


itself,
value

57

5 Words and Sentences

square
square

square
quote

> square
#<PROCEDURE>

> (quote square)
SQUARE

> (quote (tomorrow never knows))
(TOMORROW NEVER KNOWS)

> (quote (things we said today))
(THINGS WE SAID TODAY)

We started out, in Part I, with examples about acronyms and so on, but since then
we’ve been working with numbery old numbers. That’s because the discussions about
evaluation and procedure definition were complicated enough without introducing extra
ideas at the same time. But now we’re ready to get back to symbolic programming.

As we mentioned in Chapter 3, everything that you type into Scheme is evaluated
and the resulting value is printed out. Let’s say you want to use “square” as a word in
your program. For example, you want your program to solve the problem, “Give me an
adjective that describes Barry Manilow.” If you just type into Scheme, you will
find out that is a procedure:

(Different versions of Scheme will have different ways of printing out procedures.)

What you need is a way to say that you want to use the word “ ” rather
than the of that word, as an expression. The way to do this is to use :



is

strings.

symbols.

58 Part II Composition of Functions

> ’("can’t" buy me love)
("can’t" BUY ME LOVE)

> ’square
SQUARE

> ’(old brown shoe)
(old brown shoe)

Quote

quote

quote

(can’t buy me love) (can (quote t) buy me
love)

* Actually, it possible to put punctuation inside words as long as the entire word is enclosed in
double-quote marks, like this:

Words like that are called We’re not going to use them in any examples until almost the end
of the book. Stay away from punctuation and you won’t get in trouble. However, question marks
and exclamation points are okay. (Ordinary words, the ones that are neither strings nor numbers,
are officially called )

is a special form, since its argument isn’t evaluated. Instead, it just returns
the argument as is.

Scheme programmers use a lot, so there is an abbreviation for it:

(Since Scheme uses the apostrophe as an abbreviation for , you can’t use one
as an ordinary punctuation mark in a sentence. That’s why we’ve been avoiding titles
like . To Scheme this would mean

!)*

This idea of quoting, although it may seem arbitrary in the context of computer
programming, is actually quite familiar from ordinary English. What is a book? It’s a
bunch of pieces of paper, with printing on them, bound together. What is “a book”? It’s
a noun phrase, made up of an article and a noun. See? Similarly, what’s 2 + 3? It’s five.
What’s “2 + 3”? It’s an arithmetic formula. When you see words inside quotation marks,
you understand that you’re supposed to think about the words themselves; you don’t
evaluate what they mean. Scheme is the same way.

(It’s no accident that kids who make jokes like

Matt: “Say your name.”

Brian: “Your name.”

grow up to be computer programmers. The difference between a thing and its name is
one of the important ideas that programmers need to understand.)



Selectors

selectors.

Chapter 5 Words and Sentences 59

> (first ’something)
S

> (first ’(eight days a week))
EIGHT

> (first 910)
9

> (last ’something)
G

> (last ’(eight days a week))
WEEK

> (last 910)
0

> (butfirst ’something)
OMETHING

> (butfirst ’(eight days a week))
(DAYS A WEEK)

> (butfirst 910)
10

> (butlast ’something)
SOMETHIN

So far all we’ve done with words and sentences is quote them. To do more interesting
work, we need tools for two kinds of operations: We have to be able to take them apart,
and we have to be able to put them together.* We’ll start with the take-apart tools; the
technical term for them is

* The procedures we’re about to show you are not part of standard, official Scheme. Scheme
does provide ways to do these things, but the regular ways are somewhat more complicated and
error-prone for beginners. We’ve provided a simpler way to do symbolic computing, using ideas
developed as part of the Logo programming language.



n
n

60 Part II Composition of Functions

first first

butfirst butfirst
last butlast

butfirst butlast
but first but last

item

> (butlast ’(eight days a week))
(EIGHT DAYS A)

> (butlast 910)
91

(define (second thing)
(first (butfirst thing)))

> (second ’(like dreamers do))
DREAMERS

> (second ’michelle)
I

> (item 4 ’(being for the benefit of mister kite!))
BENEFIT

> (item 4 ’benefit)
E

> (first ’because)
B

> (first ’(because))
BECAUSE

Notice that the of a sentence is a word, while the of a word is a letter. (But
there’s no separate data type called “letter”; a letter is the same as a one-letter word.)
The of a sentence is a sentence, and the of a word is a word. The
corresponding rules hold for and .

