky and she took a job as his secretary. As hoped, she did

learn a bit of Lisp programming. By 1966 she was a member of Feurzeig’s education group at BBN,

working on a Lisp project. For the first few years of Logo development Papert and Solomon were

in constant collaboration and it was hard to say who contributed what. This cross-fertilization of

ideas with Minsky and Papert, and Papert and Solomon, fed into both work with machines and

work with children. In the summer of 1969 Papert and Solomon stopped their work at BBN with

Feurzeig and started the Logo Group as part of the MIT AI Lab. The Logo Group was often called a

lab but it always remained a part of the MIT AI Lab. Feurzeig and his group continued work on

Logo independently from Papert and Solomon.

2.2 Sputnik
In the 1950s work was underway to improve American high school as well as elementary school

education especially in math and science. When the Russians sent Sputnik, the first artificial satellite,

2
The dagger symbol † is used to indicate a reference to one of the authors of this paper.
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into orbit on October 4, 1957, a major crisis was felt in the United States. The result was a surge in

funding for improving schools, especially math and science education.

By the 1960s “new math” projects were being tested in classrooms around the country. Logo,

offering another new path to children learning mathematics, fit in well with the times. The 1968-69

NSF BBN Logo teaching project (see Section 4) had three leading math researchers and a science

education researcher as project evaluators. Andrew Gleason at Harvard University had been co-

director of the 1963 Cambridge Conference on School Mathematics [Cambridge Conference on

School Mathematics 1963]. Robert Davis at Syracuse University, was director of the Madison

Project for elementary education. Max Beberman at University of Illinois directed UICSM for high

school mathematics. Beberman was considered the father of “new math.” Robert Karplus, a physics

professor at UC Berkeley led an effort to create a new science curriculum for elementary school,

Science Curriculum Improvement Study (SCIS) at the Lawrence Hall of Science. The conversations

with this group fortified Papert’s idea of a “mathland,” an environment as conducive to learning

math, as living in France would be to learning French.

2.3 Places
2.3.1 BBN, Time-Sharing, and Interactive Programming Languages. BBN was a hotbed of forefront

computing activities. Around 1962, before he joined the Stanford faculty, John McCarthy designed

a time sharing system at BBN. (McCarthy, of course, is also the inventor of Lisp.) Coincidentally,

Dartmouth Professors John Kemeny and Thomas Kurtz visited McCarthy at BBN. As a result the

Dartmouth Time Sharing System was envisioned with the goal of opening computers up to the

entire college community. Kemeny and Kurtz designed an interactive programming language they

named BASIC. System and language were operational by 1964. McCarthy’s early proselytizing for

time sharing encouraged Fernando J. Corbató to develop the Compatible Time Sharing System

(CTSS) at MIT, often cited as the first operational time sharing system, about a year before the BBN

system. As is evident from the names, CTSS influenced the Incompatible Timesharing System (ITS)

for the PDP-6 and PDP-10 at the MIT AI Lab, although the design of ITS was based on disagreements
with that of CTSS. ITS, in turn, strongly influenced SITS, the Small Incompatible Timesharing

System, developed by Ron Lebel for the Logo Group’s PDP-11.

During that time Cliff Shaw from the Rand Corporation visited BBN and showed his interactive

programming language, Joss. BBN researchers implemented their own version of it, calling it

Telcomp. Feurzeig modified Telcomp to include strings. Stringcomp was used in Feurzeig’s project

of eight elementary and middle school classrooms. It was while visiting these classrooms in 1966

that Seymour Papert saw a need for a different kind of language for learning—a language for

children. Thus began Logo. [Walden et al. 2011]

2.3.2 MIT Hackers and Their Computer Culture. The MIT AI Group/Lab included Marvin Minsky,

students and staff. It didn’t have its own computers until 1963, but it did have access to computers

at MIT: a batch processing IBM 704, a DEC PDP-1, and the TX-0. The PDP-1 was a single user

platform attracting not only Minsky but undergraduates who also hung out at MIT’s Tech Model

Railroad Club (TMRC) or MIT’s radio station (then WTBS).

In the early 1960s cutting edge work with computers was performed primarily by students, both

graduate and undergraduate. At this time faculty of the MIT AI Group were either members of

the Math Department or the Electrical Engineering Department, since an MIT computer science

department didn’t yet exist. Minsky showed his respect for the students (whom he recognized as

often knowing more than the faculty about computers) by working with the growing number of

undergraduates hanging out around the PDP-1.
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This PDP-1 was also home to the original SpaceWar, the first graphical computer game. Solomon†

says that for years it was the only video game she would play. Minsky said that it gave him the

opportunity to be the first professor to ban video games in his lab during working hours.

Fig. 2. Dan Edwards and Pete Sampson Playing the SpaceWar! video game (courtesy of MIT Museum
Collections)

Creating a computer science presence at MIT was in the works and in the summer of 1963, under

the direction of Professor Robert Fano, Project Mac opened up to an outstanding group of visiting

and permanent researchers in its new quarters at 545 Tech Square, on the 8th and 9th floors. The

9th floor housed computers including the AI Group’s own PDP-1, which was soon traded in for a

PDP-6; later, a PDP-10 was added.

Papert stepped into this environment in December 1963. This plethora of computing power and

computing knowledge was an eye-opener for Papert. The undergraduate whiz kids were called

“hackers.” The word hacker then, and even now at MIT, meant a wizard at some kind of technology.

You could be a telephone hacker, or a steam tunnel hacker—or a computer hacker. The AI Lab

hackers were incredible computerists. They were curious and adventurous, following in the MIT

tradition. If they dug themselves into a hole they dug themselves out of it, sometimes with and

sometimes without help from others. The learning was impressive and so were their contributions.

This is very different from the pejorative sense of hacker in current media.

But perhaps more important than their technical contributions was the pervasive attitude of “I

can do this, and so can you [whoever you may be] if you want to learn,” no matter what the “this”

was. Brian Harvey† vividly remembers, as a freshman new to the AI Lab, reporting a bug in the

text editor and being told to fix it himself. That was both terrifying and exhilarating, very different

from the usual “hands off the computer” attitude toward non-experts.

Lisp, the language created by John McCarthy, was the language of choice for the AI graduate

students. Lisp (the name stands for “list processing”) encourages recursive functions and symbolic

manipulation of programs as data. This fit into the ideas for AI research at the time, and also served

as a model for Logo.

In a research statement in 1971, Minsky and Papert wrote:

“The Artificial Intelligence Laboratory is a center for research into the nature of

intelligence. It differs in two ways from the host of ‘psychological’ laboratories

which would so describe themselves. It has a powerful theoretical bias towards
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Fig. 3. Marvin Minsky and Seymour Papert (Cynthia Solomon collection)

a stream of ideas one might describe as ‘computational’ or ‘cybernetic’ and it

is firmly dedicated to the idea that theories of intelligence will grow only in

an environment in which they can be translated into practical experiments of

which we know of two kinds: (1) programming machines to perform intelligent

functions, and (2) teaching people.”

“Our interest in the development of intelligence in children is long-standing.

Both of us were extensively involved with psychology from our student days,

though formally we graduated in mathematics. One of us worked for five years

(1959-63) in Piaget’s Center in Geneva, certainly the most distinguished ‘natural

intelligence laboratory’ in the world.”

“We actually want to teach computer science to young children because we

believe that it has a unique ability to elucidate vitally important concepts; our

classroom use of the computer itself is subservient to our intention of teaching

these concepts.”

“Amongst the concepts computer science has elucidated is that of thinking. We

conjecture (on the basis of plausible arguments and a little empirical evidence)

that giving children the ability to think better about their own thinking could

have a very powerful effect on their intellectual development. The exploration

of this conjecture is typical of the long range goals of our experimental work in

education.”

2.3.3 Eighth Floor Culture and Ninth Floor Culture. The ninth floor at 545 Technology Square

housed the computers of the AI Lab. More importantly it housed the system hackers who worked on

the hardware, operating systems, and programming languages used by everybody in the Lab. The

eighth floor (and later, expanding to the seventh) was the domain of professors, graduate students,

academic researchers, and administrators. It was the unique culture of the MIT AI Lab that there

was much interaction between the floors. Theory met practice. The graduate students, and even

some of the professors, didn’t mind getting their hands dirty with low-level coding. The system

hackers often made significant contributions to research and published papers. Many histories of

computer science have emphasized how much the development of AI was rooted in the hacker
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culture of the 1960s and 1970s [Levy 1984; Raymond 1996]. Much of that hacker culture originated

at MIT at the time.

Artificial Intelligence was, at the time, a brand-new subject, and a subject that met with consider-

able skepticism from more traditional computer scientists and mathematicians. Minsky taught the

one graduate course on it. Mostly the hackers taught themselves. Levy recounts the development

of hacker culture at the Tech Model Railroad Club, a group of hobbyists who did things out of sheer

joy rather than seeking employment or credentials. People such as Richard Greenblatt, Bill Gosper,

and Richard Stallman became the archetypes for the hacker culture.

Minsky and Papert’s management style gave the hackers free rein. They cared more for funda-

mental scientific questions rather than money, status or power. They trusted people to do the right

thing. They disliked bureaucracy and rules. The fortunate circumstance of unconditional support

from the US Department of Defense Advanced Research Projects Agency (ARPA) let them operate

without much oversight.

What Papert found in the hacker community were extraordinary examples of learning and

problem solving that took place organically. Hackers had to learn an enormous amount of technical

detail, without being formally taught. They didn’t care about credentials or boundaries between

fields. They had a collaborative social culture, where much activity occurred after midnight, at

Chinese restaurants, or both.

2.4 The Synthesis: Constructionism
In the 1980s, Papert gave a new name to the coming together of the influences described in the

previous sections: constructionism. In a proposal to the National Science Foundation he said

From constructivist theories of psychology we take a view of learning as a

reconstruction rather than as a transmission of knowledge. From a rich body of

educational experience we take the view that learning is particularly effective

when it is embedded in an activity the learner experiences as constructing a

meaningful product (for example, a work of art, a functioning machine, a research

report or a computer program.) [Papert and Group 1986]

Constructionism also goes beyond (while again including) the cognitivist principle

that underlying deep structures are central to learning science: to the cognitive

deep structures it adds a number of deep dimensions: affective, aesthetic, and

socio-cultural to which we give at least as much weight as the cognitive factors.

[Papert and Group 1986, p. 10]

3 TECHNICAL CHARACTERISTICS OF LOGO
This section of the paper is focused on describing technical decisions about Logo as a language.

Logo is, first of all, a dialect of Lisp. Its original authors were Lisp users at MIT and BBN; since

the idea was that Logo would be a language for manipulating (human) language, Lisp’s emphasis

on symbolic programming seemed like a great match. In retrospect, this choice was by far the most

important aspect of Logo’s design, mainly because of Lisp’s interactive development model, next

because of the use of recursion as the main control structure, and third because of Lisp’s support

for symbolic computing.

Logo’s design differs from mainstream Lisp in several important ways. In the detailed discussion

below, we start with the aspects taken from Lisp, and then describe the (less important, we now

think) differences. We then single out two differences that really mattered: paying attention to

wording and dynamic scope.
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Pavel Boytchev’s meticulously researched Logo Tree Project [Boytchev 2014] lists just over 300
dialects of Logo, most but not all of which trace their ultimate ancestry to the 1968 BBN PDP-1

Logo. Some of the listed dialects are Logo in name only, restricted to a turtle graphics library. This

section makes no effort to include the details of every dialect; we follow the two main branches of

the tree: those descended from Terrapin Logo (based originally on the MIT Logo Group’s version

for the Apple II computer) and those descended from the Logo Computer Systems, Inc. (LCSI)

dialect of Logo (starting with Apple Logo). Several people worked in both groups at different times.

3.1 The Design Process
HOPL papers are expected to discuss the design process, but due to the freewheeling nature of

the Logo development community, there was no uniform or deliberate design process. (Again,

though, in retrospect the most important aspects of the technical design of Logo were immediate

consequences of the Lisp background of the designers, with no “process” at all.)

Even within a group, the process was different in different contexts. For example, when the LCSI

team was designing Apple Logo, everyone was very conscious of the fact that as an official Apple

product, this implementation would have high visibility, and so decisions made in this release

would likely live forever, so each small detail was argued out.
3
The MIT PDP-11 Logo was taken

as the fallback position whenever consensus could not be reached on a question. One of the most

contentious questions was about the convention for naming predicate functions. (See Section 3.6.2.)

By contrast, the design process for Atari Logo was entirely constrained by the limited memory

available. At a typical weekly design meeting, Brian Silverman†4, who led the team that actually

wrote the code, would list all the features that had been requested at the previous meeting along

with the precise number of bytes required to implement them and the total number of available

bytes after the previous week’s work. The team would then argue about which features to leave

out.

The design work through the 1970s happened largely on the PDP-11 and was focused on the

core Logo language, settling details such as the assignment command (see Section 3.6.1). In the ’80s

and ’90s, the work was driven partly by an explosion of competing microcomputers, along with

creative development of special-purpose Logo versions to support a particular microworld, such as

art or music, or in a few cases to introduce object oriented programming. The core language was

largely fixed; relatively minor redesign happened largely in response to a desire to clean up rough

edges.

The development of Logo at BBN and MIT was funded by NSF (the USA National Science

Foundation). The commercial implementations at LCSI, Terrapin, and several other companies

were self-funding.

3.2 Aspects of Logo Taken Unchanged From Lisp
Many aspects of Logo’s design weren’t the result of deliberate choices, but rather were taken for

granted as part of Logo’s Lisp heritage.

3.2.1 Interactive Development. An extremely important idea taken from Lisp and Telcomp is that

Logo is interactive, not compile-then-run like Pascal or early BASIC, its chief competitors as a

language for children in the early days.
5
BASIC was typically interpreted rather than compiled,

3
Harvey, personal recollection, throughout this subsection except where otherwise noted.

4
The dagger symbol † is used to indicate a reference to one of the authors of this paper.

5
In those days, there was a clear-cut distinction between languages that were interpreted/interactive and those that were

compiled/batch-processed. Today there are crossbred technologies such as JIT compilation, interpreted virtual machines,

and so on. Our emphasis here is on the user experience, not the implementation.
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but still emphasized writing a complete program before running anything. Interactivity, which is

valuable for ease of program development even by adults, is essential in a language for children. In

an interactive language you can type an instruction and see something happen immediately.

Logo also emphasizes the use of procedures, which might seem incompatible with immediate

evaluation. But in using Logo, it’s common for children to experiment interactively, and when a

chunk of program is debugged, then encapsulate it in a named procedure.

At about the time Logowas developed, an ideology of top-down programming as the only “allowed”
technique became popular among adult computer scientists: design first, top-down; only then, start

coding. Logo’s programming style was and is proudly antithetical to such disciplines [Harvey 1991].

Sherry Turkle and Seymour Papert introduced the use of the French word bricolage (tinkering) to
label the Logo style of work, in which children experiment freely until they obtain a result that

seems worth preserving as a procedure [Turkle and Papert 1990].

3.2.2 Late Name Binding. The goal of interactive programming requires the ability to make refer-

ence to a procedure that has not yet been written.

? to procedureA
> procedureB
> end

(The ? is the Logo prompt. The to command enters a mode in which a multi-line procedure body

is entered, and the > is a special prompt character for the body lines. The word end, on a line by

itself, signals the end of the procedure definition.)

In a compiled language, the entire program is in one or more files, and the compiler can read

those files once to determine where in memory each procedure definition will be, and then again to

translate each procedure invocation into that procedure’s location. But in an interactive language

such as Logo, the user enters the program at the keyboard, and if procedureA (in the example

above) is defined before procedureB, the invocation can’t be translated from the name to its location

until procedureA is run. (Saying this another way, procedures must be defined before they can be

called, but they shouldn’t have to be defined in any particular order.)
6

Much the same principle applies to variable names, locations, and values. Not only is Logo

dynamically scoped (see Section 3.7), but variable declarations are executable:

? make "foo 87 ; a global variable
? to bar :flag
> if :flag [local "foo]
> make "foo 99
> end
? bar "true
? print :foo
87
? bar "false
? print :foo
99

6
Again, modern compiler technology has changed this picture in some of its details. But the user’s-eye view hasn’t changed;

whatever an implementation may do internally, the effect must be that names are bound to locations, and thence to procedure

code, as late as possible. (We don’t tell children about locations; in fact, the hope is that all this mechanism is invisible to

the user.)
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(This is not presented as an example of great Logo style!) Procedure bar takes one input, indicated

by the formal parameter flag. In the body of bar, the local primitive command creates a local

variable named foo. There is also a global variable foo because of the first make instruction. The
instruction bar "true makes the if succeed, so a local foo is created, and that’s the variable set to

99 by the following make instruction. When bar returns, the global foo still has the value 87. But
the instruction bar "false makes the if fail, and so it’s the global foo that’s set to 99. The name

foo in the make instruction can’t be translated to a location until that instruction itself; looking for

a binding on entry to bar isn’t good enough.

