
Trombone players produce different pitches partly by varying the length of a tube.



−3

we

X = X + 1

7 Variables

variable

variable
x

x x
named constant! x

x

new

does

have

89

* The term “variable” is used by computer scientists to mean several subtly different things. For
example, some people use “variable” to mean just a holder for a value, without a name. But what
we said is what mean by “variable.”

A is a connection between a name and a value.* That sounds simple enough, but
some complexities arise in practice. To avoid confusion later, we’ll spend some time now
looking at the idea of “variable” in more detail.

The name comes from algebra. Many people are introduced to variables in
high school algebra classes, where the emphasis is on solving equations. “If 8 = 0,
what is the value of ?” In problems like these, although we call a variable, it’s really
a In this particular problem, has the value 2. In any such problem, at
first we don’t know the value of , but we understand that it does have some particular
value, and that value isn’t going to change in the middle of the problem.

In functional programming, what we mean by “variable” is like a named constant in
mathematics. Since a variable is the connection between a name and a value, a formal
parameter in a procedure definition isn’t a variable; it’s just a name. But when we invoke
the procedure with a particular argument, that name is associated with a value, and a
variable is created. If we invoke the procedure again, a variable is created, perhaps
with a different value.

There are two possible sources of confusion about this. One is that you may have
programmed before in a programming language like BASIC or Pascal, in which a variable
often get a new value, even after it’s already had a previous value assigned to it.
Programs in those languages tend to be full of things like “ .” Back in Chapter
2 we told you that this book is about something called “functional programming,” but
we haven’t yet explained exactly what that means. (Of course we introduced a lot



x x
x

(square 5)
x

square
x

How Little People Do Variables

change

90 Part II Composition of Functions

of functions, and that is an important part of it.) Part of what we mean by functional
programming is that once a variable exists, we aren’t going to the value of that
variable.

The other possible source of confusion is that in Scheme, unlike the situation in
algebra, we may have more than one variable with the same name at the same time.
That’s because we may invoke one procedure, and the body of that procedure may invoke
another procedure, and each of them might use the same formal parameter name. There
might be one variable named with the value 7, and another variable named with the
value 51, at the same time. The pitfall to avoid is thinking “ has changed its value from
7 to 51.”

As an analogy, imagine that you are at a party along with Mick Jagger, Mick Wilson,
Mick Avory, and Mick Dolenz. If you’re having a conversation with one of them, the
name “Mick” means a particular person to you. If you notice someone else talking with a
different Mick, you wouldn’t think “Mick has become a different person.” Instead, you’d
think “there are several people here all with the name Mick.”

You can understand variables in terms of the little-people model. A variable, in this
model, is the association in the little person’s mind between a formal parameter (name)
and the actual argument (value) she was given. When we want to know , we
hire Srini and tell him his argument is 5. Srini therefore substitutes 5 for in the body
of . Later, when we want to know the square of 6, we hire Samantha and tell her
that her argument is 6. Srini and Samantha have two different variables, both named .



Chapter 7 Variables 91

x

x y
x square

(square 3) x

(square 4)
x x

x x

x
x

(define (square x) (* x x))

(define (hypotenuse x y)
(sqrt (+ (square x) (square y))))

> (hypotenuse 3 4)
5

Srini and Samantha do their work separately, one after the other. But in a more
complicated example, there could even be more than one value called at the same
time:

Consider the situation when we’ve hired Hortense to evaluate that expression. Hortense
associates the name with the value 3 (and also the name with the value 4, but we’re
going to pay attention to ). She has to compute two s. She hires Solomon to
compute . Solomon associates the name with the value 3. This happens
to be the same as Hortense’s value, but it’s still a separate variable that could have had a
different value—as we see when Hortense hires Sheba to compute . Now,
simultaneously, Hortense thinks is 3 and Sheba thinks is 4.

(Remember that we said a variable is a connection between a name and a value. So
isn’t a variable! The association of the name with the value 5 is a variable. The reason

we’re being so fussy about this terminology is that it helps clarify the case in which several
variables have the same name. But in practice people are generally sloppy about this fine
point; we can usually get away with saying “ is a variable” when we mean “there is some
variable whose name is .”)



(f 4) x (g 6)
y x

x 4

define

Global and Local Variables

usually

92 Part II Composition of Functions

(define (f x)
(g 6))

(define (g y)
(+ x y))

> (f 4)
ERROR -- VARIABLE X IS UNBOUND.

(define (f x)
(g x 6))

(define (g x y)
(+ x y))

> (f 4)
10

Another important point about the way little people do variables is that they can’t
read each others’ minds. In particular, they don’t know about the values of the local
variables that belong to the little people who hired them. For example, the following
attempt to compute the value 10 won’t work:

We hire Franz to compute . He associates with 4 and evaluates by hiring
Gloria. Gloria associates with 6, but she doesn’t have any value for , so she’s in trouble.
The solution is for Franz to tell Gloria that is :

Until now, we’ve been using two very different kinds of naming. We have names for
procedures, which are created permanently by and are usable throughout our
programs; and we have names for procedure arguments, which are associated with values
temporarily when we call a procedure and are usable only inside that procedure.