The names and aren’t meant to describe ways to sled; they
abbreviate “all the ” and “all the .”

You may be wondering why we’re given ways to find the first and last elements but
not the 42nd element. It turns out that the ones we have are enough, since we can use
these primitive selectors to define others:

There is, however, a primitive selector that takes two arguments, a number and a
word or sentence, and returns the th element of the second argument.

Don’t forget that a sentence containing exactly one word is different from the word
itself, and selectors operate on the two differently:



Constructors

butfirst

butfirst butlast bf
bl

word sentence Word

empty sentence.

empty word,

constructors.

Chapter 5 Words and Sentences 61

> (butfirst ’because)
ECAUSE

> (butfirst ’(because))
()

> (butfirst ’a)
""

> (butfirst 1024)
"024"

> 024
24

> "024"
"024"

> (word ’ses ’qui ’pe ’da ’lian ’ism)
SESQUIPEDALIANISM

The value of that last expression is the You can tell it’s a sentence because
of the parentheses, and you can tell it’s empty because there’s nothing between them.

As these examples show, sometimes returns a word that has to have double-
quote marks around it. The first example shows the while the second shows
a number that’s not in its ordinary form. (Its numeric value is 24, but you don’t usually
see a zero in front.)

We’re going to try to avoid printing these funny words. But don’t be surprised if you see
one as the return value from one of the selectors for words. (Notice that you don’t have
to put a single quote in front of the double quotes. Strings are self-evaluating, just as
numbers are.)

Since and are so hard to type, there are abbreviations and
. You can figure out which is which.

Functions for putting things together are called For now, we just have two of
them: and . takes any number of words as arguments and joins
them all together into one humongous word:



First-Class Words and Sentences

Sentence

Sentence se

makes 2
makes

makes

2

characters

machine language

62 Part II Composition of Functions

> (word ’now ’here)
NOWHERE

> (word 35 893)
35893

> (sentence ’carry ’that ’weight)
(CARRY THAT WEIGHT)

> (sentence ’(john paul) ’(george ringo))
(JOHN PAUL GEORGE RINGO)

> (se ’(one plus one) ’makes 2)
(ONE PLUS ONE MAKES 2)

is similar, but slightly different, since it can take both words and sentences
as arguments:

is also too hard to type, so there’s the abbreviation .

By the way, why did we have to quote in the last example, but not ? It’s
because numbers are self-evaluating, as we said in Chapter 3. We have to quote
because otherwise Scheme would look for something named instead of using the
word itself. But numbers can’t be the names of things; they represent themselves. (In
fact, you could quote the and it wouldn’t make any difference—do you see why?)

If Scheme isn’t your first programming language, you’re probably accustomed to dealing
with English text on a computer quite differently. Many other languages treat a sentence,
for example, as simply a collection (a “string”) of such as letters, spaces, and
punctuation. Those languages don’t help you maintain the two-level nature of English
text, in which a sentence is composed of words, and a word is composed of letters.

Historically, computers just dealt with numbers. You could add two numbers, move
a number from one place in the computer’s memory to another place, and so on. Since
each instruction in the computer’s native couldn’t process anything
larger than a number, programmers developed the attitude that a single number is a “real
thing” while anything more complicated has to be considered as a collection of things,
rather than as a single thing in itself.