3.2.3 Applicative Order. Like pretty much all but the purely functional programming languages,

Logo uses applicative order evaluation: the argument expressions in a procedure call are evaluated

before the procedure is called. This evaluation order allows for the situation in which the value of

a variable used in an argument expression changes during the procedure call; since the argument

value has already been calculated, it can’t be affected by the change in the variable’s value.

3.2.4 Eval/Apply. Every Lisp interpreter has largely the same structure: two main procedures with

mutual recursion. The central procedure is eval, whose job is to turn an expression into a value. Eval
actually takes two arguments, an expression and an environment, which is a collection of variable

bindings. If the expression is a procedure call, eval calls apply, with two inputs: the procedure (not

its name; turning names into values is part of eval’s job) and a list of the actual argument values

provided in the expression. The mutual recursion comes in the case of a user-defined procedure:

apply then has to set up an expanded environment that includes bindings from the function’s

formal parameters to the provided actual arguments, and then it calls eval with the procedure

body as the expression, and the newly created environment.

Interpreters for most programming language, not just Lisp dialects, have more or less this

structure, with internal procedures similar to eval and apply. (Even in declarative languages,

resolve and unify have a similar mutual recursion.) What makes Lisp special is that they (eval
and apply) are made available to users of the language, generally under those names. This makes

it possible for users to build language extensions, “little languages” with only a subset of Lisp’s

capabilities, or language experiments in which some aspect of Lisp semantics is changed.

The Logo version of eval is called run. It takes only one input, an instruction list or expression

list. In the latter case, run outputs the value of the expression.

? run [print "hello print "goodbye]
hello
goodbye
? print run [sum 2 3]
5

In the first example, the input to run is an instruction list containing two print instructions, which
are carried out in order. In the second example, the input is an expression (only one is allowed),

and run outputs the result, 5, which is then used as the input to print.
Run takes only one input because environments are not first class in Logo. Since the goal is

to turn children into mathematicians, not to turn them into computer scientists, teaching about

environments isn’t one of the goals. So run always uses the current environment. This means that

run with a constant input is equivalent to the input itself:

? run [print "hello print "goodbye]
hello
goodbye
? print "hello print "goodbye
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hello
goodbye

Run becomes useful when invoked with a variable input:

? to foreach :list :action
> if emptyp :list [stop]
> local "list.item
> make "list.item first :list
> run :action
> foreach butfirst :list :action
> end
? to ? ; defining a procedure named question-mark
> output :list.item
> end
? foreach [Yakko Wakko Dot] [print sentence "Hello, ?]
Hello, Yakko
Hello, Wakko
Hello, Dot

Foreach takes two inputs: a data list and an instruction list. Higher order procedures can be defined

in several ways, but in this example we use the ? character as an implicit formal parameter for

the instruction list. Sentence "Hello, ? makes a list whose elements are the constant text Hello,
and one item from the data list. This implementation takes advantage of dynamic scope: The ?
procedure isn’t defined inside foreach, but it’s invoked (via the run) from inside foreach. So it

has access to foreach’s local variable list.item, which has been given first :list as its value.

Not every version of Logo includes user-visible apply, but the ones that do provide it generally

call it apply, with the same two inputs as in Lisp: a procedure and a list of actual argument values:

? print apply "sum [2 3 4]
9

You’ll notice that actually the first input to apply in this example is the name of a procedure.

Procedures aren’t first class in most Logo dialects, especially not primitive procedures such as sum.
But, because of dynamic scope, a procedure is just its text, so some dialects’ versions of apply
accept expression lists in place of procedures:

? print apply [? * ?] [5]
25

using the same ? technique as in foreach.

3.2.5 Lists. Traditionally, most languages used arrays—contiguous blocks of memory in which

the address of an element can be computed from its index number—as the main data aggregation

mechanism, because finding an arbitrary array element given its subscript takes constant time. But

adding an element to a traditional array is slow and complicated; a new, larger block of memory

must be allocated, and then every element copied from the old block into the new one.

Lisp traditionally used linked lists as its primary data aggregation mechanism (its only such

mechanism in early versions). Abstractly, a list provides the primitive operations first item (car),
all but first item (cdr), and prepend one new item to a list (cons), all in constant time. This structure

was a good match to the use of recursion as the main control mechanism in Lisp:

(define (squares numbers)
(if (null? numbers)

’()
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(cons (square (car numbers))
(squares (cdr numbers)))))

As in the earlier discussion of binding (Section 3.2.2), modern data structures allow language

implementors to have their cake and eat it too, using associative arrays (e.g., built from hash tables)

on top of which traditional arrays and traditional lists can both be provided as abstractions.

It’s worth noting that Logo also provides last and butlast functions so that users can think of

lists as symmetric, and those were slow (linear time) for traditional linked lists. So efficiency was

never really the main point. Rather, the list operations allow an aggregate to be traversed without

the need for auxiliary index variables, simplifying the code.

Most versions of Logo do not allow list mutation, so the sharing of structure in traditional linked

lists is not problematic.

The earliest versions of Logo had no data aggregation beyond text strings. But once the need for

a general data aggregate was seen, Lisp-style lists were the obvious choice, because Logo inherits

Lisp’s emphasis on recursion as the main control structure. (See Section 3.3.3 for more details about

the history of words and sentences in Logo.)

3.2.6 Recursion and Tail Call Elimination. The only primitive iteration facility in Logo is the repeat
command, which carries out a given set of instructions a fixed number of times. For anything more

subtle, such as the equivalent of a for loop or a repeat-while loop, Logo uses recursion. With

young children, Logo teachers sometimes start with a very simple infinite recursion, so the first

version of a procedure to draw a circle would be

to circle
forward 5
right 1
circle
end

The turtle would keep tracing over the same circle until the child manually stops the program. (A

disadvantage of this approach, especially for older learners, is that it encourages the idea that a

recursive call means “go back to the beginning,” which can be hard to eradicate when a need for

embedded recursion comes up.) With such heavy reliance on recursion as the idiom for iteration, it’s

very important that Logo implementations provide tail call elimination [Steele 1977] for commands.

Not all implementations, however, provide tail call elimination for operations, which is technically

much harder if you want tail call elimination to be invisible to users in error messages.

3.2.7 AutomaticMemoryManagement. Today nearly everymodern programming language handles

its own memory management, rather than letting fallible human beings do it. But in the early days

of Logo, automatic garbage collection was generally considered too slow, too complicated, and, in

short, one of those ivory-tower Lisp ideas that nobody other than college professors would want.

For Logo, though, it was always taken as given that we weren’t going to make young children

suffer through malloc() and free(), even on microcomputers with very limited memory.

3.2.8 Case Insensitivity. Although this has changed in recent years, at the time Logo was developed

all dialects of Lisp were case-insensitive with respect to names of procedures, variables, and so on.

That is still the rule in Logo, as it is in all natural languages that use the Latin alphabet. (Yes, a boy

named Max might use the function max in his program, but if the function is the first word of a

sentence, it’s still not the boy.) Also, the move to case-sensitivity in later programming language

design has been motivated largely by the convention of capitalizing the names of data types or

object classes, and Logo does not require type declarations. Encouraging young programmers to

use max and Max as the names of two different values is, we think, asking for bugs.
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3.3 Aspects of Logo Changed From Lisp
3.3.1 Parentheses. Although this is a minor syntactic change in the overall picture of Logo, the

first thing that Lisp users notice is that the language is not fully parenthesized. Lay people have

often singled out parentheses as their reason not to program in Lisp. Logo avoids this controversial

notation.

In Lisp, the notation for a procedure call is (procedure arg arg ...). The parentheses around
the call tell Lisp how many arguments are being supplied; even more important, since parentheses

also delimit lists in Lisp, a Lisp program is already a data structure, so very little additional parsing

is needed to implement Lisp in Lisp.

In Logo, most procedures, primitive as well as user-defined, have fixed arity (that is, a fixed

number of arguments). Parentheses are therefore not needed, as long as the interpreter knows the

arity of all procedures. For example, the parsing of

(print f g 1 2 3 4)

depends on the arity of f and g. At one extreme, if they both take no arguments, then all the

numbers are arguments to print. If each of f and g take two arguments, then the statement is

equivalent to

(print (f (g 1 2) 3) 4)

The fact that the interpreter must know all procedure arities to parse a program means that Logo,

very unusually, is not a context-free language, so the usual automated parser generators aren’t

helpful. This is one reason why there’s no BNF syntax as an appendix to this paper. But the caveat

becomes important to users only in quite advanced Logo programs in which a procedure redefines

other procedures that it uses, changing their arity, after the procedure body has been converted to

an equivalent Lisp tree-structured program. In other words, for most Logo programmers it’s not an

issue at all.

Most early Logos had a text operation that takes a procedure name as input, and outputs the

definition of the procedure in the form of a list of lists. But each of the sublists is an entire line of

the definition, which may or may not correspond to one instruction.

There are a few variadic primitives, such as sum and print. These procedures have a default arity
(two and one, respectively), and can be used with default arity without parentheses. For numbers

of inputs other than the default, parentheses are used. Note that they are used Lisp-style, enclosing

the procedure name and its inputs:

? print sum 7 8
15 ? print (sum 7 8 1)
16
? print (sum)
0
? (print 3 4)
3 4

Dylan is another parenthesis-free (but not context-sensitive) Lisp dialect [Shalit et al. 1996].

3.3.2 Commands and Operations. In early Lisp, every function returns a value.
7
Logo introduces

the concept of commands, which are procedures that don’t return a value. A call to a command,

including its actual argument expressions, is an instruction, although Logo users often use the

word “command” to mean either a command or an instruction. The body of a procedure must be a

7
More recent dialects allow functions to return any number of values, including zero.
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sequence of instructions, with no value-producing expressions except in the actual argument slots

of a procedure call.

A procedure that does return a value was originally called an operation. In later LCSI Logo

dialects the name was changed to reporter. A call to an operation, including its actual argument

expressions, is called an expression. (Numbers, which are self-evaluating, are also expressions.)

Since a procedure body must consist of instructions, not unattached expressions, there must be an

output command that takes one argument and returns that value from the procedure in which

this command appears.

? to square :n
> output product :n :n
> end
? print square 5
25

A note on the name output: In Logo documentation the arguments to a procedure are called

“inputs.” Themodel is essentially the “functionmachine” of introductory algebra classes: A procedure

is a box with input hoppers on top and an output chute on the bottom. If this model is used in

teaching Logo, the name output for the primitive that provides an output from its calling procedure

is natural. Many Logo users have talked about this command as if it were a special aspect of the

syntax, but it is syntactically just an ordinary procedure. Some later versions used report instead of
output because many students confused output with print. The word “input,” by the way, is used

in the Logo literature to mean both formal parameter and actual argument. When it’s necessary

to make the distinction, one says “input name” or “input value,” respectively. But most often the

meaning is clear from the context, and a goal of Logo design is to encourage children to focus

on the mathematics—the meaning of the procedure they’re writing—rather than on the computer

science.

There have been Logo dialects that allow an expression by itself as implicitly providing a return

value from the procedure in which it appears, but they are out of the mainstream. In most dialects,

expressions are not allowed even in the toplevel interpreter loop:

? sum 2 3
You don’t say what to do with 5
? print sum 2 3
5

In other words, Logo uses a read-eval loop, not a read-eval-print loop as in other Lisp dialects.

In part this avoids the need to display (or have a special case to avoid printing) something like

#[undefined] as the “return value” of a command that has no natural return value.

Note that the error message “You don’t say what to do with 5” does tell you the value you wanted,

while also teaching that a command is expected. It’s friendlier and more helpful than something like

“Missing command” would be. This is an example of Logo designers’ careful attention to wording.

(See Section 3.6 for more on this.)

3.3.3 Words and Sentences. Although the word wasn’t coined until more than one example existed,

Logo was designed around the idea of microworlds, spaces for thinking about a particular problem

domain with specific learning goals. The most famous Logo microworld is turtle geometry, a kind
of differential geometry in which explorations can range from simple polygons for young children

to non-Euclidean geometry and relativity for college students [Abelson and diSessa 1980].

But the first Logo microworld, strongly influencing its design, was English words and sentences

(The name “Logo,” suggested by Wallace Feurzieg, comes from λόγoς , the Greek word for “word.”)
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This choice came from Papert’s insight that elementary mathematics, the subject in which most

previous experiments in programming for children focused, is something many children find

difficult and painful. By contrast, every child can speak and understand English (or the child’s

native language, whatever it is) and most enjoy playing with words, e.g., in nonsense poetry or

word games such as Boggle.

At first, words and sentences were represented as text strings in Logo, and indicated syntactically

by the paired quotation marks that are still used for text strings in most programming languages.

A text string was considered a sentence if it contained a space character, or a word otherwise.

The selector first, for example, would output the first letter of a word, or the first word of

a sentence; butfirst outputs all but the first letter, or all but the first word. This design was

already revolutionary in abstracting away the task of searching for spaces in a string. But its

obvious weakness is that it is impossible to represent a sentence of length one, so a procedure that

butfirsts its way recursively through a sentence suddenly finds itself dealing with letters instead

of with words. So the internal representation of sentences was changed to lists.

As a result, first and butfirst for a sentence are just the Lisp car and cdr. (However, Logo
also provides selectors last and butlast, which take O(n) time when applied to a singly linked

Lisp-style list. This is a small illustration of the general principle that in a language for children

efficiency isn’t important; children almost always operate on small data sets. What matters is the

naturalness of the user interface, and there’s no reason to privilege the prefix of a word or sentence

over its suffix. Think, as an example, about the algorithm to compute the plural of a word.)

At the same time the notation was changed to "foo for a word (a compromise, using the open-

quote-only notation for a Lisp symbol but keeping the double-quote character familiar to children)

and [foo bar] for a sentence (the square brackets both quote and delimit the sentence). Another

advantage of double-quote instead of the Lisp single-quote to begin a symbol is that it doesn’t raise

syntactic hurdles when dealing with words such as "I’m or "John’s. Logo later added the ability

to nest square brackets, allowing lists of lists and thereby making Logo suitable for a study of data

structures by older children.

Some programmers object to Logo’s treatment of words and sentences because the same

procedure, first for example, accepts both strings and lists as input. They would prefer two

separate procedures, perhaps named firstletter and firstword, or perhaps word.first and

sentence.first if the complainer likes object oriented programming. Our answer is that such

complaints mean that the complainer is ignoring the data abstraction and thinking below the

abstraction, at the underlying data types used in the implementation of Logo. Yes, strings and

lists are quite different data types, and each should have its own selectors. But the abstract types

“word” and “sentence” have a lot in common, and are part of the same linguistic microworld. It’s

completely natural that they should share selectors; that sharing also has the pedagogic virtue of

teaching a single recursive pattern in which the first piece of some aggregate is separated from the

rest of the aggregate, with the latter used as input to a recursive call.

Similarly, the sentence constructor feels very strange to a programmer who thinks in terms

of primitive data types. It’s sort of like (apply append arguments), except that the domain of

append is lists, while sentence accepts words as well as sentences (that is, strings as well as lists)

as inputs. It’s actually equivalent to

(define (sentence . args)
(apply append

(map (lambda (arg) (if (list? arg) arg (list arg)))
args)))
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But above the abstraction barrier, this is a perfectly natural behavior. “Sentence takes any number

of words and sentences, and combines them into one big sentence.”

3.3.4 Logo Is a Lisp-2. Lisp systems are divided into two categories: Lisp-1 and Lisp-2. In a Lisp-1,

there is only one namespace for all entities with names, including procedures among other kinds

of data. In a Lisp-2, procedures have their own namespace, so the same symbol can name both

a variable and an unrelated procedure.
8
This works in Common Lisp, a Lisp-2, because the full

parenthesization makes it easy to distinguish the function being called (immediately after an open

parenthesis) from argument expressions. Logo doesn’t have that advantage. In the early days

of Logo, all Lisps were Lisp-2s, so Logo fell into that position more or less automatically. But

no mainstream Logo has been a Lisp-1, even in recent years, because too many Logo primitive

constructors are named after the data type they construct: list, word, sentence. Logo programmers

often use the name of a data type as a formal parameter:

? to plural :word
> output word :word "s
> end
? print plural "computer
computers

This wouldn’t work if the parameter word shadowed the primitive procedure named word. NetLogo
is a Lisp-1, and does not permit shadowing of primitive names.

Given the choice to be a Lisp-2, and without fully parenthesized expressions, Logo has to have a

way to distinguish variable references from procedure calls. In the example above, word represents

the procedure, and :word represents the variable. The colon, which is pronounced “dots” by Logo

programmers, is not just a piece of syntax that precedes any use of a variable. It abbreviates an

invocation of the primitive procedure thing, which takes a variable name as input and reports

the value of that variable. Thus, :word is an abbreviation for thing "word. The solitary double-

quote character serves the same purpose as the single-quote character in other Lisps. Because dots

abbreviate thing-quote, they are used only in reading a variable, not in assigning to one. Some

dialects allow multiple colons, in which case ::foo abbreviates thing thing "foo.