These two kinds of naming seem to be different in every way. One is for procedures,
one for data; the one for procedures makes a permanent, global name, while the one for
data makes a temporary, local name. That picture does reflect the way that procedures
and other data are used, but we’ll see that really there is only one kind of naming.
The boundaries can be crossed: Procedures can be arguments to other procedures, and
any kind of data can have a permanent, global name. Right now we’ll look at that last
point, about global variables.



define

pi last

define
Pi

foo
foo

every

local variable.

Chapter 7 Variables 93

> (define pi 3.141592654)

> (+ pi 5)
8.141592654

> (define song ’(I am the walrus))

> (last song)
WALRUS

Just as we’ve been using to associate names with procedures globally, we can
also use it for other kinds of data:

Once defined, a global variable can be used anywhere, just as a defined procedure
can be used anywhere. (In fact, defining a procedure creates a variable whose value is
the procedure. Just as is the name of a variable whose value is 3.141592654,
is the name of a variable whose value is a primitive procedure. We’ll come back to this
point in Chapter 9.) When the name of a global variable appears in an expression, the
corresponding value must be substituted, just as actual argument values are substituted
for formal parameters.

When a little person is hired to carry out a compound procedure, his or her first step
is to substitute actual argument values for formal parameters in the body. The same little
person substitutes values for global variable names also. (What if there is a global variable
whose name happens to be used as a formal parameter in this procedure? Scheme’s rule
is that the formal parameter takes precedence, but even though Scheme knows what to
do, conflicts like this make your program harder to read.)

How does this little person know what values to substitute for global variable names?
What makes a variable “global” in the little-people model is that little person knows
its value. You can imagine that there’s a big chalkboard, with all the global definitions
written on it, that all the little people can see. If you prefer, you could imagine that
whenever a global variable is defined, the specialist climbs up a huge ladder,
picks up a megaphone, and yells something like “Now hear this! is 3.141592654!”

The association of a formal parameter (a name) with an actual argument (a value)
is called a

It’s awkward to have to say “Harry associates the value 7 with the name ” all the
time. Most of the time we just say “ has the value 7,” paying no attention to whether
this association is in some particular little person’s head or if everybody knows it.



√
2

2

Let

− ± −

The Truth about Substitution

ax bx c x
b b ac

a

94 Part II Composition of Functions

(define (roots a b c)
(se (/ (+ (- b) (sqrt (- (* b b) (* 4 a c))))

(* 2 a))
(/ (- (- b) (sqrt (- (* b b) (* 4 a c))))

(* 2 a))))

X = X + 1

* The reason that all of our examples work with the substitution model is that this book uses only
functional programming, in the sense that we never change the value of a variable. If we started
doing the style of programming, we would need the more complicated chalkboard
model.

** That is, it works if the equation has real roots, or if your version of Scheme has complex

We said earlier in a footnote that Scheme doesn’t actually do all the copying and
substituting we’ve been talking about. What actually happens is more like our model
of global variables, in which there is a chalkboard somewhere that associates names
with values—except that instead of making a new copy of every expression with values
substituted for names, Scheme works with the original expression and looks up the value
for each name at the moment when that value is needed. To make local variables work,
there are several chalkboards: a global one and one for each little person.

The fully detailed model of variables using several chalkboards is what many people
find hardest about learning Scheme. That’s why we’ve chosen to use the simpler
substitution model.*

We’re going to write a procedure that solves quadratic equations. (We know this is the
prototypical boring programming problem, but it illustrates clearly the point we’re about
to make.)

We’ll use the quadratic formula that you learned in high school algebra class:

+ + = 0 when =
4

2

Since there are two possible solutions, we return a sentence containing two numbers.
This procedure works fine,** but it does have the disadvantage of repeating a lot of the



body

Chapter 7 Variables 95

discriminant roots1

roots1
roots1 roots

let

roots1
let

discriminant (sqrt )

Let

let

numbers. Also, the limited precision with which computers can represent irrational numbers can
make this particular algorithm give wrong answers in practice even though it’s correct in theory.

(define (roots a b c)
(roots1 a b c (sqrt (- (* b b) (* 4 a c)))))

(define (roots1 a b c discriminant)
(se (/ (+ (- b) discriminant) (* 2 a))

(/ (- (- b) discriminant) (* 2 a))))

(define (roots a b c)
(let ((discriminant (sqrt (- (* b b) (* 4 a c)))))
(se (/ (+ (- b) discriminant) (* 2 a))

(/ (- (- b) discriminant) (* 2 a)))))

work. It computes the square root part of the formula twice. We’d like to avoid that
inefficiency.

One thing we can do is to compute the square root and use that as the actual
argument to a helper procedure that does the rest of the job:

This version evaluates the square root only once. The resulting value is used as the
argument named in .

