
Part IV
Recursion

same

self-reference

170

By now you’re very familiar with the idea of implementing a function by composing other
functions. In effect we are breaking down a large problem into smaller parts. The idea of
recursion—as usual, it sounds simpler than it actually is—is that one of the smaller parts
can be the function we are trying to implement.

At clothes stores they have arrangements with three mirrors hinged together. If you
keep the side mirrors pointing outward, and you’re standing in the right position, what
you see is just three separate images of yourself, one face-on and two with profile views.
But if you turn the mirrors in toward each other, all of a sudden you see what looks
like infinitely many images of yourself. That’s because each mirror reflects a scene that
includes an image of the mirror itself. This gives rise to the multiple images.

Recursion is the idea of self-reference applied to computer programs. Here’s an
example:

“I’m thinking of a number between 1 and 20.”

(Her number is between 1 and 20. I’ll guess the halfway point.) “10.”

“Too low.”

(Hmm, her number is between 11 and 20. I’ll guess the halfway point.) “15.”

“Too high.”

(That means her number is between 11 and 14. I’ll guess the halfway point.) “12.”

“Got it!”

We can write a procedure to do this:



fractals

171

too-low? too-high?

(define (game low high)
(let ((guess (average low high)))
(cond ((too-low? guess) (game (+ guess 1) high))

((too-high? guess) (game low (- guess 1)))
(else ’(I win!)))))

This isn’t a complete program because we haven’t written and .
But it illustrates the idea of a problem that contains a version of itself as a subproblem:
We’re asked to find a secret number within a given range. We make a guess, and if it’s not
the answer, we use that guess to create another problem in which the same secret number
is known to be within a smaller range. The self-reference of the problem description is
expressed in Scheme by a procedure that invokes itself as a subprocedure.

Actually, this isn’t the first time we’ve seen self-reference in this book. We defined
“expression” in Chapter 3 self-referentially: An expression is either atomic or composed
of smaller expressions.

The idea of self-reference also comes up in some paradoxes: Is the sentence “This
sentence is false” true or false? (If it’s true, then it must also be false, since it says so; if
it’s false, then it must also be true, since that’s the opposite of what it says.) This idea
also appears in the self-referential shapes called that are used to produce realistic-
looking waves, clouds, mountains, and coastlines in computer-generated graphics.



Print Gallery, by M. C. Escher (lithograph, 1956)



. . .

173

11 Introduction to Recursion

I know an old lady who swallowed a fly.
I don’t know why she swallowed the fly.
Perhaps she’ll die.

I know an old lady who swallowed a spider
that wriggled and jiggled and tickled inside her.
She swallowed the spider to catch the fly.
I don’t know why she swallowed the fly.
Perhaps she’ll die.

I know an old lady who swallowed a bird.
How absurd, to swallow a bird!
She swallowed the bird to catch the spider
that wriggled and jiggled and tickled inside her.
She swallowed the spider to catch the fly.
I don’t know why she swallowed the fly.
Perhaps she’ll die.

I know an old lady who swallowed a cat.
Imagine that, to swallow a cat.

She swallowed the cat to catch the bird.
She swallowed the bird to catch the spider
that wriggled and jiggled and tickled inside her.
She swallowed the spider to catch the fly.
I don’t know why she swallowed the fly.
Perhaps she’ll die.

I know an old lady who swallowed a dog.
What a hog, to swallow a dog!
She swallowed the dog to catch the cat.
She swallowed the cat to catch the bird.
She swallowed the bird to catch the spider
that wriggled and jiggled and tickled inside her.
She swallowed the spider to catch the fly.
I don’t know why she swallowed the fly.
Perhaps she’ll die.

I know an old lady who swallowed a horse.
She’s dead of course!

100 bottles of beer on the wall,
100 bottles of beer.
If one of those bottles should happen to fall,
99 bottles of beer on the wall.

99 bottles of beer on the wall,
99 bottles of beer.
If one of those bottles should happen to fall,
98 bottles of beer on the wall.

98 bottles of beer on the wall,
98 bottles of beer.
If one of those bottles should happen to fall,
97 bottles of beer on the wall.