3.3.5 Defining Procedures Programmatically. The operation text converts a defined procedure

into a list structure that could be examined by a program:

? to squiral :size
> forward :size
> right 90
> squiral :size+2
> end

? show text "squiral
[[size] [forward :size] [right 90] [squiral :size+2]]

The command define converts a list structure in text format into a procedure:

? to ordinals :number :names
> if emptyp :names [stop]
> define (first :names) `[[list] [output item ,:number :list]]
> ordinals :number+1 butfirst :names

8
Some Lisps, and some Logos, have a third namespace for property lists. For our purposes this detail is unimportant, and

nobody calls them “Lisp-3s.”
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> end

? ordinals 2 [second third fourth fifth sixth seventh]
? print fourth [I want to hold your hand]
hold

The backquote (`) character in ordinals is a “quasi-quotation” operation, an idea borrowed from

Lisp. It reports its list input, except that within the list, words or lists preceded by comma are

evaluated, and the resulting value is used instead of the item. So, for example, the fourth procedure
defined by ordinals is

to fourth :list
output item 4 :list
end

Some of the later LCSI dialects left out this capability, but it survives in Terrapin Logo and

Berkeley Logo, among other dialects.

3.3.6 Infix Arithmetic. In an obvious concession to children’s mathematical experience, Logo

allows infix arithmetic + - * /, in the usual notation, as well as relational operators <, =, and >
(but not two-character <= etc., in most dialects). Parentheses are used for grouping if needed.

Infix arithmetic works fine by itself, and prefix functions work fine by themselves, but there

is room for confusion when they are combined. The most usual combination is infix arithmetic

providing inputs to a command:

forward :x+100

As a result, many Logo dialects make infix operators more tightly binding than prefix procedure

calls. This may be a little confusing when using prefix numeric functions, as in sin :x + 3, which
computes the sine of :x+3, perhaps not what the user intended. This is a small reflection, in Logo,

of the impossible-to-remember 15 levels of precedence of the infix operators of the C language. But

the much more common pitfall comes with the infix relational operators:

? print first "hello = "h
f

Users who write such instructions always expect to see true as the result, because they mean

(first "hello) = "h. But instead Logo tests "hello = "h, gets the answer false, and computes

the first letter of that result. Logo’s Boolean values are simply the words true and false. Some

more recent dialects ameliorate the problem with a more fine-tuned binding precedence: + - * /
are the tightest binding, then prefix operations, then infix < = >, and finally prefix commands.

3.4 No Standard
Some dialects use better binding precedence rules? Isn’t there a standard? Well, no. At a Logo

conference many years ago, some Logo developers attempted to write a Logo standard, but the only
point of agreement was that to be called Logo, a language should support the word and sentence

primitives: first, butfirst, last, butlast, word, and sentence.9 The first four are selectors; the
last two are variadic constructors. The selectors butfirst and butlast report a smaller value of

the same type (word or sentence) as their input. First and last report a one-letter word if given a

word as input, or a word if given a sentence. (See Section 3.3.3.)

The failure to agree on a standard has three roots.

9
There are a few exceptions even to this. TurtleArt [Bontá et al. 2010] is one.
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(1) Most importantly, there was a broad agreement that Logo is a perpetual research project,

to be reinvented as needed for varied audiences, varied hardware capabilities, and so on. A

standard would be constraining. As one example, there have been several projects adding

object oriented programming to Logo, with very different approaches.

(2) Second, even the commercial Logo developers have created modified versions; perhaps the

most dramatic such change to the language was LCSI’s LogoWriter, which embedded a core

Logo in a rudimentary word processor, just as Richard Stallman embedded a Lisp interpreter

in Emacs. Other examples include versions modified to support various robotics hardware.

In the early days, with limited microcomputer memory, adding music support on the Apple

II meant removing turtle support, for example.

(3) Finally, neither side convinced the other in the Terrapin/LCSI split, coming up next.

Lisp, too, had no standard for its first 20 years; the hacker culture did not lend itself to freezing

out further experiments by premature standardization.

3.5 Special Forms: the Terrapin/LCSI Split
In Lisp, almost everything is done with a procedure call, which looks like this:

(proc arg1 arg2 ...)

Each of the space-separated parts of this expression is evaluated; the first must have a procedure (a

function) as its value.
10
Once all the expressions have been evaluated, the procedure is called with

the values of the argument expressions as its arguments.

In this section we focus on the “almost everything.” Some things can’t readily be done as function

calls. The classic example is the if conditional. In a recursive procedure such as

(define (factorial n)
(if (= n 0)

1
(* n (factorial (- n 1)))))11

If the argument n is zero, the function should return 1, and the last input to if, the last line of
the definition above, must not be evaluated. Otherwise there will be an infinite recursion trying

to compute factorial of -1, factorial of -2, and so on. So if has a special evaluation rule: Its

subexpressions are not evaluated before if does its job. Lisp hides this issue by using the same

parenthesis notation for if as for procedure calls. An expression starting with the word if is

called a special form. (“Form” just means “expression” in this context.) Define, in the Scheme

example above, is another special form; the (factorial n) part shows what a call to factorial
will look like, but it can’t actually call factorial when it hasn’t been defined yet. Again, the

define expression looks like a procedure call, but isn’t one. Part of learning Lisp is learning to

recognize the special form names (keywords).
What about Logo? Like Lisp, it’s almost all done with procedure calls. But there have been

arguments about the exceptions.

The earliest versions of Logo freely included ad hoc syntax for each important control structure:

if :x<0 then right 90 else left 90

This notation was an effort to look like English rather than to follow a uniform notation. In really
early versions there was an interactive protocol for assigning a value to a variable:

? makemakemake
name: foofoofoo

10
In a Lisp-2, that first expression is evaluated using the procedure namespace rather than the variable namespace.

11
We are showing Lisp code in the Scheme dialect.
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thing: 878787

In this example what the user types is in boldfacein boldfacein boldface.
In 1981, two different commercial Logo versions were released for the Apple II: first Terrapin

Logo, essentially the MIT Logo Group’s Apple II dialect, and later Apple Logo, from LCSI, also based

on the Logo Group work, but not on the specific MIT code for the Apple. Most later versions, even

ones not produced by these two companies, can be characterized as Terrapin-like or as LCSI-like.

The biggest difference is that the LCSI designers decided that Logo should have no special forms,

but should instead do everything through procedure calls.

Why make syntactic uniformity a goal? The if.then.else notation was easy for beginners, but,

like the Lisp notation for special forms, it hides the fact of delayed evaluation of the “arguments”

to if (in quotes because a special form isn’t actually a procedure call so it doesn’t exactly have

arguments). The LCSI designers felt that that hiding might be a contributing factor to the widely

believed difficulty of understanding recursion. Making the delayed evaluation visible in the notation

might help. A second reason was the popularity among Logo developers of the exercise of writing a

Logo interpreter in Logo; a completely uniform evaluation rule simplifies that exercise. In retrospect,

those reasons can be seen as an implicit decision to aim Logo at somewhat older children than

were taught in earlier Logo research.

In LCSI Logo, the if instruction above becomes a call to the if procedure, which takes three

inputs:

if :x<0 [right 90] [left 90]

The first input is a Boolean value, reported by the < procedure. The second and third inputs are

instruction lists, only one of which will be evaluated by if depending on the value of the first input.

Square brackets both delimit and quote a list, so [right 90] is equivalent to ’(right 90) in Lisp.

The entire expression is therefore equivalent to

(if (< x 0) ’(right 90) ’(left 90))

in Lisp notation. How can Logo represent a thunk as merely the text of its body, without wrapping

it in a lambda expression to capture its closure? See Dynamic Scope below (Section 3.7).

The use of quoted instruction lists didn’t start with LCSI. From the beginning, the main looping

facility has been

repeat 4 [forward 100 right 90]

with the instructions to be repeated inside square brackets. Some Logo developers, however, treat

the square brackets as syntax in a repeat special form; in those versions of Logo, you can’t say

? make "actions [forward 100 right 90]
? repeat 4 :actions

as you can in LCSI versions.

There is one special form in all versions of Logo, even the LCSI ones, namely to, the command

to define a procedure:

? to plural :word
> output word :word "s
> end
? print plural "computer
computers

The to command doesn’t evaluate its inputs, and it enters an interactive editor (in some versions,

a display editor rather than the Teletype-era one shown here) in which the user enters the body of

the procedure. The keyword end terminates the body; it is part of the syntax, and is not understood

outside of the to interaction. The first input to to is the name of the procedure being defined; any
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additional inputs are formal parameters. The colon on the title line (to plural :word) is not an
invocation of thing; it’s there just to remind the user that this is a variable name. Different dialects

accept one or more of these alternative notations:

to plural :word
to plural "word
to plural word

The theory behind the "word notation is that a formal parameter is more like an assignment to a

variable than like looking up its value, and the notation will remind the user of make "foo 87. The
quotation mark in the make instruction isn’t a special syntax; it indicates that the variable’s (quoted)

name is the first input to make. Scheme’s set! is a special form that accepts only an implicitly

quoted name, but Logo allows the variable name to be computed:

make (word "foo :index) 100+:index

(The parentheses are here only for readability for humans; Logo would parse the instruction

correctly without them.) The restriction in Scheme allows very efficient compiled code, but Logo

designers almost always put expressiveness above efficiency, since Logo programs are generally

small and therefore fast anyway.

The semantics of make is that if a variable with the specified name is in scope (including a global

variable), a new value is assigned to that variable. If not, a new global variable is created with the

specified name and value. If you want to make a new local variable, you use the local command

and then make. The reason for the choice to default to global for newly created variables is based

on the fact that young children, Logo’s first audience, rarely use explicitly created locals; the only

local variables in most Logo programs are the parameters of procedures, and it’s unusual to change

their values. To a professional programmer this will feel like bad hygiene, but Logo programs tend

to be too small to have conflicting uses of the same global name, provided that students are taught

not to call variables x. As always, the focus is on the mathematics, not on the computer science.

3.5.1 Tokenization. In all versions of Logo, the space character, square brackets, and parentheses

delimit tokens. In older Terrapin-style dialects, the infix arithmetic and relational operators also

delimit tokens (and are tokens themselves). In newer LCSI-style dialects, as well as in NetLogo, the

infix operators do not delimit tokens; to use them as operators, they must be surrounded by spaces.

For example, 2+2 is a token, whereas 2 + 2 is 4.

The reason for the LCSI design is clearest when considering the hyphen/minus character. Consider

this list:

[555-1212 868-9827]

Should this be parsed as a list of two words, or of six words? If you live in the United States, it’s

obviously a list of two telephone numbers, not subtraction problems. On the other hand, if the

context is

print product 555-1212 868-9827

then you’d like the hyphens to be taken as minus signs, for a total of eight tokens on this line.

Some more recent Logo dialects do context-sensitive tokenization. Sometimes this requires

retokenizing a line as the context changes, such as the use of run (Logo’s name for eval) in this

example:

? make "test [555-1212 868-9827]
? print count :test
2
? print first :test ; prints an eight-letter word with the hyphen
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555-1212 ; as the third letter
? run sentence [print product] :test ; Now the hyphens are treated
5886063 ; as separate tokens (minus signs).
? print product 555-1212 868-9827 ; an equivalent instruction
5886063

3.6 Paying Attention to Wording
Much design attention in Logo has gone into English wording, including primitive names and error

messages, things that aren’t traditionally considered noteworthy in language design. For example,

it’s the 21st Century, and there are still programming languages that use the equal sign character

as the assignment operator.

3.6.1 Assignment. What does it mean to associate a value with a variable name? Pedagogically,

there are (at least) two different answers, and so different versions of Logo have used different

names for the variable assignment primitive. One answer, most appropriate for variables whose

value is not going to change during the running of the program, is that assignment gives a name to
a constant value:
name 3.141592654 "pi

The other answer, more appropriate for variables that vary, such as the index variable in a loop,

is that assignment puts a value in a box:
make "index :index+1

Different Logo dialects have used each of these, and some dialects offer both.

3.6.2 Predicates. All Lisp dialects use some special notation for predicate functions (ones that

report a Boolean value), so that the operation that means “make me a list containing these values”

can be distinguished from “is this value a list?” The former is the list operation. The latter was
listp in traditional Lisps (“p” for “predicate’), but became list? in Scheme. This may seem like

a trivial issue, but it led to heated debates among Logo designers. One cited advantage of the “p”

notation is in reading programs out loud; “list pee” is audibly different from “list.” On the other

hand, question mark enthusiasts argued that there are non-predicate procedures whose names

happen to end in “p”; they asked sarcastically whether stop should be pronounced “stow pee.” The

advantage of the question mark is that it’s visually unambiguous.

Another argument for “p” was that every operation is a question, not just the yes-or-no questions:

“How much is 2+3?”
12
Logo dialects have more or less followed the Lisp history: Most early dialects

use “p” and most late dialects use “?” but there are exceptions both ways. The very first Logo dialect

used “q” to indicate predicates; this arguably has the virtues of both of the other options, because

it’s clearly pronounceable as “list queue” but is unlikely to come at the end of a word adventitiously.

It’s not clear why “q” didn’t remain standard (except in British dialects); the designers of Apple

Logo, for example, were aware of the possibility but decided against it.

No known Logo dialect, though, has adopted the Scheme convention of “!” for mutators. Most

Logo dialects did not allow list mutation at all, because that choice allows two lists to share storage

without the risk that changing one will surprise the user by changing the other. There is a Logo

tradition of starting the names of “dangerous” primitives with “.” (e.g., .deposit and .examine in

microcomputer Logo dialects that allow direct access to memory), and some dialects that allow

mutation of list pointers call the relevant primitives .setfirst and .setbutfirst because of the

possibility of creating circular structures or mutating shared lists.

12
Recall that in Logo terminology an operation is a procedure that returns a value, as opposed to a command.
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3.6.3 Error Messages. Even the Scheme standard, which requires that implementations provide tail

call elimination, is silent about the text of error messages. Logo’s developers, however, considered

it unacceptable for a child to see a typical programming language error message such as

RangeError
Invalid code point NaN

People new to programming often have a fear of errors, especially if they are learning in a school,

where errors are typically punished with bad grades. It’s common for beginners to react to a single

error in a large program by deleting the entire thing and starting over. Logo teachers struggle

to convince students to “love their bugs.” An understandable error message, especially one that

suggests how to solve the problem, makes the error at least somewhat less frightening.

In some recent programming languages, such as Elm, Go, and Rust, there has been an awareness

of programming language ergonomics, including error messages. Newer programming environments

for older languages, such as C++, also attempt to replace problem-centered messages with solution
messages. Logo began this effort in the 1960s.

A story Paul Goldenberg recounts from the early days of Logo is that one day a child typed the

command love and got the response

love has no meaning.

The child tearfully reported this to Paul. The next day that error message was changed to

I don’t know how to love

in which the extra space before “to” hints at the command needed to solve the problem. But that

didn’t end the discussion; there are still arguments about whether “I don’t know how” gives a

child a misleading idea that the computer is conscious, but the alternative “You haven’t said how”

seems to blame, and therefore discourage, the child. Again, Logo dialects have differed on this issue.

Perhaps the argument was more intense in Logo’s early days, when it was unusual for children

to have access to interactive computers, and so children were more likely to develop wrong ideas

about their capabilities. But speech-understanding systems such as Siri, Google Assistant, and

Alexa are again encouraging children to imagine programming as a conversation with an intelligent

entity.

3.7 Dynamic Scope
Probably the design decision in Logo that may be the most surprising among modern programming

language experts is the use of dynamic scope. The first Lisp interpreters used dynamic scope,

although John McCarthy later said that that was simply a mistake—that Lisp should have followed

the rules of lambda calculus. A consistent (whether interpreted or compiled) use of lexical scope

was one of the great contributions of Scheme to the Lisp community. Nevertheless, we shall argue

that retaining dynamic scope was the right choice for a language intended for children rather than

for professionals. (Even in languages for adults, there have been design features that regain some

of the virtues of dynamic scope, such as implicit parameters in Haskell and fluid-let in Scheme.)

3.7.1 Arguments for Lexical Scope. There are three main reasons to prefer lexical scope:

• A compiler can translate variable names to memory addresses (or to a short instruction

sequence to find the relevant stack frame and the offset within the frame) at compile time,

providing greatly improved runtime performance.

• Referential transparency: It is visually clear to the programmer, reading the program source

code, which binding of a name applies to each specific reference. Names cannot be “captured”
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by a calling procedure. Referential transparency is also important to compilers, because it

allows easier inference about the program, for proofs of correctness or for optimization.

• If your language also has lambda or the ability to nest procedure definitions, you can use

persistent local state variables to create an object oriented programming framework.

We shall argue that none of these is relevant to the expected uses of Logo. One Logo dialect,

Object Logo, had the intent of becoming a system programming language for the Apple Macintosh,

and so its designers went against Logo tradition and made it lexically scoped. But Apple wasn’t

persuaded.

3.7.2 Arguments for Dynamic Scope. We emphasize that the goal of Logo has always been to create

a powerful programming environment for young children. No one suggests that the following

arguments apply to large-scale professional programming.

• We argue that dynamic scope is what naïve users expect: If a variable exists (and hasn’t been

shadowed explicitly), it’s available for use.

• There is no need to capture the closure (the defining environment) of a subprocedure, so

a procedure is simply its text. (This is why there is no need for a lambda operator in Logo.)