⇒

⇒

Pitfalls

quote

word
sentence

your

first-class data

variables
lists

Chapter 5 Words and Sentences 63

(define (plural word) ;; wrong!
(word word ’s))

> (plural ’george)
ERROR: GEORGE isn’t a procedure

(word ’george ’s)

The computer represents a text character as a single number. In many programming
languages, therefore, a character is a “real thing,” but a word or sentence is understood
only as a collection of these character-code numbers.

But this isn’t the way in which human beings normally think about their own language.
To you, a word isn’t primarily a string of characters (although it may temporarily seem
like one if you’re competing in a spelling bee). It’s more like a single unit of meaning.
Similarly, a sentence is a linguistic structure whose parts are words, not letters and spaces.

A programming language should let you express your ideas in terms that match
way of thinking, not the computer’s way. Technically, we say that words and sentences
should be in our language. This means that a sentence, for example, can
be an argument to a procedure; it can be the value returned by a procedure; we can
give it a name; and we can build aggregates whose elements are sentences. So far we’ve
seen how to do the first two of these. We’ll finish the job in Chapter 7 (on ) and
Chapter 17 (on ).

We’ve been avoiding apostrophes in our words and sentences because they’re
abbreviations for the special form. You must also avoid periods, commas,
semicolons, quotation marks, vertical bars, and, of course, parentheses, since all of these
have special meanings in Scheme. You may, however, use question marks and exclamation
points.

Although we’ve already mentioned the need to avoid names of primitives when
choosing formal parameters, we want to remind you specifically about the names
and . These are often very tempting formal parameters, because many
procedures have words or sentences as their domains. Unfortunately, if you choose these
names for parameters, you won’t be able to use the corresponding procedures within
your definition.

The result of substitution was not, as you might think,



⇒

⇒

⇒

always

64 Part II Composition of Functions

wd sent word sentence

butfirst
(sexy sadie)

count

"6-of-hearts"
6-of-hearts

Quote

(good night)

(’george ’george ’s)

> (bf ’(sexy sadie))
(SADIE)

> (first (bf ’(sexy sadie)))
SADIE

> ’(good night)
(GOOD NIGHT)

> (bf ’(good night))
(NIGHT)

count* You met in Chapter 2. It takes a word or sentence as its argument, returning either the
number of letters in the word or the number of words in the sentence.

but rather

We’ve been using and as formal parameters instead of and ,
and we recommend that practice.

There’s a difference between a word and a single-word sentence. For example,
people often fall into the trap of thinking that the of a two-word sentence
such as is the second word, but it’s not. It’s a one-word-long sentence.
For example, its is one, not five.*

We mentioned earlier that sometimes Scheme has to put double-quote marks around
words. Just ignore them; don’t get upset if your procedure returns
instead of just .

doesn’t mean “print.” Some people look at interactions like this:

and think that the quotation mark was an instruction telling Scheme to print what
comes after it. Actually, Scheme prints the value of each expression you type, as
part of the read-eval-print loop. In this case, the value of the entire expression is the
subexpression that’s being quoted, namely, the sentence . That value
wouldn’t be printed if the quotation were part of some larger expression:



⇒

5.1

Boring Exercises

"075"
strings-are-numbers

#f

Chapter 5 Words and Sentences 65

* See Appendix A for a fuller explanation.

> (+ 3 (bf 1075))
ERROR: INVALID ARGUMENT TO +: "075"

> (strings-are-numbers #t)
OKAY

(sentence ’I ’(me mine))

(sentence ’() ’(is empty))

(word ’23 ’45)

(se ’23 ’45)

(bf ’a)

(bf ’(aye))

(count (first ’(maggie mae)))

(se "" ’() "" ’())

(count (se "" ’() "" ’()))

If you see an error message like

try entering the expression

and try again. (The extension to Scheme that allows arithmetic operations to work on
nonstandard numbers like makes ordinary arithmetic slower than usual. So we’ve
provided a way to turn the extension on and off. Invoking
with the argument turns off the extension.)*

What values are printed when you type these expressions to Scheme? (Figure it out
in your head before you try it on the computer.)