We’ve solved the problem we posed for ourselves initially: avoiding the redundant
computation of the discriminant (the square-root part of the formula). The cost, though,
is that we had to define an auxiliary procedure that doesn’t make much sense
on its own. (That is, you’d never invoke for its own sake; only uses it.)

Scheme provides a notation to express a computation of this kind more conveniently.
It’s called :

Our new program is just an abbreviation for the previous version: In effect, it creates
a temporary procedure just like , but without a name, and invokes it with the
specified argument value. But the notation rearranges things so that we can say, in
the right order, “let the variable have the value . . . and, using
that variable, compute the body.”

is a special form that takes two arguments. The first is a sequence of name-value
pairs enclosed in parentheses. (In this example, there is only one name-value pair.) The
second argument, the of the , is the expression to evaluate.



⇒

⇒

Pitfalls

let

cond let

let

change

permanent

96 Part II Composition of Functions

(define (roots a b c)
(let ((discriminant (sqrt (- (* b b) (* 4 a c))))

(minus-b (- b))
(two-a (* 2 a)))

(se (/ (+ minus-b discriminant) two-a)
(/ (- minus-b discriminant) two-a))))

(define (roots1 discriminant minus-b two-a) ...)

> (define x (+ x 3)) ;; no-no

> (let ((a (+ 4 7)) ;; wrong!
(b (* a 5)))

(+ a b))

Now that we have this notation, we can use it with more than one name-value
connection to eliminate even more redundant computation:

In this example, the first argument to includes three name-value pairs. It’s as if we’d
defined and invoked a procedure like the following:

Like , uses parentheses both with the usual meaning (invoking a proce-
dure) and to group sub-arguments that belong together. This grouping happens in two
ways. Parentheses are used to group a name and the expression that provides its value.
Also, an additional pair of parentheses surrounds the entire collection of name-value
pairs.

If you’ve programmed before in other languages, you may be accustomed to a style
of programming in which you the value of a variable by assigning it a new value.
You may be tempted to write

Although some versions of Scheme do allow such redefinitions, so that you can correct
errors in your procedures, they’re not strictly legal. A definition is meant to be

in functional programming. (Scheme does include other mechanisms for
non-functional programming, but we’re not studying them in this book because once
you allow reassignment you need a more complex model of the evaluation process.)

When you create more than one temporary variable at once using , all of the
expressions that provide the values are computed before any of the variables are created.
Therefore, you can’t have one expression depend on another:



⇒

(( )
( )
( ))

variables body

before
global

Chapter 7 Variables 97

a b let

(* a 5) a
a b

Let cond

let

Let let

name value

let

(define (helper a b)
(+ a b))

(helper (+ 4 7) (* a 5))

> (let ((a (+ 4 7)))
(let ((b (* a 5)))
(+ a b)))

66

(let )

((name1 value1) (name2 value2) (name3 value3) )

(let name1 (fn1 arg1)
name2 (fn2 arg2)
name3 (fn3 arg3)

body)

Don’t think that gets the value 11 and therefore gets the value 55. That
expression is equivalent to defining a helper procedure

and then invoking it:

The argument expressions, as always, are evaluated the function is invoked. The
expression will be evaluated using the value of , if there is one. If not,
an error will result. If you want to use in computing , you must say

’s notation is tricky because, like , it uses parentheses that don’t mean
procedure invocation. Don’t teach yourself magic formulas like “two open parentheses
before the variable and three close parentheses at the end of its value.” Instead,
think about the overall structure:

takes exactly two arguments. The first argument to is one or more name-value
groupings, all in parentheses:

. . .

Each is a single word; each can be any expression, usually a procedure
invocation. If it’s a procedure invocation, then parentheses are used with their usual
meaning.

The second argument to is the expression to be evaluated using those variables.

Now put all the pieces together:



let

7.1

7.2

7.3

Boring Exercises

Real Exercises

98 Part II Composition of Functions

The following procedure does some redundant computation.

Use to avoid the redundant work.

Put in the missing parentheses:

The following program doesn’t work. Why not? Fix it.

It’s supposed to work like this:

(define (gertrude wd)
(se (if (vowel? (first wd)) ’an ’a)

wd
’is
(if (vowel? (first wd)) ’an ’a)
wd
’is
(if (vowel? (first wd)) ’an ’a)
wd))

> (gertrude ’rose)
(A ROSE IS A ROSE IS A ROSE)

> (gertrude ’iguana)
(AN IGUANA IS AN IGUANA IS AN IGUANA)

> (let pi 3.14159
pie ’lemon meringue

se ’pi is pi ’but pie is pie)
(PI IS 3.14159 BUT PIE IS LEMON MERINGUE)

(define (superlative adjective word)
(se (word adjective ’est) word))

> (superlative ’dumb ’exercise)
(DUMBEST EXERCISE)



7.4

Chapter 7 Variables 99

(define (sum-square a b)
(let ((+ *)

(* +))
(* (+ a a) (+ b b))))

What does this procedure do? Explain how it manages to work.