This means the body of a procedure, which is an instruction list, can simply be run (Logo’s
name for eval). That allows for an easy-to-explain implementation of higher order functions,

albeit with the possibility of name capture.

• As for name capture and referential transparency, those are concerns for large teams of

programmers, or for aggressive optimization of production programs. Logo teachers can just

advise children not to use the same name for two purposes.

• When an error is signaled, the evaluator can pause evaluation, and the user can use Logo

itself as the debugging language; nothing like gdb, with special commands to navigate the

procedure call stack, is required. All possibly relevant variables are accessible for inspection.

We discuss this point further in the next subsection.

• The flip side of name capture is that a toplevel procedure can create a “semi-global” variable

that’s available to all its subprocedures (and sub-subprocedures, etc.) but disappears when

the program run is finished. This is particularly convenient if a child designs a picture with

several components (although this practice can make the subprocedures harder to test or

re-use).

to house :size
frame
door
windows
people
trees
end

The subprocedures frame, etc., take no explicit arguments, but can use :size to refer to the

input given to house.

3.8 Technical Support for Debugging
The practice of debugging was a central part of Logo culture, especially in the early days. See

Section 4.3.3 for a longer discussion of the culture of debugging. The emphasis was much more on

debugging a child’s ideas than on debugging the actual code, so debugging technology (breakpoints

and so on) were relatively unimportant, and were missing altogether in some of the later LCSI
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implementations. But every Logo implementation that did provide debugging tools used the ones

described here, starting at least as early as the PDP-11 Logo at MIT.

21st Century programming is largely done using an Integrated Development Environment (IDE)

that includes syntax-aware editing as well as breakpoints, single stepping, stack traces, and other

debugging tools. Even after IDEs were invented, Logo never had one. IDE commands are typically

single keystrokes or mouse clicks, an entirely different language from the programming language

they support. This means that a beginner must, in effect, learn two very different formal languages

at once, which would be a formidable barrier to children. An important design decision was that the

debugging language for Logo should be Logo itself. This is possible only because of the interactive

style (the read-eval loop) that Logo inherited from Lisp.

3.8.1 Pausing Execution. The most important technical feature to support debugging Logo in Logo

is the pause primitive, which can be used as a command or as an operation. It displays a Logo

question-mark prompt and opens a read-eval loop, in the environment in which the pause occurs.
This is how dynamic scope enters the debugging picture. However deep in procedure calls you

may be, the variables of all those waiting procedures are available for inspection or modification.

In this explanation for programming language experts, we are talking about scoping rules and

environment nesting, but a child doesn’t need any of that vocabulary. Because of dynamic scope,

all the variables that exist are visible, just as a non-expert would expect, unless the child has used

the same name for two different variables, which quickly becomes apparent.

The Logo user can explicitly edit a pause into a procedure as a breakpoint, but many versions

of Logo have had an even more powerful debugging aid: the ability to set a “pause on error” flag

or, more generally, to set an arbitrary sequence of instructions to be carried out in the event of an

error. The latter can be used to pause just in specific cases:

make "erract [if errnum=11 [pause]]

(Erract is for “error action”; errnum (the actual error information format varies considerably

between versions) reports which kind of error happened.) If a pause happens, the user sees the

Logo error message, including information about exactly what line in what procedure caused the

error, and then a question-mark prompt. If exploring the environment at the location of the error

doesn’t reveal the problem, the user can then work backward, using explicit pause commands

inserted in the relevant procedure(s).

A third way to pause execution is by typing an interrupt character, different for different

computers and operating systems.

The continue command is used to resume execution. The command allows an optional input,

which is needed when pause is used as as operation, or, equivalently, if a primitive operation

throws an error that leads to a pause. In that case, the input to continue becomes the value of the

pause or of the operation that gave the error.

3.8.2 Tracing and Stepping. The trace command takes a procedure name or a list of procedure

names as input. Whenever any traced procedure is called, Logo prints a message on entry to the

procedure, including the actual argument values of this call; when the procedure outputs or stops,

Logo prints a message including the output value if any. The entry and exit lines are shown indented

by a number of spaces equal to the depth of the call stack. The untrace command takes a name or

list of names and disables tracing of the named procedures.

to launch
countdown 3
print "blastoff!
end
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to countdown :number
if :number=0 [stop]
print :number
countdown :number-1
end

? trace [launch countdown]
? launch
( launch )
( countdown 3 )
3

( countdown 2 )
2

( countdown 1 )
1

( countdown 0 )
countdown stops
countdown stops
countdown stops

countdown stops
blastoff!
launch stops
?

This trace output is actually somewhat of a lie, in a Logo implementation that includes tail call

elimination. There’s only one little person (that is, one stack frame) handling countdown when

it’s not being traced. And there have been Logo implementations in which “countdown stops”

would only be printed once for this example. But most Logo dialects that implement trace give
a result like the one shown here, for two reasons. The more important reason is that we don’t

want to expose to kids complexities that are in the interpreter only for efficiency reasons. The

secondary reason is that, in fact, tracing a procedure makes it effectively non-tail recursive. It’s as if

the procedure were

to countdown :number
print (list "( "countdown :number ") )
if :number=0 [stop]
print :number
countdown :number-1
print [countdown stops]
end

That final print line comes after the recursive call, so there’s still work to be done when the

recursive call finishes.

The step command similarly takes a procedure name or list of procedure names as input.

Whenever a stepped procedure is called, Logo types each line of the procedure body (i.e., prints

the line but without a newline at the end) followed by a >>> prompt, and then waits for the user to

type a newline character before carrying out the instructions on that line. The user can instead

type the system pause character, to examine variables or even modify the code of the procedure

before continuing. It’s noteworthy that the unit of stepping is a line rather than an instruction.

Logo allows multiple instructions on a line, but experienced Logo programmers use that capability
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with groups of instructions that form a meaningful unit in the programmer’s thought. The unstep
command is analogous to untrace.

? untrace [launch countdown]
? step [launch countdown]
? launch
[countdown 3] >>>
[if :number=0 [stop]] >>>
[print :number] >>>
3
[countdown :number-1] >>>
[if :number=0 [stop]] >>>
[print :number] >>>
2
[countdown :number-1] >>>
[if :number=0 [stop]] >>>
[print :number] >>>
1
[countdown :number-1] >>>
[if :number=0 [stop]] >>>
[print "blastoff!] >>>
blastoff!
?

3.8.3 Print as a Debugging Aid. In an interactive pause, the user wants to find out why an error

or other unexpected behavior happened. This investigation mostly happens by examining the

values of variables. In an IDE, there’s generally a special notation to allow watching a variable

dynamically, but in Logo, we use the same print command that programmers use to interact with

the user of a working program.

Print instructions can also be inserted in a program to provide debugging information without

pausing. This is everyone’s first debugging technique, precisely because it uses a mechanism that

the programmer already understands, but in some circles it’s disparaged as unsophisticated. It’s

true that a programmer who inserts print statements in the code has to remember to clean up

after debugging by removing them. But the Logo approach is to prefer this minor chore over the

intellectual strain of learning a special debugging language in parallel with learning Logo itself.

4 LOGO BEFORE PERSONAL COMPUTERS
In this paper the history of Logo is divided into two periods. The dividing line is around 1980. By

then the personal computer revolution had started and Papert’s book Mindstorms [Papert 1980]
came out. Logo moved from time-shared computers to personal ones. This section highlights some

of the key events and ideas from before 1980.

Logo was invented in 1966 primarily by Papert and Feurzeig at BBN in Cambridge, Massachusetts.

While research continued at BBN under the direction of Feurzeig, in 1969 the Logo Group was

started at the MIT AI Lab, a lab that Papert co-directed with Minsky. In the early 1970s a Logo

research and development group was formed at University of Edinburgh’s AI Department.
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We begin this section with a first-person account from Cynthia Solomon, the only one of the

present authors who was involved with Logo from its very beginning.
13
There are first-person

accounts from some other authors later in the paper and later in the history.

4.1 Reflections from Cynthia Solomon
In 1966 Seymour Papert consulted for Wally Feurzeig, head of the education group at BBN. Wally

had a school project involving five schools. As part of their math class the students were learning

a version of Telcomp, an algebraic programming language similar to BASIC. Seymour visited

the classrooms and was struck by the absurdity of using an algebraic programming language to

help students to understand algebra. Seymour decided that what was needed was a programming

language specifically designed for children.

During that academic year Seymour talked about this new language mostly with Daniel (Danny)

Bobrow (head of BBN’s AI Group) and Wally Feurzeig. By the end of summer 1966 Seymour

specified this new language and presented it to a small group. At that time I was a member of

Wally’s group at BBN. The group, Seymour, Wally, Danny, Dick Grant (an MIT student) and me,

thought of the new language as “Baby Lisp” or “Lisp without parentheses.” Danny immediately

started implementing the language in Lisp on BBN’s time-shared SDS 940. He gave it over to me

and later Dick took it over.

The guiding idea was that Logo would be a language for playing with words and sentences.

Seymour said: “What is one of the chief activities of children? Why, playing with words and

sentences.” Danny at first called the language Ghost, after the children’s word game. That name

didn’t satisfy Wally who came up with a much more suitable name, Logo, from the Greek λόγoς ,
word.

By summer 1967, there was a working Logo written in Lisp and running on BBN’s SDS-940. It

was tried out with 10 year old children at the Hanscom School, Lincoln, Massachusetts. Seymour

taught, Wally and I were observers. Before and after each class Seymour and I held debriefing and

debugging sessions.

Fig. 4. Seymour Papert, Cynthia Solomon, Danny Bobrow, and Wally Feurzeig (Papert and Solomon courtesy
of Frank Frazier; Bobrow courtesy of MIT Museum; Feurzeig by Wikimedia user Daderot, 2006, CC0)

13
Anecdotes not otherwise credited throughout Section 4 are based on Solomon’s personal recollections.
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A result of this experience was a totally revised Logo ready for implementation on a time-shared

Digital Equipment Corporation (DEC) PDP-1, also at BBN. This system was ready for the 1968-69

school year.

In the fall of 1968 12 Teletype terminals were put in a classroom at Muzzey Junior High School

in Lexington, Massachusetts. They were connected from the school to the Logo time-shared DEC

PDP-1 at BBN. The students were 12 year olds (seventh graders) who clustered in the average

school performance range. Instead of their regular seventh grade math course they were taking a

year-long computer math course.

The activities included writing programs for Pig Latin, Twenty Questions (Guess My Number),

Nim, sentence generators, math teaching programs, and story-telling. These were projects that

followed a style of programming encouraged by Logo: projects that could be divided into small

procedures, which could be debugged separately from the whole. This emphasized the importance

of giving things names so that you can talk about them.

Alan Kay visited in the Spring of 1969 and noted:

. . . I visited Seymour Papert, Wally Feurzeig, and Cynthia Solomon to see the Logo

classroom experience in the Lexington schools. This was a revelation! And was

much more important to me than the metaphors of “tools” and “vehicles” that

were central to the ARPA way of characterizing its vision. This was more like

the “environment of powerful epistemology” of Montessori, the “environment

of media” of McLuhan, and even more striking: it evoked the invention of the

printing press and all that it brought. This was not just “augmenting human

intellect,” but the “early shaping of human intellect.” This was a “cosmic service

idea.” [Kay 2013].

Fig. 5. Students of Muzzey Junior High School using Teletype terminals (courtesy of Frank Frazier, circa 1968)

But that is not how things were at the start. For the first month or so, this course was taught by

a math teacher with very little programming experience. She concentrated on the meaning and

syntax of Logo operations. Children worked on problems like this one:

What is the value of
LAST OF FIRST OF BUTFIRST OF "THE GOOD CAT"
Answer: “D"
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This was not an ideal approach and the atmosphere in the classroom reflected that fact. We

knew that it is possible to write exciting programs with a small subset of Logo commands and

with little awareness that operations can be composed or chained. We believed that, at least for

younger students, initial exposure to Logo should minimize emphasis on syntax and the variety of

operations. Instead, concentrating on concepts provided an immediate pay-off in programming

outcomes that led to excitement for the children.

Realizing we had not adequately prepared the teacher Seymour and I stepped in as the teachers.

We focused on children creating projects.

Before the Muzzey experiment, we had some experience in teaching children to program in Logo

and other languages. Working in an actual school, however, forced us to recognize some misleading

facets of our previous experience. Most important was that our teaching method depended heavily

on what came to be referred to as “computer culture.” We had at our fingertips many examples,

analogies, ways of looking at programming, jokes, turns of phrase, and other useful aids for

establishing a lively interaction with the children. However confronting a class daily was new; our

previous experience teaching programming to children had not prepared us for it.

One early favorite project was to write a program to translate English into Pig Latin, a child’s

game in which you strip consonants off the front of the word and attach them to the end, followed

by “ay,” e.g., “school” to “oolschay.” The point of Pig Latin was to communicate with other children

in a way that adults wouldn’t understand. Many heuristics can be applied to the problem of writing

a translation program. For example, it is natural to plan the solution by subdividing the task. You

can think about how to obtain a sentence-translating procedure, call it PIG, from a word-translating

procedure, call it PIGWORD, without worrying, for the moment, about how PIGWORD itself works.
Similarly, when working on PIGWORD one need not concern oneself with how it is to be incorporated

into PIG. Unlike an algebra word problem or a real-life problem, the subdivision into component

parts is particularly clear. The pedagogical purpose is for children to obtain from these simple cases

good planning habits and clear paradigms for their strategies. The hope being that they will later

be able to generalize these strategies and apply them to other problems.

TO PIG :SENTENCE
IF EMPTY? :SENTENCE [OUTPUT []]
OUTPUT SENTENCE (PIGWORD FIRST :SENTENCE) (PIG BUTFIRST :SENTENCE)
END

TO PIGWORD :WORD
IF VOWEL? FIRST :WORD [OUTPUT WORD :WORD "AY]
OUTPUT PIGWORD (WORD BUTFIRST :WORD FIRST :WORD)
END

TO VOWEL? :LETTER
OUTPUT MEMBERP :LETTER "AEIOU
END

? PRINT PIG [THE RAIN IN SPAIN]
ETHAY AINRAY INAY AINSPAY

4.2 Logo Goes to the MIT AI Lab in 1969
The BBN work set the stage for what was to become a powerful, flexible, and usable programming

language for children. It highlighted the ease with which learners can quickly become experts.
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In the summer of 1969 Solomon left BBN to join Papert at the MIT AI Lab and the Logo Group

was formed.

4.2.1 The Birth of the Logo Turtle 1969/70. The Logo turtle idea appeared as the Muzzey experience

was coming to an end. The students did well with a diversity of programming projects focusing

on words and sentences, with numbers being special words. But based on work with Minsky and

Piaget, Papert was again struck by an expanded view of domains for children’s explorations. What

if there were a concrete object to play with? A device that could be controlled by a child? In England

William Grey Walter had built Elmer and Elsie, two automatons, that could walk around a space.

He called them tortoises. Picking up on Elsie and Elmer, the Logo creatures were dubbed turtles.

The early turtles were tethered. They soon had a counterpart living on a graphics screen, initially

known as display turtles.

4.2.2 Logo Activities at the MIT AI Lab. Thanks to the talent and cooperation of Marvin Minsky and

others at the MIT AI lab, the Logo group was able to develop two floor turtles (a large yellow canister

put together by Russell Noftsker and John Roe and a plexiglass turtle built by Tom Callahan), a

display turtle (programmed by Hal Abelson), a music box (built by Marvin Minsky), and a version

of Logo running on the Lab’s time-shared PDP-10 (with the chief programmer being Ron Lebel).

Many new ideas for expanding procedural thinking and debugging were also developed as the

Logo Group taught children to walk on stilts, juggle, and more. This work spawned lots of ideas

that became part of the paper “Twenty Things to do with a Computer” [Papert and Solomon 1971].

On April 11, 1970, the first public Logo symposium, called Teaching Children Thinking, was held

at MIT and attended by over 700 people.

Fig. 6. Poster of the Logo Symposium: Teaching Children Thinking (Cynthia Solomon collection)

For the 1970-71 school year Papert and Solomon taught a group of 5th graders (10 year olds) at

the Bridge School in Lexington (Massachusetts, USA).

4.2.3 1970: Turtles and Turtle Geometry. Turtles gave rise to Turtle Geometry, which is a local

geometry focused on the turtle’s position and heading. The basic turtle commands are very simple.

They consist of six primitives: FORWARD, BACK, RIGHT, LEFT, PENUP, and PENDOWN. The turtle gives
children immediate feedback as it responds to their commands. Figure 8 illustrates the use of the

main turtle commands.

Exploring the turtle’s behavior led to an important theorem: the Total Turtle Trip Theorem. If

the turtle repeatedly moves a fixed amount and then turns a fixed amount it will eventually either

return to its starting state or be bounded by two parallel lines. One can envision this by playing
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Fig. 7. Floor Turtles (left) and Music Box (right). (Cynthia Solomon collection)

Fig. 8. Basic Turtle Commands (Cynthia Solomon collection)

with the POLY procedure. In its simplest form, POLY has two inputs: step and angle. In Logo, this is

written

to POLY :step :angle
forward :step
left :angle
POLY :step :angle
end

The pictures in Figure 9 show the effect of invoking this procedure with different inputs: the

first input, step, specifies the length of a side; the second input specifies the angle.
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Fig. 9. Result of running POLY with different inputs (Cynthia Solomon collection)

A slight modification to line 3 causes the procedure to draw spirals. This version no longer

illustrates the Total Turtle Trip Theorem, since the distance that the turtle moves is no longer fixed.