5.2

5.3

5.4

5.5

5.6

5.7

5.8

66 Part II Composition of Functions

(first ’mezzanine) (first
’(mezzanine))

(first (square 7))
(first ’(square 7))

(word ’a ’b ’c) (se ’a ’b ’c)

(bf ’zabadak) (butfirst ’zabadak)

(bf ’x) (butfirst ’(x))

> (f1 ’(a b c) ’(d e f))
(B C D E)

> (f2 ’(a b c) ’(d e f))
(B C D E AF)

> (f3 ’(a b c) ’(d e f))
(A B C A B C)

> (f4 ’(a b c) ’(d e f))
BE

(here, there and everywhere)
(help!)
(all i’ve got to do)
(you know my name (look up the number))

For each of the following examples, write a procedure of two arguments that, when
applied to the sample arguments, returns the sample result. Your procedures may not
include any quoted data.

Explain the difference in meaning between and
.

Explain the difference between the two expressions and
.

Explain the difference between and .

Explain the difference between and .

Explain the difference between and .

Which of the following are legal Scheme sentences?



Real Exercises

5.9

5.10

5.11

5.12

5.13

5.14

5.15

before

Chapter 5 Words and Sentences 67

butfirst

last

first last butfirst butlast

’’banana

(first ’’banana)

third

first-two

(se (word (bl (bl (first ’(make a))))
(bf (bf (last ’(baseball mitt)))))

(word (first ’with) (bl (bl (bl (bl ’rigidly))))
(first ’held) (first (bf ’stitches))))

(se (word (bl (bl ’bring)) ’a (last ’clean))
(word (bl (last ’(baseball hat))) (last ’for) (bl (bl ’very))

(last (first ’(sunny days)))))

> (first-two ’ambulatory)
AM

Figure out what values each of the following will return you try them on the
computer:

What kinds of argument can you give so that it returns a word? A
sentence?

What kinds of argument can you give so that it returns a word? A sentence?

Which of the functions , , , and can return an
empty word? For what arguments? What about returning an empty sentence?

What does stand for?

What is and why?

Write a procedure that selects the third letter of a word (or the third word
of a sentence).

Write a procedure that takes a word as its argument, returning a
two-letter word containing the first two letters of the argument.



5.16

5.17

5.18

5.19

68 Part II Composition of Functions

two-first

two-first-sent

knight

insert-and

> (two-first ’brian ’epstein)
BE

> (two-first-sent ’(brian epstein))
BE

> (knight ’(david wessel))
(SIR DAVID WESSEL)

(define (ends word)
(word (first word) (last word)))

> (ends ’john)

> (insert-and ’(john bill wayne fred joey))
(JOHN BILL WAYNE FRED AND JOEY)

Write a procedure that takes two words as arguments, returning a
two-letter word containing the first letters of the two arguments.

Now write a procedure that takes a two-word sentence as argument,
returning a two-letter word containing the first letters of the two words.

Write a procedure that takes a person’s name as its argument and returns
the name with “Sir” in front of it.

Try the following and explain the result:

Write a procedure that takes a sentence of items and returns a new
sentence with an “and” in the right place:



query

5.20

5.21

Chapter 5 Words and Sentences 69

Define a procedure to find somebody’s middle names:

Write a procedure that turns a statement into a question by swapping the
first two words and adding a question mark to the last word:

> (middle-names ’(james paul mccartney))
(PAUL)

> (middle-names ’(john ronald raoul tolkien))
(RONALD RAOUL)

> (middle-names ’(bugs bunny))
()

> (middle-names ’(peter blair denis bernard noone))
(BLAIR DENIS BERNARD)

> (query ’(you are experienced))
(ARE YOU EXPERIENCED?)

> (query ’(i should have known better))
(SHOULD I HAVE KNOWN BETTER?)