We can also change the name of the modified procedure to POLYSPI.

Fig. 10. POLY and POLYSPI programs and POLYSPI output (Cynthia Solomon collection)

One can ask: what are good inputs? Can the turtle make any polygon? What are the inputs for

a regular polygon, a star, or a rosette? Can you predict how many vertices will be in the figure?

What about how many times the turtle turns 360 degrees? — This is called the winding number.
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4.2.4 1973–76: Button Boxes and Slot Machines. Radia Perlman, an undergraduate student at the

Logo Group in the 1970s, was interested in preschool-age children [Perlman 1974], for whom both

the small keyboard buttons on a computer terminal and the need to read and write code were

barriers to using Logo. She designed several preschool-specific control devices, of which two were

implemented: first the button boxes and then the slot machine [Perlman 1976].

There were four different button boxes (See Figure 11.) with different buttons that were made

to plug into each other. The boxes were not all introduced at once, but in succession as learning

progressed. The four boxes were

(1) The action box: Buttons forward, back, left, right, pen up, pen down, lamp on, lamp off, toot.

(2) The number box: Buttons 1 through 10, and stop.

(3) The memory box: Buttons start remembering, stop remembering, do it, and forget.

(4) The four procedure box: Red, green, blue, and yellow buttons.

Beginners would be given only the action box, in which each button had an immediate effect in

the connected floor turtle. The buttons were labelled with pictures, not with text. Only after a child

was perfectly comfortable drawing a shape or navigating a maze with the action box would the

teacher plug the number box into it. A number button could be pushed before an action box to

repeat that action several times.

Fig. 11. Perlman and children with button boxes (Cynthia Solomon collection)

The slot machine was an interface for more advanced learners. It consisted of several long plastic

bars with slots spaced along each top surface. Each slot bar was a different color. The machine was

programmed by inserting cards in the slots. Cards were of different heights. Action cards were the

tallest; in front of an action card could be a shorter number card; and in front of that could be a still

shorter condition card. So, a single slot could say “if the turtle is not touching a wall, move forward

five steps” using one of each kind of card.

4.2.5 Also in the 1970s: Developments in the Logo Group. The MIT Logo Group and the AI Lab

created a new implementations of Logo for the DEC PDP-11/45 with stand-alone graphics terminals.
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These terminals were based on Tom Knight’s terminals for the AI Lab’s PDP-10. The PDP-11 system

was built primarily by Ron Lebel, the lead Logo systems programmer. In the summer of 1972, the

system was used at a math education conference at the University of Exeter, England, where the

group worked with turtles, the Minsky music box, and children. DEC had sold a PDP-11/45 to the

University of Exeter and so happily also sent along with it the MIT Logo Group’s equipment. The

Logo Group going to Exeter included Tom Knight and Ron Lebel as well as Hal Abelson, Cynthia

Solomon†14, Jeanne Bamberger, Margaret Minsky†, and Seymour Papert.

A noteworthy event occurred before the conference. One of the 12-year olds, Jonathan Pledge,

exploring turtle behavior created a universal maze-solving algorithm. See Figure 12.

Fig. 12. The Pledge algorithm for escaping from a turtle trap. From Turtle Geometry: The Computer as a
Medium for Exploring Mathematics [Abelson and diSessa 1980] p. 178. (Courtesy of the authors)

(1) Select an arbitrary initial direction, call it “north,” and face that way.

(2) Walk straight “northward” until you hit an obstacle.

(3) Turn left until the obstacle is on your right.

(4) Follow the obstacle around, keeping it on your right, until the total turning (including the

initial turn in step 3) is equal to zero.

(5) Go back to step 2.
15

After the conference, the company General Turtle was formed tomake and sell turtles for whoever

wanted them. In approximately 1975, Marvin Minsky designed a stand-alone turtle graphics system

for General Turtles, the TT2500. It was connected to a Digital Equipment Corporation LSI-11

computer running Logo. These computers were used in the “Brookline project” at the Lincoln

Elementary School, Brookline, Massachusetts, with Dan Watt as the principal teacher [Papert et al.

1978, 1979a,b].

14
The dagger symbol † is used to indicate a reference to one of the authors of this paper.

15Turtle Geometry, pp. 177–179. Courtesy of the authors.
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In 1978 Papert was contacted by Cecil Green of Texas Instruments. TI wanted a version of Logo

for the upcoming TI 99/4. His grandchildren were attending the Lamplighter School, a private

school in Dallas. The school was going to be given TI 99/4 computers when they were released.

The Logo Group did the development. The team included Ed Hardebeck and Gary Drescher. The

TI 99/4 had a sprite chip in it. There could be up to 32 colored sprites with individual speeds, but

only one turtle for drawing. The sprites could be animated and could sense collisions with other

sprites. The version was completed by 1980. The TI 99/4 was the first microcomputer with Logo on

it available to schools and homes.

4.3 Powerful Ideas from the Early Days
This section points out powerful ideas that children in a Logo learning environment encounter.

Identifying and giving these ideas names so that children can talk about them is in itself the

powerful idea of Thinking About Thinking.

4.3.1 Anthropomorphization and Body Syntonics. A central theme in Papert’s thinking about how

children learn about topics such as computers, mathematics, or even their own thinking and

learning, is that we understand things in relation to our own bodies. In contrast, traditional school

geometry, for example, views the world or the plane from a bird’s eye view: the X and Y axes

represent an absolute coordinate system that is foreign to the child. Instead, the natural perspective

for a child is to think of what the child wants the turtle to do, in relative terms. To devise or debug

a Logo program, the child can “play turtle.” Turning left, from the turtle’s eye view, might be

turning North, or it might be West, or Southeast, in a traditional coordinate system. When the

child “becomes the turtle,” there is no confusion as to what turning left means. In his later work,

Papert used the phrase Body Syntonics to extend this idea. Anthropomorphization is related, but

not identical. The child can imagine how the turtle is deciding what to do, by thinking of it as a little

person, or (in the case of subprocedures or recursion, see “little man model” in the next section) a set

of people who are asking one another to perform certain steps. Conversely, anthropomorphization

allows the child to think, “the turtle has a bug” rather than “I made a mistake,” thereby focusing

on the intellectual challenge, rather than the negative emotions of the situation. The child uses

computation as a helpful metaphor for understanding their own thinking, and even for empathy

with the thinking and confusions of others.

4.3.2 Metalanguage. The goal of Logo was more than simply developing a programming language

for children. Perhaps equally important was to develop a “metalanguage”: a collection of metaphors,

a vocabulary, and a way of talking both about the language and about the powerful ideas it

embodied.

As an example of vocabulary, instead of talking about variables, we talked about associating

a “name” and a “thing.” Naming a thing was used to describe what most languages refer to as

assigning a value to a variable.

Instead of the more common

foo = 23

Logo sets the value of a variable with

name 3.1415 "pi

if the association was meant to be permanent, or

make "x :x+1

if the variable was actually varying.
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As an example of a metaphor, recursion was described using the “little man model”(since then

renamed “little people model”), an anthropomorphic metaphor. Figure 13 illustrates the execution

of PRINT ITEM 2 [A B C] where ITEM is defined as

TO ITEM :NUM :SENT
IF :NUM = 1 THEN OUTPUT FIRST :SENT
OUTPUT ITEM :NUM-1 BUTFIRST :SENT
END

This figure is a re-creation of the very early original, using modern Logo notation. The text has

not been changed, apart from the Logo syntax.

ITEM 2 [A B C] ITEM 1 [B C]

BB

PRINT man ITEM man
another
ITEM man

The PRINT man sees
that his input is
ITEM 2 [A B C]
So he calls up a friend
and gives him the
procedure ITEM and
the appthe appropriate inputs.
He says: Get the job
done; don’t bother me
until you are through.

[Later]
The reply to my request
is B.  Now I can PRINT it.

The ITEM man says:
:NUM is 2.  If it were 1,
I’d reply FIRST of
[A B C], or A.  But it is
not 1, so I see I have to
call up another guy to get
ITEM 1 [B C]ITEM 1 [B C]

[Later]
The reply to my request
is B.  My instructions say
I must OUTPUT the
answer.  That means I must
pass it back.

This guy has it
easy.  He replies
B, since the
program says
OUTPUT FIRST
[B C]

Fig. 13. The ‘Little Man’ view of Logo computations (Cynthia Solomon collection)

4.3.3 Debugging. Logo did provide tools to help with the debugging of code, when we talk about

debugging as a big idea, we’re thinking more about a child debugging his or her understanding of

the computing process and of the algorithm that the Logo program should implement. For example,

a common beginner’s misunderstanding is to think that the left and right commands move the

turtle leftward or rightward on the screen, rather than turning it. A Logo teacher seeing a child

struggling with this problem is likely to suggest that the child stand up, move into an unobstructed

area in the room, and “play turtle,” carrying out the instructions to draw a square, the universal

first Logo exercise. When the child’s leg muscles understand the turning commands, that’s the time

to return to the computer and revisit the misbehaving code.

In the early days, Logo teachers were careful to say “the turtle has a bug,” rather than the child

or the program having a bug. In playing turtle, the child’s task is to teach the turtle, the child’s

relationship with the turtle becomes more like a teacher’s relationship to a learner.

Another example of a common early misunderstanding is to think that a recursive call means

“go back to the top.” That misunderstanding works in the very simplest recursive commands, in
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which there are no inputs and the recursive call is the last instruction in the procedure. But as the

programming tasks get more intricate, the “go back” model fails. The teacher will try to help the

child debug his or her understanding by reminding him or her about the Little People model.

The basic message that comes from ideas about debugging is that we learn from our mistakes;

that the intricate process of making things work or learning new skills has to do with hypothesizing,

testing, revising, and so on. Children are encouraged to collect, classify, and celebrate their bugs.

Sometimes bugs, serendipitously, are adopted as features worth perpetuating, sometimes procedures

must be constructed to deal with the phenomena caused by their appearance, and sometimes the

bugs and their side effect need to be removed. In this pursuit, children become creative researchers

studying behavior, making up theories, trying out ideas, etc.

4.3.4 Procedurization. Converting a set of steps into a named procedure is one of the most powerful

ideas a child can learn from a short exposure to Logo. It enables the child to use abstraction, one of

the “big ideas” in adult Computer Science, without needing a formal understanding of this concept.

Without knowing phrases such as “managing complexity,” a child can break down the steps to solve

a hard problem into simpler subprocedures, and, significantly, give each procedure a name. Each

can be debugged separately, and then used repeatedly.. The usefulness of procedurization increases

as the child learns to generalize by providing inputs, such as to parameterize the size of a polygon

to be drawn.

5 THE ’80S AND BEYOND: HUNDREDS OF LOGO DIALECTS
The years 1977-79 saw the introduction of several personal computers designed for the general

public: the Apple II, the Commodore Pet, the Atari 800, the TI 99/4, and the Radio Shack TRS-80.

(There had been earlier microcomputers designed for hobbyists.) The IBM PC came out in 1981 and

the Macintosh in 1984. These machines and others led to an explosion of Logo implementations.

Pavel Boytchev’s meticulously researched Logo Tree Project [Boytchev 2014] lists 303 versions
of Logo through 2015. (Some of them are marked as incomplete versions, often with just turtle

graphics.) Readers interested in the details of a particular version are referred there; in what follows,

we try to capture major trends.

Of the true Logo implementations (ones with the word and sentence functions, not just turtle

graphics; see Section 3.4), almost all derive their design directly or indirectly from one of two

sources: (1) versions from the MIT Logo Group, for the Texas Instruments 99/4 and for the Apple II;

(2) versions from LCSI, starting with Apple Logo.

We distinguish four historical developments during this period:

5.1 Supporting the myriad new personal computers

5.2 Design for microworlds

5.3 Object oriented programming

5.4 Localization

We discuss each of these in the following sections.

5.1 Supporting the Myriad New Personal Computers
• TI Logo was developed at the MIT Logo Group. Work started in 1978. It was tested at the Lamp-

lighter School, Dallas, Texas, in 1979, and released in 1981. The 99/4 computer was a commercial

failure, but it was crucially important to Logo history because it allowed a version of Logo that

included a graphics coprocessor that, in addition to the usual graphics, introduced sprites (32 color
graphic elements of 16x16 pixels). Each sprite could be moved on-screen and manipulated as a

single entity. TI Logo used the sprites, and introduced the tell command:
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tell 12
setspeed 100

to send a message to sprite 12. This was a first small step in the direction of object oriented

programming in personal computer Logo. (There was also a standard turtle with a pen.) TI built the

sprite chip to support animation for video games, but it also allowed multiple-turtle animation in

Logo as a fourth microworld (after natural language, turtle geometry, and the dynaturtle (Section

5.2)), even on non-TI computers with a sprite chip add-on. Eventually, computers became fast

enough to support animation without special hardware.

• 1981 also saw two versions of Logo for the Apple II. One, from the MIT Logo Group, was

licensed to a few companies, most notably Terrapin, which went on to develop versions for other

machines and, as of 2020, is still actively developing its version of Logo [Terrapin 2020a,b] and

selling floor turtles to use with it. The second Apple version, released as the official Apple Logo,

was developed by LCSI. Its design was a deliberate rethinking of personal computer Logo, based

on MIT PDP-11 Logo rather than on the earlier microcomputer versions. LCSI, too, went on to

produce many further versions of Logo, including a Sprite Logo for the Apple II that came with an

add-on circuit board with the TI sprite chip.

• The Apple II had an address space of 48Kb. This was universally viewed as not enough to

support any programming language other than BASIC, and Apple sold a “language card” that added

an additional 16Kb of bank-switched memory, initially for UCSD Pascal, but also used by Logo. So

when Atari wanted a Logo for their 400 and 800 microcomputers that would fit in a 16Kb cartridge,

it was quite a challenge, met by Brian Silverman†16 and his team at LCSI.

• The goals of Berkeley Logo [Harvey 1988]† (also known as UCBLogo) were (1) to allow

Logo program portability across DOS, MacOS, Unix, and Windows systems; (2) to support the

second edition of the Computer Science Logo Style books [Harvey 1985, 1986, 1987] without dialect

footnotes; and (3) to establish an ambitious minimum Logo standard for future commercial Logo

implementations. It succeeded at the first two goals. It didn’t entirely succeed at the third goal, but

some commercial versions, such as Imagine (Section 5.3.5) and recent versions of Terrapin Logo

[Terrapin 2020a,b], did draw inspiration from UCBLogo.

Since UCBLogo is free software (GPL licensed), distributed with source code, several other free

Logo implementations were built on it, including Andreas Micheler’s aUCBLogo [Micheler 2004],

George Mills’s MSWLogo [Mills 2016], David Costanzo’s FMSLogo [Costanzo 2005], and Chronis

Kynigos’s E-slate [Kynigos et al. 2000]. UCBLogo was moribund for a while but is now (2020) in

active development.

5.2 Design for Microworlds
Perhaps the most important moment in Logo history was the early introduction of turtle graphics as
a newmicroworld—that is, a new topic to explore through the medium of programming—in addition

to its initial focus on words and sentences (arguably the first Logo microworld, although that

concept wasn’t articulated until turtle graphics appeared as a second one). The third microworld,

in the 1970s, was Andrea diSessa’s dynaturtle, to teach Newtonian mechanics. In this microworld,

you can only apply a force to the turtle, with the kick command, which takes an acceleration

magnitude as input, using the turtle’s current heading as the direction of acceleration, and adds the

resulting vector to the turtle’s vector velocity. [diSessa and Abelson 1986; Sherina et al. 1993] And,

as already mentioned, Logo for the TI 99/4 introduced a fourth microworld, animation: sprites with
costumes and setspeed to start a sprite moving independent of the program. (Animation was part

of Logo practice from the beginning, but personal computers of the 1980s were too slow to support

16
An author of this paper. The dagger symbol † is used to indicate a reference to one of the authors of this paper.
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animation well without sprite hardware.) In this section we consider other special-purpose Logo

developments to support specific microworlds.

• In 1983 Terrapin released Music Logo, designed by Jeanne Bamberger. Due to the limited

memory size of the Apple II, Music Logo did not have a turtle.

• In the early days of turtle graphics, floor turtles—actual robots—were as prominent in working

with students as display turtles. But the first generation of personal computer implementations had

no support for robots, because few schools had them. A collaboration with LEGO led to a revival of

interest in robots, starting with LEGO TC Logo for the Apple II in 1987.

The next big step was to eliminate the need for a computer to control the robot by embedding

a processor in a (large) Lego brick. MIT prototype “programmable bricks” inspired the LEGO

Mindstorms RCX (1998) and later Mindstorms models [Beland et al. 2000].

The MIT programmable bricks were often programmed with LogoBlocks, an early blocks pro-

gramming language [Begel 1996].

• It’s common for software users to want to automate repetitive tasks; therefore, many large

programs include a programming language. Sometimes this is an ad hoc scripting language, such

as AppleScript [Apple 1993] in macOS, but sometimes a general-purpose language is used, such

as the versions of Lisp in GNU Emacs [Free Software Foundation 1985] and AutoCAD [Autodesk

1982]. Logo has played this role in two very different contexts: LogoWriter (1986) from LCSI and

HyperStudio (1989) [Wagner 1989] by Roger Wagner. While both are meant for child users, in

HyperStudio the application (multimedia presentations) is the main point, with Logo as scripting

language, just as in software for adults. In LogoWriter, as in other versions of Logo, Logo is the

main point, and the application (a text editor, with turtle graphics) is a microworld.

LogoWriter’s microworld is a return to Logo’s original focus on text. Controversially, users
could also manipulate text directly on the screen, avoiding programming altogether. LogoWriter

introduced the metaphor of the screen as a two-sided piece of paper, with the project’s visible result

(text and turtle graphics) on one side and its Logo procedures on the “flip side,” always accessible

for editing.

Apart from its technical innovations, LogoWriter was important outside the United States because

it ran on PCs, which were mandated in Brazil, for example; and because it was translated into many

more languages than just French and Spanish. [Valente 2020]

• 1989 saw the release of Mitchel Resnick’s ∗Logo (pronounced “star logo”) for the Connection

Machine. It had hundreds of turtles. It also divided the screen background into thousands of

“patches”. The turtles and patches could all be programmed in Logo. The pedagogic purpose was

to support a simulation microworld, especially to explore emergent phenomena, in which simple

behaviors by large numbers of independent agents give rise to unexpected large-scale behavior by

the group as a whole, e.g., birds flying in V-shaped formation or ants looking for food. The name

∗Logo was inspired by ∗Lisp, the massively parallel version of Lisp that ran on the Connection
Machine: Daniel Hillis’s 1985 Ph.D. thesis project [Hillis 1986], a massively parallel computer

containing thousands of small processors.

At first this massive parallelism was available only on the Connection Machine, but eventually

stock personal computers became fast enough to simulate the parallelism. StarLogo for personal

computers was developed at Resnick’s group at the MIT Media Lab [Resnick 1994, 1996] following

the ∗Logo design. Starlogo implemented a MIMD (multiple instruction multiple data) style paral-

lelism for the turtles and a SIMD (single instruction multiple data) style parallelism for the patches.

The interpreter tried to hide this distinction from the user and most often succeeded.

In 2009, StarLogo TNG was released [Klopfer et al. 2009], with a Scratch-like blocks interface

and a three-dimensional world. The current version of StarLogo is the web-based StarLogo Nova

[MIT Scheller Teacher Education Program 2019].
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NetLogo (1999), created by Uri Wilensky at Northwestern’s Center for Connected Learning, is

a StarLogo-based dialect of Logo in which the interactive behavior of multiple agents is central.

An extensive programming effort has made NetLogo extremely efficient, increasing the number

of agents that can be simulated. NetLogo is widely used for agent-based modeling not only in

K-12 teaching but also in academic research by adults, e.g., in economics. NetLogo has not made a

move from text to block programming as StarLogo has done, reflecting its growing adult audience

compared with StarLogo’s continuing emphasis on teaching.
17
NetLogo has also added several

primitive user interface capabilities.

Goldstein and Lieberman’s† Germland, a cellular-automata microworld, was meant to show

students that a small set of program rules in a simplified environment could lead to complex

behavior and emergent phenomena [Goldstein 1973]. It was inspired partly by contemporaneous AI

Lab artificial-life research on the Game of Life by Bill Gosper, Tom Toffoli, Ed Fredkin, and others.

It could be seen as a precursor to StarLogo.
• In 1993 LCSI released MicroWorlds for the MacIntosh. It was primarily a microworld for

storytelling and videogames. It included features that had always been desirable, but until then could

not be implemented because of the limited resources of earlier personal computers. For example

MicroWorlds included an unlimited number of turtles. These were implemented as software sprites.

There was also an unlimited number of threads, allowing turtles to act independently of each other.

In addition to turtles there was a collection of user interface objects like sliders, buttons and text

fields.

5.3 Object Oriented Programming
5.3.1 An Early Research Version: Director. Inspired by the Actor model of computing [Hewitt et al.

1973] Ken Kahn† developed an object-oriented programming language on top of Lisp Logo [Gold-

stein 1975]. Director [Kahn 1976] was designed to support the programming of many interacting

animated sprites (though this predated the use of the term “sprites”). Sprites could send messages to

other sprites and messages could be delegated to other sprites to support code sharing. The syntax

of Director relied upon pattern matching and like Lisp Logo could resemble Logo or Lisp. Director

ran only on large computers capable of running MacLisp, and attracted only a small number of

users.

5.3.2 Programs as Collapsable Nested Boxes: Boxer. Boxer(1983), by Andy diSessa [diSessa and

Abelson 1986], was an early object-oriented dialect of Logo. It was the first step toward a visual

version of Logo. Users could put code and data inside a box, drawn on the screen. This basic

capability could be used for anything from the conditional commands of an if command to an

object, boxing its methods and fields. Boxes could nested, and any box could be zoomed open or

closed. This was a solution to the problem of very large programs that couldn’t show the user

the overall organization of their code. Boxer provided the encapsulation aspect of object-oriented

programming wherein a box was an object: packaging methods and data and making them invisible

outside the box. Boxer ran on expensive single-user computers, Sunworkstations and LispMachines;

later there was also a version for the Macintosh though it was not widely distributed.

5.3.3 Object-Based Functional Programming: TLC Logo. John Allen’s TLC Logo [Allen et al. 1984]

(the acronym is for “The Lisp Company”) was also released in 1983. It did run on inexpensive

personal computers, and so it introduced a thoroughgoing object orientation to a wider potential

audience. Turtles could spawn other turtles, and send them messages. Each turtle had its own thread

of execution.

17
As we go to press, NetLogo has released a beta version with a block programming capability.
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TLC Logo followed the “everything first class” philosophy: Turtles, procedures, environments,

closures, packages, lists, vectors, input/output streams and other types were possible values in all

contexts. It used dynamic scope, but allowed the user to provide a lexical environment as part of a

procedure call. APPLY, EVAL, and a REPL were all usable by users. It was pretty good at honoring

both its Lisp roots and its Logo roots, e.g., 2 + 3 and + 2 3 both gave 5. It had a ? primitive

that evaluated to “the question mark object”; other primitives took this to mean “tell me your

current value.” Thus, ask :turtle3 changed the current turtle, but ask ? just returned the current
turtle (the object, not its name, of course). You could create subclasses of any built-in class. The

documentation was very up-front about TLC’s membership in the functional paradigm conspiracy.

These two examples signify the beginning of a return to computer science as a microworld, with

projects such as writing a Logo interpreter in Logo itself.

5.3.4 Everything Is an Object: Object Logo. The next milestone was the 1986 release of Object Logo

[Drescher 1987], an object-oriented dialect of Logo. Gary Drescher designed a prototype circa 1983

at the Atari Cambridge Research Lab, and Coral Software developed and sold a microcomputer

version of it [Coral 1986]. The central idea of Object Logo is that an object is a dynamic-binding

environment: while commands are executed inside an object, the object’s local versions of any

functions or variables override any global versions. One object can be constructed as a specialization

(KindOf) another, inheriting the other’s functions and variables except where the specialized object

provides its own versions. Specialization can be used either to construct what are traditionally

considered subclasses (defining functions with modified or extended behavior) or traditional

instances (objects with their own versions of state variables). But the language does not require

that distinction, and a “class” object can also serve as a prototype “instance.”

Object Logo showed that prototyping OOP, done wholeheartedly, results in a very simple object

hierarchy. See Lieberman’s† OOPSLA86 paper for a discussion of simple prototyping [Lieberman

1986].

Object Logo also extended OOP to things other than turtles. Windows, menus, external files, and

many more object types were built into the language and programmable by users. Unusually, it

had multiple inheritance. Version 6.1 of UCBLogo includes a subset of the Object Logo OOP design.

5.3.5 Objects Across Computers: Comenius Logo, SuperLogo, Imagine Logo. Comenius Logo (1992)

[Blaho et al. 1994, 1993; Kalas and Blaho 1994] and Imagine Logo (2001) [Blaho and Kalas 2001;

Blaho et al. 2000], from Comenius University in Slovakia, introduced shapes and animations as first

class data; programmable choosers for missing inputs of partial procedure calls; prototyping OOP

with Turtle, Page, Pane, ToolBar, Button, Web, Net, etc. as built-in classes; true operating system

multithreading both in response to events (e.g. mouse click or drag) and explicitly launched in code,

including a critical section capability; a built in programmable Web browser class; and Net class

for communication among several running Imagine programs on the Internet. (In a great demo

project, a turtle glides through a doorway on one computer and glides out of the doorway on the

next computer over, remembering all the local state of the original turtle.)

Imagine’s design pays explicit attention to exposing objects to users at different levels of cognitive

complexity, from traditional single-turtle Logo programming, through multiple traditional turtles,

then multiple turtles with private variables and methods, to copying objects, making instances of

prototype instances, and finally the standard class/instance model.

5.4 Localization
Logo’s vocabulary was often translated into other languages. As early as the 1970s there were

versions in French [INRP 1981]:
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REPETE 4 [AVANCE 100 DROITE 90]

draws a square.

By the 1980s there were Logo versions in several European languages, as well as in Arabic,

Hebrew, Russian, Chinese, Japanese, and Wolof. More often than not each language had its own

version. This helped in sorting out different wording and word order in things like error messages.

There was no operating system support for font rendering and input methods so these had to

be invented or re-invented on a version by version basis. Typically these version were done in

conjunction with educators who spoke the relevant natural language as a first language.

A particular challenge in Logo’s approach to (natural) language is that English Logo doesn’t

easily translate to other languages. English has virtually no inflection; one can define a procedure

with to foo (the infinitive) and invoke it with foo (the imperative). In inflected languages, say

French, one would expect, e.g., pour fooer for the infinitive and fooez for the imperative. The

translator has to find wordings that make one name natural in all contexts.

By the 1990s most operating systems had the facilities to make localizations easy for developers.

This led to a proliferation of other language versions, amongst others Thai, Greek, Portuguese,

Brazilian and French.

The development of many language versions was coupled to research activities and deployment

in schools in many different countries [Papert et al. 1999; Seye Sylla 1985] including Costa Rica,

Russia, Argentina, Australia, Brazil, Thailand, Senegal, and others. Fonseca [Papert et al. 1999] says

that in Costa Rica Logo reached “approximately 225,000 children annually–—i.e., one out of every

two school children in the country.”

6 VISUAL PROGRAMMING LANGUAGES
The present and near future of programming languages for children seems to be visual languages

that work by snapping blocks together, each block representing a procedure call. The block style

of programming has the advantage that you don’t have to know how to type; very young Logo

beginners spent a long time hunting around the keyboard. Many (but not all) of the block-based

languages are, in various ways, children of Logo. One important exception is Blockly [Fraser 2015;

Pasternak et al. 2017], not a language, but a block-based user interface for any language, developed

at Google, which has been used in Scratch 3.0 and in the Android version of App Inventor.

6.1 From Text to Blocks: A Personal Reflection from Brian Silverman
In the early 1990s the discussions of some sort of visual Logo kept swirling around. I was a bit

skeptical about visual languages. I had discussed this with Seymour Papert. He felt it was just a

switch of representation that wouldn’t make much of a difference. I pretty much agreed. Mitchel

Resnick didn’t share our skepticism. He pushed for putting it to the test. Try it out and see what

happens. I thought trying it out would be good. We could then see that Seymour was right and get

the distraction behind us.

At that time I was working with Mitchel’s group at the MIT media lab. The group had worked

on “programmable bricks” that controlled LEGO contraptions, They turned out to be the precursor

to LEGO Mindstorms, Initially the programming for the bricks was done in Logo. We felt that these

bricks could provide a good environment to experiment with alternate programming language

ideas. There were many opportunities for kids to build elaborate projects without much need for

technical sophistication.

We encouraged a then-undergraduate, Andy Begel, to design and implement a simple blocks

language. As part of his Advanced Undergraduate Project Andy created Logoblocks [Begel 1996].

We tried it out with kids and teachers. To my surprise, but not Mitchel’s, it worked really really

Proc. ACM Program. Lang., Vol. 4, No. HOPL, Article 79. Publication date: June 2020.



History of Logo 79:49

well. What Seymour and I hadn’t anticipated is that the fact that it appeared simple allowed people

to be more willing to engage in the early stages than they otherwise would have. In some sense it

wasn’t simpler, but it appeared simpler and that mattered.

The first version of LogoBlocks was written in Macintosh Common Lisp, great for prototypes

not that great for distribution. We ported LogoBlocks to Java to ease deployment. Then people ran

workshops, teachers worked with children, and we became convinced that the concept was solid.

One could almost say that the idea of programming with blocks snapped into place.

In the early 2000s, Mitchel, Natalie Rusk, and I were working on the design of two projects.

One was the PicoCricket [Playful Invention Company 2014], with a programming language

based on LogoBlocks. The PicoCricket project also pulled in Robbie Berg and Paula Bontá. Paula

ultimately became amajor contributor to the design and implementation of several blocks languages.

The PicoCricket kit was an attempt to make an alternative to LEGO’s Mindstorms that was less

“powerful” and more playful.

The other project was Scratch [Maloney et al. 2004]. Scratch found its early inspiration in Squeak

eToys, LCSI’s Microworld Logo, and LogoBlocks. The Scratch team team then also included John

Maloney, who did much of the initial coding. A number of Mitchel’s students also joined in for

varying periods. In some sense, we hoped Scratch could play a similar role in the world that Logo

did – be a constructionist construction kit. My own involvement tapered off fairly early, before the

project really started growing.

Around 2004, I had a design quibble with Mitchel about the UI for blocks programming. Scratch

uses only a fraction of the screen for blocks, leaving the blocks canvas, in my mind, too cramped.

The PicoCricket system always felt more spacious. It controlled things off the computer so the

whole screen was available for blocks. Paula and I decided, as a design experiment, to make a

version of PicoCricket system that controlled a Logo display turtle. That way we could explore

alternative ways to have the code and work share the screen. We allowed the code to overlay the

work. I loved it. Mitchel didn’t.

We called that experimental version TurtleArt. It does not have words, lists, or data manipulation.

It does have a color model that loosely resembles 18th century artist P. O. Runge’s Farbkugel

[Schopenhauer and Runge 2010]. Over the next few years Paula and I refined the software. Artemis

Papert joined in as our “artist in residence.” We showed the project to lots of people, did workshops,

handed copies out to friends, and got lots of feedback. An amusing bit of early feedback was from

Stephen Wolfram. He told me “bad idea, you shouldn’t make programming look easier than it really

is.” Seymour’s early reaction was: “when will you stop wasting your time and get back to real work.”

Despite the early criticism, in time there were three releases, one bundled with the OLPC XO, a

Java based version, and an iPad app.

6.2 Brian Harvey’s Personal Narrative on Snap!: Scheme Disguised as Scratch
In 2009, the University of California, Berkeley, was one of several universities developing a new

kind of introductory computer science course, meant for non-CS majors, to include aspects of

the social implications of computing along with the programming content. Scratch wasn’t quite

expressive enough to support such a course (it lacked the ability to write recursive functions), so

Prof. Daniel Garcia and I thought “What’s the smallest change we could make to Scratch to make it

usable in our course?” After 20 years teaching Structure and Interpretation of Computer Programs
[Abelson et al. 1984], the best computer science text ever written, I knew that the answer to “what’s

the smallest change” is generally “add lambda.” I joined forces with German programmer Jens

Mönig, who had developed BYOB (Build Your Own Blocks), an extension to Scratch with custom

(user-defined) blocks, including reporters and predicates. At that time we were hoping to convince

the Scratch Team to adopt our ideas, so we took “smallest change” very seriously. BYOB 3.0 [Harvey
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and Mönig 2010], with first class procedures and first class lists, added only eight blocks to Scratch’s

palette. (The code is almost all Jens’s. My contribution was part of the user interface design, plus

teaching Jens about lambda.) Version 3.1 added first class sprites with Object Logo-style inheritance.

The Berkeley course, The Beauty and Joy of Computing (BJC) [Garcia et al. 2012], is also used by

hundreds of high schools, especially since the College Board endorsed it as a curriculum for their

new AP CS Principles exam. Unfortunately, some teachers have no sense of humor, and so BYOB

version 4.0, a complete rewrite in JavaScript, was renamed Snap! [Harvey 2019].
18

Since Scratch seemed to be positioned as the successor to Logo, it was a goal for Snap! to restore

the features from Logo that are missing in Scratch. The most important missing feature, the ability

to define functions (and therefore to use recursive functions), is at the core of the new language.

(Scratch introduced user-definable command blocks in version 2.0, but still doesn’t support user-

defined reporters.) Scratch had also replaced the structured text (word and sentence) functions with

a flat text string data type. We wanted to be backward compatible with Scratch, so we implemented

words and sentences as a library, defining first, last, butfirst, and so on. (Since block languages
allow multi-word procedure names, and you don’t have to type the long name in order to use the

procedure, the library names are, e.g., all but first letter of.)
Lists are first class and can be arbitrarily deep in sublists. The usual higher order functions

on lists are provided; the graphical representation of lambda is built into the blocks representing

higher order functions, and so beginning users can use higher order functions in simple cases

without thinking hard about function-as-data at all, but the full power of lambda is available to

more advanced programmers. It took us three tries to get the lambda design right, but we’re very

proud of its pedagogic benefits.

Another of our goals for Snap! is to be a complete version of Scheme; it was largely as a way

of planting that flag that we added call with current continuation, not taught in BJC (nor

even in SICP) but used to implement tools such as catch and throw as library procedures written

in Snap! itself. As of this writing, macros are only half-implemented; users can define procedures

whose inputs are unevaluated (more precisely, thunked, since procedures are first class), but cannot

yet inject code into the caller’s environment.

Snap! is lexically scoped, not least to allow the use of closures as objects, but a planned extension

is “hybrid scope”: variable names follow lexical scope, but instead of giving an error message when

no binding is found in the lexical environment, the evaluator will instead look in the dynamic

environment. So name capture is impossible, since the global environment is examined before the

dynamic environment. (Only if a mistyped name matches another name can the user get the wrong

variable rather than an error message. But mistyping can’t really happen in a block language.) This,

too, is an effort to be a Logo as well as a Scheme.

Since Snap! is free software (AGPL), it has served as the starting point for at least a dozen signifi-

cant extensions, including BeetleBlocks [Koschitz and Rosenbaum 2012; Rosenbaum et al. 2011]

for 3-D graphics and 3-D printing; TurtleStitch [Mayr-Stalder and Aschauer 2016] for controlling

sewing machines to do embroidery; Edgy [Bird et al. 2013] for studying graph theory; NetsBlox

[Ledeczi and Broll 2016] for access to online data APIs and collaborative editing of projects; and

others. The ability to write new Snap! blocks in Javascript, from the Snap! editor, has allowed
many other user-level extension libraries, including support for robots and other hardware. Snap!
features such as first class procedures help authors develop these extensions, even if the users of

an extension don’t see that.

18
For non-Anglophones, “BYOB” is used in party invitations as an abbreviation for “bring your own booze.”
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6.3 Access to Smartphone Hardware: App Inventor and Pocket Code
App Inventor [Wolber et al. 2015] is a programming language for Android phones and tablets,

developed by a team led by Harold Abelson (who led the development of MIT Logo for the Apple

II and co-authored Turtle Geometry [Abelson and diSessa 1980]), first at Google and later at MIT.

Its design principle is “What would Logo have looked like if we’d had mobile telephones back

then?” The fact that many children have phones means that they can build a program to satisfy

some real need that they have, and carry the program around with them. An app is created in a

block editor running in a browser; it can be run on an Android device immediately as it is edited,

and then compiled and downloaded to the Android device for standalone use. The advantage that

App Inventor has over other block-based languages is that it has access to the properties of the

telephone: it can dial numbers, send text messages, read the accelerometer, and so on. Although it

lacks first class procedures, it does make these interface components first class.

Pocket Code [Slany 2012; Slany et al. 2018] is an app that allows users to create and execute

Catrobat programs on Android and iOS smartphones, without the need for a laptop or tablet.

Although not directly descended from Logo, the block-based visual programming language Catrobat

is heavily inspired by Scratch. The user interface was designed for use on tiny screens, and so the

UI elements (the stage, the scripting area, etc.) are separate views rather than all present at once.

6.4 Ken Kahn’s Personal Narrative on ToonTalk: Concurrent Constraint Programming
I was directly inspired to create ToonTalk by a comment Seymour Papert made in a Logo meeting in

the second half of the 1970s. Papert described Logo as child-engineering the best ideas in computer

science and AI of the time. After more than a decade doing research on logic programming and

concurrent distributed computing, I thought that there were new powerful computer science and AI

ideas that could be engineered to become accessible to children. Specifically, research on concurrent

constraint programming [Saraswat 1993] that unified ideas from logic programming, constraint

programming, and concurrency. Vijay Saraswat and I created Pictorial Janus [Kahn and Saraswat

1990]. This language was purely visual; the syntax was based only upon the topology of drawings.

When in 1992 I discovered that Pictorial Janus was not accessible by children (or most adults)

I concluded that children needed a programming language that was much more concrete that

relied heavily upon animation. This led to ToonTalk, another attempt to child-engineer concurrent

constraint programming [Kahn 2001]. ToonTalk programs are constructed by demonstration inside

an animated world, training virtual robots to manipulate data and communicate by giving messages

to birds. Unlike other visual programming languages, ToonTalk represents programs as animations,

not as static graphics. I strove to match Logo’s goal of providing a low threshold and a high ceiling.

Morgado’s doctoral thesis (which I co-supervised) demonstrated the extent to which preschool

children (many of whom had yet to learn to read) could master ToonTalk [Morgado 2015]. As an

example of a high ceiling, ToonTalk was used in a graduate-level course on concurrent programming

at Keio University. I conceived of ToonTalk as a new Logo [Kahn 2001, 2007]. From 1998 to 2007,

ToonTalk had several national publishers and was the basis of large-scale research projects [Kahn

et al. 2011; Mor et al. 2004].

7 CRITICAL PERSPECTIVES ON LOGO
In this section, we focus on critiques of Logo’s role in children’s learning. Logo’s goals, educational

philosophy, and approaches to assessment have been the subject of numerous internal and external

critiques, giving rise to intense debates. While it would be impractical to discuss the five decades of

literature on this subject, we highlight a few examples, to illustrate the nature of these conversations.
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Most critiques of Logo have come from education researchers, who sought evidence regarding

claims such as that children could develop enhanced problem-solving or computational thinking

skills through exposure to Logo. There have beenmultiple areas of misunderstanding by all involved:

some resulting from over-optimistic claims, some from neglecting key assumptions behind the

claims, some from varying educational objectives, and some from differing research paradigms.

Most research done on Logo by the early teams from BBN and MIT focused on detailed interactions

with small numbers of children; direct observations by researchers led to continuous improvements

in both the language and teaching practices [Papert et al. 1979b]. Those working in the educational

research paradigm expected to see controlled experiments, wherein a treatment group had access

to computers running Logo and a control group did not. They sought statistically significant,

quantitative measurements of specific skills or achievement, often on traditional tests. Although

some researchers ([Clements and Gullo 1984]) reported positive results from such studies, others

([Pea 1983], [Pea et al. 1985]) reported disappointing results. The negative findings adversely

influenced Logo funding and decisions whether to adopt Logo in schools throughout the world.

In November 1982, Cynthia Solomon†19 visited The Bank Street School, where Roy Pea and

Midian Kurland were conducting their studies. Solomon had the opportunity to observe the class-

room. They were working with children 11-12 years old. Two teachers had prepared for teaching

Logo by attending a three-week workshop. Teachers and children were using three different Logo

implementations on two different types of computers, with various feature differences. One of the

teacher handouts given to the children for instruction contained several bugs, noticed by some

of the children. The main conclusion of the study was that teaching children Logo did not help

children learn broader skills such as planning.

Taking into account Solomon’s observations, Pea and Kurland’s findings should not have been

surprising to Logo enthusiasts, given all the contributing factors (what was taught, how was it

taught, which hardware was used, which Logo version, what was measured, how was it measured,

and so on). It is difficult to establish and control all of these factors, including teacher preparation

involving both programming itself and a vision of programming’s role.

Jim Howe and Tim O’Shea [Howe and O’Shea 1978] and John Self [O’Shea and Self 1983] obtained

better outcomes when Logo-knowledgeable researchers were present in the classroom, as opposed

to when teachers new to Logo taught on their own. If there are to be consistent positive outcomes

in educational settings, significant investment in teacher preparation is sure to be crucial. The

central importance of teacher preparation remains a crucial lesson today, as schools attempt to

bring computer science into the classroom.

In Chapter 7 of their book Windows on Mathematical Meanings [Noss and Hoyles 1996], Richard

Noss and Celia Holyes describe research into how Logo might help to transform education, with

an emphasis on mathematical reasoning. They provide a fresh perspective on some of the earlier

critiques, including examples of effective and ineffective uses of Logo, sample measures from the

UK mathematics curriculum, performance on puzzle-solving tasks, performance on achievement

measures for algebra and geometry, and discussion of alternative pedagogical styles and strategies.

8 LOGO’S INFLUENCE ON AI AND COMPUTER SCIENCE
The flow of ideas between artificial intelligence and Logo was not only in one direction. Important

ideas first introduced in Logo also fed back to artificial intelligence, and to computer science more

generally. This was especially evident in research areas pursued by graduate students at the MIT

AI Lab. Henry Lieberman, Mark Miller, and Ken Kahn share personal reflections.

19
The dagger symbol † is used to indicate a reference to one of the authors of this paper.
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8.1 Henry Lieberman’s Reflections on Logo, AI, and CS
I came to the MIT Logo Group around 1971, when I was an undergraduate student. Two things

attracted me to Logo: First, I had always had an interest in alternative education. I was a member

of the MIT Experimental Study Group, an undergraduate program that allowed students to design

their own curricula and work on independent projects. We had read several of the great advocates

of educational reform: Dewey, Neill, Freire, et al. I was drawn in by Papert’s vision for self-directed

and experiential learning.

Second, I was becoming excited by AI, which seemed to me to hold the route to understanding

human intelligence. I took courses from Marvin Minsky, Patrick Winston and Carl Hewitt, whose

research on understanding learning in machines seemed like it might yield useful insights into

learning in people. Papert brought these strands together in saying that we should encourage

students to “think about thinking” and give them the best available tools of AI to express their

ideas in procedural form.

Ira Goldstein, a graduate student in the AI Lab, created Lisp Logo [Goldstein 1975], an implemen-

tation of Logo in Lisp. I went to work as an apprentice to Goldstein. My first project was Germland

[Goldstein 1973], a cellular automata simulation Microworld meant to drive home the point that

complex interactions could arise from computation using simple rules.

After a few such experiments, it became clear that Lisp Logo was a good vehicle, both for

experimenting with other AI microworlds enabled by code in Lisp and for experimenting with

extensions and new languages on top of Logo. I took over the development of Lisp Logo from

Goldstein, initially focusing on graphics. When the first color and projection displays became

available to the Logo group, I implemented the first color Logo. I taught a class to high school

students with a Microworld demonstrating additive and subtractive color mixing. We also used

two-color glasses to implement the first 3D Logo graphics. Ken Kahn†, some students, and I won a

prize in the first computer art contest sponsored by Byte magazine [Byte 1976]. Kahn’s reflection

in Section 8.3 illustrates some of the higher level language experiments that Lisp Logo enabled.

My experience with Actors led me to propose that object systems be organized around the

idea of delegation: One “little man” asks another to do something if he needs help [Lieberman

1986]. Delegation uses the fundamentally dynamic message-passing paradigm, in contrast to the

more static inheritance model of Smalltalk. Delegation, and the desire to implement learning-by-

example, meant sharing knowledge between objects by the use of prototype objects rather than
the class-instance mechanism of Smalltalk. Prototype object systems are now common in several

programming languages, such as JavaScript.

Though many Logo programming environments did not provide much in the way of debugging

tools, Papert’s emphasis on the problem-solving processes of debugging did lead me to imagine

what better debugging tools for beginners might look like. Ron Baecker, one of the early pioneers

of program visualization and animation, did a film of a simulated animated Logo debugger [Baecker

1975] that visually replaced expressions with their values as the program was executed. I imple-

mented a debugger for Lisp in this style with Christopher Fry [Lieberman and Fry 1995]. Marc

Eisenstadt and Mike Brayshaw implemented a full Prolog interpreter deploying Baecker-style

program visualization in the ‘Transparent Prolog Machine’ [Eisenstadt and Brayshaw 1988].

Our interest in the debugging problem inspired several theses in the AI Lab that looked at

the structure of simple Logo programs, and investigated the diagnostic reasoning necessary to

recognize and fix certain kinds of bugs. They created models that could be useful in automatic

programming systems, intelligent tutoring systems and advanced programming environments. Ira

Goldstein’s MYCROFT [Goldstein 1975] automatically debugged simple turtle graphics programs.
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Mark Miller† wrote his thesis on SPADE (Structured Planning and Debugging) [Miller 1979; Miller

and Goldstein 1977], as further discussed below.

8.2 Mark Miller’s Reflections on Logo, AI, CS, and Psychology
I began graduate work at MIT in 1972, with strong interests in both cognitive/experimental psy-

chology and computer science. As an undergraduate, I had been inspired by my UC San Diego

advisor, Don Norman, and fascinated by Marvin and Seymour’s book, Perceptrons [Minsky and

Papert 1969]. I spent my first year at MIT in what was called the Department of Brain and Behavior.

Activities included single-cell recording of neurons, a line of research inspired by early work on

neural networks [McCulloch and Pitts 1943], now foundational in modern AI. While intrigued,

I decided to change departments and joined the AI Lab. The cognitive scientist in me remained

deeply curious about how children think and learn, so I joined the Logo group. I also embarked

on an extended introspective study: I enrolled, as a student, in a course, The Mechanics of Solids,
chosen because it was completely foreign to me. I kept a detailed, contemporaneous journal of my

own efforts to “construct the knowledge” in this course. My goal was to apply the AI theories of

Minsky and Papert, creating an explanation of the notes in my journal. I submitted this idea as a

dissertation proposal, but received no feedback.

Alongside Henry, I began working with Ira Goldstein. I made minor contributions to Lisp Logo,

including code for the music box, a very efficient turtle graphics package (“TV Hare”), and a scalable

font for turtle-drawn text. Driven by my earlier training in psychology, I also conducted a few pilot

experiments with children and teachers using Logo. In one study, I tried to understand whether

learning Logo was better for children than learning BASIC. I ran a pilot study in Brookline, MA,

involving two groups of students, learning both languages: half learned Logo first, then BASIC;

the other half learned the languages in the reverse order. Pilot data suggested that the BASIC-first

group never fully understood Logo, in several ways: their programs drew using Cartesian (“God’s

eye view”) coordinates rather than turtle-centric, relative coordinates; they avoided breaking down

programs into sub-procedures; and they never used recursion. The Logo-first students learned both

languages, but did not understand why anyone would use BASIC! I also ran a pilot study exploring

the possibility that learning Logo might transfer to improved performance on problem-solving tasks,

such as puzzles (similar to [Noss et al. 1997]), working with two classroom teachers. One taught

Logo without any discussion of powerful ideas or applicability to other tasks; the other emphasized

breaking problems into sub-problems, debugging, and other heuristic strategies, drawing analogies

to writing essays and solving puzzles. Improved puzzle performance was observed in the second

group, but not the first. Such experiments were not mainstream in the lab, so I never replicated

these pilot studies with large enough N; I did not publish this work.

Meanwhile, Seymour had been running some informal seminars on what he called, “Loud

Thinking.” I was strongly influenced by these, as well as the work of Newell and Simon [Newell

1972] on analysis of human problem solving protocols. I began collecting keystroke-by-keystroke

protocols of students working in Logo. My ambitious goal was to explain their behavior as episodes

of planning and debugging, analogous to the operation of Gerry Sussman’s AI research (“Hacker”)

[Sussman 1973].

Protocols of student Logo programming provided an ideal microworld for AI, analogous to the

blocks world. The relationship between automated analysis of programming protocols and the AI

goal of “program understanding” seemed strong. As a result, a series of papers jointly authored

with Ira Goldstein pursued this topic and led to my dissertation. I programmed—leveraging Lisp

Logo—a prototype for a future children’s programming environment that would interact with the

student in terms of plans and bugs, rather than mere code [Miller 1979].
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For me, the significance of teaching children thinking, and empowering them through computer

science, was profound. Although I never contributed to a commercial version of Logo, I seemed

to follow Logo, almost wherever it went. The entire time I was a graduate student, I also worked

at BBN. I knew Wally, but worked in another group, investigating AI approaches to the use of

computers in education, which led to contributions in cognitive science [Collins et al. 1975]. After

BBN and MIT, I headed for Texas Instruments, where Seymour was regularly consulting on Logo

at The Lamplighter School. Personal computing was about to explode on the world, and TI seemed

likely to advance Logo in major ways. But my only direct contributions to TI Logo were occasionally

explaining to a TI engineer what CAR or CDR meant, as they tried to decipher TI 990 Assembler

code written by the MIT “hackers.” The best part of my time at TI was that Seymour would stay at

my house when in town to consult and I had the pleasure of long and deep conversations with

him. One evening, he told me that Piaget had read my first dissertation proposal (Journaling Solid

Mechanics) and praised it. Seymour was puzzled that I had not pursued it!

Eventually, after seeing the Apple II (with its own Logo) and then a “Lisp Machine” board

manufactured by TI for Apple, I ended up spending a decade at Apple, becoming Lab Director

for Learning and Tools in the Advanced Technology Group. Now, I teach Computer Science,

emphasizing that bugs are good, through such Logo-inspired techniques as giving out small plastic

bugs, to celebrate the “coolest” ones, as the student explains the nature of their bug and how they

went about debugging.

8.3 Ken Kahn’s Reflections on Logo, AI, and CS
Soon after entering the MIT AI Lab as a doctoral student in 1973, I became fascinated by how

Logo was making some of the things I was learning about AI programming accessible to children.

In particular I was excited about the ways that AI could play multiple roles in education [Kahn

1977]. I became interested in providing children with tools in Logo for exploring natural language

processing [Kahn 1975]. I also explored how Hewitt’s ideas of actors could be applied to enhance

Logo. This led to my work on Director [Kahn 1979a], which built upon Logo (and later Lisp Logo)

to provide support for concurrency, delegation, and animation [Kahn 1976]. My ideas about AI and

children led to my doctoral thesis on an AI system that could turn stories into simple animations

[Kahn 1979b]. Ten years after leaving MIT I returned to research on programming languages for

children (see 6.4). Most recently I’ve been working on enabling children to do AI programming in

Snap!.

9 LOGO, SCHOOL, AND CHANGE
The early Logo researchers viewed themselves as mathematics educators. Logo was an instrument

to help young children do mathematics, rather than learning about other people’s mathematics

encapsulated in a curriculum. The paradigmatic research paper title was “Teaching children to be

mathematicians versus teaching about mathematics” [Papert 1972b].

It was for the sake of the mathematics that Logo researchers and teachers developed what we

have been calling the “Logo environment”: each child or group working on a project of their own

choice, time allocated for children to reflect on their work process and their thinking, the teacher

as helper rather than as authority.

The advent of inexpensive personal computers and the publication ofMindstorms in 1980 suddenly
brought Logo to large numbers of teachers without the benefit of teacher preparation workshops

run by the Logo developers. Unsurprisingly, many of these teachers viewed Logo differently, as

mainly about empowering children, and only secondarily, if at all, about mathematics.

The sight (and sound!) of a roomful of self-directed children is polarizing. Some teachers instantly

love it; others find it chaotic and unconducive to learning. Among those who love it, some began
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talking and writing about “the Logo philosophy.” By this they didn’t mean doing math versus

learning about math; they meant child-centered learning, focusing on the actual child in the room

rather than on the imagined future adult, and varying degrees of democracy in the classroom.

These ideas, of course, didn’t start with Logo. Rousseau published Emile, or On Education in 1762

[Rousseau 1762]; this is generally taken as the starting point of the modern progressive education

movement. But Logo introduced progressive education to a group of teachers who hadn’t been

aware of it.

How does the teacher in a Logo classroom feel about the rest of the school, as an institution? And

how does the school, as an institution, support or discourage student-centered learning? In some

contexts, progressive teachers will feel supported by fellow teachers and by school administrators.

In other contexts, progressive teachers will feel the opposite. The former are likely to talk about

Logo as an incremental reform to an already-okay school. Some of the latter may use the word

“revolution” to describe what their institution needs, although such an extreme word is controversial

among the authors of this paper.

Logo makes a dramatic difference in the lives of children when Logo-the-language is embedded

in Logo-the-environment. Logo at its best has motivated teachers to rethink their relationship with

curriculum and with children, and has encouraged children to reflect on their own relationship

with learning.
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APPENDICES

A LOGO TIMELINE

Versions or children of Logo are in Caps and Small Caps

Books are in Italics
Other events are in Roman

Logo prehistory, 1959—1965
1958–63 Papert with Piaget (Geneva)

1964 BASIC

1964–ca. 1980 Papert with Minsky

Logo in the lab, 1966—1979
1966 first BBN Logo

1967 Hanscom school
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1968–69 Muzzey Junior High School

1969 first MIT Logo, Perceptrons (Minsky and Papert)

1970 “Teaching Children Thinking” Symposium at MIT

1970–71 Bridge School, floor turtles, display turtle

1971 “Twenty Things to Do with a Computer”; Smalltalk

1972 Exeter conference, Pledge algorithm; Actors

1973 Edinburgh Logo

1973–76 Button Boxes, Slot Machines

1975 Lisp Logo, GTI 2500 vector display

1976 GTI 3500 standalone Logo computer

1977 Brookline project

1978 Work starts on TI Logo

Logo on personal computers, 1980—2008
1980 Mindstorms (Papert); Turtle Geometry (Abelson and diSessa)

1981 MIT Logo for Apple II (Terrapin), TI Logo released, Apple Logo, IBM Logo (LCSI)

1982–84 Atari Cambridge Research Lab

1982 Byte Logo issue, Logo for the Apple II (Abelson)
1983 Boxer, TLC Logo (beginning of OOP in personal computer Logo);

British Logo Users Group (BLUG);

Learning with Logo (Watt); Learning and Teaching with Computers (O’Shea & Self)

1984–86 MIT Logo conferences

1984 Thinking about TLC Logo (Allen et al.)

1985 LogoWriter; Computer Science Logo Style vol. 1 (Harvey)
1985–91 a flood of post-elementary Logo books

1986 Object Logo; Constructionism; Teaching with Logo (Watt and Watt)

1987 Lego TC Logo; first Eurologo conference

1988 Berkeley Logo; Computer Environments for Children (Solomon)

1989 *Logo

1993 Microworlds

1994 The Children’s Machine (Papert); Turtles, Termites, and Traffic Jams (Resnick)
1996 The Connected Family (Papert);

Windows on Mathematical Meaning (Hoyles and Noss)

1998 ToonTalk

2005 Imagine Logo

Logo’s children, 2004–∞
2004 Scratch

2005 TurtleArt

2009 App Inventor

2010 BYOB/Snap!; Pocket Code; first Constructionism conference (Eurologo renamed)

2019 First Snap! conference

B LOGO PUBLICATIONS
B.1 Logo Books: Beyond Square-Triangle-House

• Papert’s most influential book wasMindstorms [Papert 1980], which introduced both the Logo
classroom and turtle geometry to teachers. It was a required textbook in teacher credentialing

coursework in computer education for many years. The others are The Children’s Machine
[Papert 1994] and The Connected Family [Papert 1996].
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• From the beginning there were curriculum materials for Logo beginners, in the form of

handouts made by individual teachers. Once the commercially distributed microcomputer

implementations of Logo appeared in the 1980s, versions of the curriculum for beginners

were embodied in books distributed with the Logo software [Abelson 1982; Berger et al. 1988;

Solomon 1983].

Daniel Watt wrote a textbook for beginners not tied to a microcomputer version, making a

more serious effort than most to reproduce the ideal Logo classroom in a book [Watt 1983].

• Because even very young children could program in Logo, in the early days many people

thought that Logo was only for young beginning programmers. A second wave of curriculum

tried to overcome this by addressing a range of ages frommiddle school to university [Boecker

et al. 1991; Friendly 1988; Thornburg 1986]. Another kind of book was a collection of projects

with commentary [Birch 1986; Solomon et al. 1986].

The MIT Press published a particularly ambitious series of advanced Logo-based curricula,

starting with Turtle Geometry [Abelson and diSessa 1980]. The series spanned a range of

topics including computer science [Harvey 1985, 1986, 1987], linguistics [Goldenberg and

Feurzeig 1987], visual modeling [Clayson 1988], algebra [Cuoco 1990], and pre-calculus

[Lewis 1990].

Most books that are tied to particular versions of Logo differ from each other only in notational

details. But when the Logo dialect is far from themainstream, the associated books teach novel

ideas well worth reading even if you’re not programming in that dialect. The most obvious

example is Turtles, Termites, and Traffic Jams: Explorations in Massively Parallel Microworlds
[Resnick 1994], which describes StarLogo and uses it to ground a theory about emergent

phenomena in several different contexts. Several NetLogo textbooks explore complex systems

using agent-based modeling [Banos et al. 2015, 2016; O’Sullivan and Perry 2013; Railsback

and Grimm 2019; Wilensky and Rand 2015]. Other books tied to specific dialects that are

worth reading for the general ideas they introduce include Thinking about TLCLogo: a graphic
look at computing with ideas [Allen et al. 1984] and Object Logo [Coral 1986].

• All of the above are addressed to students or self-directed learners. Another set of Logo books

addressed teachers and education researchers [Hoyles and Noss 1992; Noss and Hoyles 1996;

Solomon 1988; Watt and Watt 1986].

Windows on Mathematical Meanings: Learning Cultures and Computers [Noss and Hoyles

1996] is an excellent example of theoretical and empirical Logo research. It includes several

in-depth studies of mathematics learning in narrowly focused Logo microworlds. It also

provides insight into the variety of ways that teachers and schools incorporated Logo in UK

classrooms in the 1980s and 1990s.

There is a large literature on the use of computers in education more generally. Logo features

in many such books, especially those starting from an artificial intelligence perspective

[Lawler and Yazdani 1987; Yazdani 1984; Yazdani and Lawler 1991]. Edinburgh Logo and its

role in teaching secondary mathematics is discussed in works by Tim O’Shea and colleagues

[Howe and O’Shea 1978], [O’Shea and Self 1983]. David Sewell wrote a review of educational
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computing from the perspective of cognitive psychology, generally friendly to Logo but with

some criticism of early claims that the language itself would magically transform learning

[Sewell 1990].

B.2 Logo Conference Proceedings
Much of the history of Logo development and of teaching with Logo is captured in conference

proceedings. Here are some of them:

• Three Logo conferences were held at MIT: Logo84, Logo85, and Logo86. There was also a

Constructionist Learning symposium in 1990 as part of AERA [Harel 1990].

• A continuing series of mostly-biennial Logo conferences has had two name changes during

its history. There were three British Logo Users Group conferences, 1983–85. Participation

in BLUG grew beyond Britain, and so the conference was renamed Eurologo. There were 11
conferences with that name, 1987–2007, four of which have proceedings online: [Eurologo

1997, 2001, 2005, 2007]. The organizers of what would have been Eurologo 2009 felt that the

conference should appeal to people beyond Logo educators, and so they took an extra year

off for planning and changed the name to Constructionism. There have been six conferences

by that name so far, 2010–18 [Constructionism 2010, 2012, 2014, 2016, 2018].

• There have also been many Logo-related papers at non-Logo-specific conferences, such as

the World Conference on Computers in Education (WCCE), Psychology of Mathematics

Education (PME), Computer Using Educators (CUE), and many others. We have not tried to

hunt these down.

B.3 Logo Periodicals
What follows is an incomplete list of Logo journals and newsletters. In particular, it’s incomplete

because the present authors are all primarily English speakers.

• Logo Update was published from 1993 to 2001 by the Logo Foundation, run by Michael Tempel.

The organization still exists, although the newsletter is defunct. All issues are available at the

Logo Foundation web site [Foundation 2001].

• In September, 1982, Tom Lough started The National Logo Exchange with Steve Tipps and Glen
Bull as a monthly newsletter for Logo teachers and parents. In January, 1986 The International
Logo Exchange was launched with Dennis Harper as the editor-in-chief. In September, 1986

these two publications were combined and renamed Logo Exchange. The International Council
for Computers in Education (ICCE) acquired the publication in 1987, designating it as the

official journal of the ICCE Special Interest Group for Logo-Using Educators (SIG-Logo). In

1989 ICCE was renamed the International Society for Technology in Education (ISTE). Logo

Exchange continued as the ISTE journal for SIG-Logo until the fall of 1999, when the SIG

was dissolved. The Logo Foundation web site includes the complete collection of 117 issues

[Exchange 1999].

• The British Logo Users Group published a more-or-less-annual Logo Almanack in the au-

tumn
20
, and occasional Logos in summer or winter. The first Almanack was in 1983. In 1992,

a new publication, Eurologos Incorporating Logo Almanack heralded the first Eurologo confer-

ence, and was “published by the British Logo Users Group for the scientific committee of

Eurologo.” Later volumes were simply titled Eurologos.
• The Council for Logo in Mathematics Education (CLIME), founded by Ihor Charischak, issued

its first Newsletter in 1987. In 1988, CLIME became an affiliate of the National Council of

Teachers of Mathematics. CLIME published CLIME News and CLIME Connections,with articles

20
In honor of the Kinks song?
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about teaching math with Logo, and CLIME Microworlds, with a diskette of Logo programs

along with a paper collection of articles about using the programs to provide mathematical

microworlds for math teaching and learning.

• Kaleidoscopes, published from 1985 to 1987, was largely, but not entirely, oriented toward

mathematics in Logo. It was published by Computers for a New Education (Alison Birch,

Larry Davidson, and Phil Lewis, all of whom are authors of books mentioned earlier).

• Bytemagazine, which at the time published an annual programming language issue, published

its Logo issue August, 1982 [Byte 1982].

B.4 Logo-Related Web Sites
• Gary Stager runs a web site devoted to Seymour Papert’s speeches and writings: http://

dailypapert.com

• Michael Tempel runs the Logo Foundation, which offers workshops for teachers and other

resources: https://el.media.mit.edu/logo-foundation

• Here’s the Wikipedia article on Logo: https://en.wikipedia.org/wiki/Logo_(programming_

language)

• Companies and nonprofits that offer Logo products have web sites: microworlds.com, terrapin.

com, people.eecs.berkeley.edu/~bh/logo.html, and many others, which can be found in the

Logo Tree (http://elica.net/download/papers/logotreeproject.pdf).

• This is a 2014 onlinemagazine article about Logo, with pointers to several otherweb-accessible

resources: https://www.kidscodecs.com/logo-programming-language/

• One phenomenon of the ’80s was web rings, collection of web sites on a particular topic that

were arranged in a ring, so that each site had pointers to the next and previous sites in the

ring. Many of the sites in the Logo ring are no longer maintained, but some are. Here’s the

list: https://www.ringsurf.com/ring/logoring/

B.5 Other Histories of Logo
In 1984 Feurzeig, one of the originators of Logo, published a short history of Logo’s early days

[Feurzeig 1984]. In 1997, Angelos Agalianos submitted a doctoral thesis to the Institute of Education,

University of London on the history of Logo [Agalianos 1997]. She interviewed 23 Logo researchers

and developers including Bobrow and Feurzeig. In 1999, students of MIT’s course 6.933J wrote a

history of Logo based upon interviews with five of Logo’s early developers [Chakraborty et al. 1999].

The Logo Foundation has maintained a history of Logo on their website for decades [Foundation

2020].

C ABOUT THE AUTHORS
Cynthia Solomon was one of the creators of Logo, starting in 1966 with Seymour Papert, Daniel

Bobrow, and Wallace Feurzeig at BBN. Solomon and Papert then took Logo research to the MIT AI

Lab. Solomon was a founder of Logo Computer Systems, Inc (LCSI), and directed the development

of Apple Logo, the first commercial version of Logo. She was Director of the Atari Cambridge

Research Lab, where the focus was on building an object-oriented Logo with integrated turtle

graphics and music.

Brian Harvey is the author of the three-volume Computer Science Logo Style [Harvey 1985, 1986,
1987]; the lead developer of Berkeley Logo [Harvey 1988]; a co-developer, with Jens Mönig, of

Snap! [Mönig and Harvey 2020], a visual language with first class procedures, lists, and sprites; and

a lead developer of The Beauty and Joy of Computing [Garcia et al. 2019], a high school curriculum

using Snap!.
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While Ken Kahn was a doctoral student at the MIT AI Lab he joined the Logo Group part-time,

beginning in 1975. He helped with teaching, and developed layers of software on top of Logo

to support student projects involving natural language or animation. Later he developed several

programming languages for children directly inspired by Logo.

Henry Lieberman joined the MIT AI Lab Logo Group in 1971 as a student researcher, and

was a full-time staff member from 1974 until 1977. He worked with Ira Goldstein on the Lisp

implementation of Logo, on the first bitmap, color, and 3D graphics systems for Logo, on several

microworlds, and taught high school students. He was also a consultant to Cynthia Solomon’s

Atari lab.

Mark L. Miller joined the MIT Logo Group in 1972. His PhD thesis in AI showed how intelli-

gent programming environments might help students learn powerful ideas about planning and

debugging. He studied Logo teaching styles, and wrote graphics and music applications. He joined

Texas Instruments in 1978, and, with Papert, helped develop their plans for a future Logo computer.

Margaret Minsky learned Logo as a child. She was an assistant teacher at the Logo Exeter

Exhibition in 1972, and as an undergraduate taught Logo and Physics in an NSF-sponsored summer

program for high schoolers. She served on the MIT Logo Group staff until 1979, and the LCSI Apple

Logo development team, 1981-1983. She co-edited a project book, LogoWorks.
Artemis Papert first encountered Logo as a child. She is an artist creating art in both traditional

and digital media. Her digital art is created using the TurtleArt software, for which she has created

a lot of its artistic “literature.” After a first career as a research biologist she retrained in the healing

art of shiatsu. Artemis has led TurtleArt workshops for a wide variety of groups in many countries.

Brian Silverman led the research and development at LCSI in the 1980s and 1990s. Before that

he was an undergraduate at MIT and spent time at the Logo Group. After that he was part of the

early Scratch design team.
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