97 bottles of beer on the wall,
97 bottles of beer.
If one of those bottles should happen to fall,
96 bottles of beer on the wall



every

recursion:

bigger

lot

combining method.

174 Part IV Recursion

* If your instructor has asked you to read Part IV before Part III, ignore that sentence.

> (downup ’ringo)
(RINGO RING RIN RI R RI RIN RING RINGO)

> (downup ’marsupial)
(MARSUPIAL
MARSUPIA
MARSUPI
MARSUP
MARSU
MARS
MAR
MA
M
MA
MAR
MARS
MARSU
MARSUP
MARSUPI
MARSUPIA
MARSUPIAL)

In the next few chapters we’re going to talk about solving a big problem by
reducing it to a similar, smaller subproblem. Actually that’s a little backward from the
old lady in the song, who turned her little problem into a similar but problem! As
the song warns us, this can be fatal.

Here’s the first problem we’ll solve. We want a function that works like this:

None of the tools that we’ve used so far will handle this problem. It’s not a “compute
this function for each letter of the word” problem, for which we could use .*
Rather, we have to think about the entire word in a rather complicated way.

We’re going to solve this problem using recursion. It turns out that the idea of
recursion is both very powerful—we can solve a of problems using it—and rather
tricky to understand. That’s why we’re going to explain recursion several different ways
in the coming chapters. Even after you understand one of them, you’ll probably find
that thinking about recursion from another point of view enriches your ability to use this
idea. The explanation in this chapter is based on the



A Separate Procedure for Each Length

can

Chapter 11 Introduction to Recursion 175

downup
downup

downup4

downup downup83 downup
cond

(define (downup1 wd)
(se wd))

> (downup1 ’a)
(A)

(define (downup2 wd)
(se wd (first wd) wd))

> (downup2 ’be)
(BE B BE)

(define (downup3 wd)
(se wd

(bl wd)
(first wd)
(bl wd)
wd))

> (downup3 ’foo)
(FOO FO F FO FOO)

Since we don’t yet know how to solve the problem in general, let’s start with a
particular case that we solve. We’ll write a version of that works only for
one-letter words:

So far so good! This isn’t a very versatile program, but it does have the advantage of
being easy to write.

Now let’s see if we can do two-letter words:

Moving right along. . .

We could continue along these lines, writing procedures and so on. If we
knew that the longest word in English had 83 letters, we could write all of the single-length

s up to , and then write one overall procedure that would
consist of an enormous with 83 clauses, one for each length.



176 Part IV Recursion

(bl wd)
(first wd)
(bl wd)

Use What You Have to Get What You Need

downup83

(downup3 ’foo)
(downup2 ’fo)

downup3

downup2

downup4 downup2
downup3

downup4
downup3 downup

downup3

> (downup3 ’foo)
(FOO FO F FO FOO)

(downup2 ’fo)

(define (downup3 wd)
(se wd

wd))

(FOO FO F FO FOO)

(define (downup3 wd)
(se wd (downup2 (bl wd)) wd))

(define (downup4 wd)
(se wd (downup3 (bl wd)) wd))

> (downup4 ’paul)
(PAUL PAU PA P PA PAU PAUL)

But that’s a terrible idea. We’d get really bored, and start making a lot of mistakes, if we
tried to work up to this way.

The next trick is to notice that the middle part of what does is
just like :

So we can find the parts of that are responsible for those three words:

and replace them with an invocation of :

How about ? Once we’ve had this great idea about using to help
with , it’s not hard to continue the pattern:

The reason we can fit the body of on one line is that most of its work is done
for it by . If we continued writing each new procedure independently,
as we did in our first attempt at , our procedures would be getting longer and
longer. But this new way avoids that.



n
n 1

Chapter 11 Introduction to Recursion 177

downup2

downup59
downup58 downup57

downup

downup downup1

Notice That They’re All the Same

Notice That They’re Almost All the Same

(define (downup59 wd)
(se wd (downup58 (bl wd)) wd))

(define (downup2 wd)
(se wd (downup1 (bl wd)) wd))

(define (downup wd) ;; first version
(se wd (downup (bl wd)) wd))

> (downup ’toe)
ERROR: Invalid argument to BUTLAST: ""

(define (downup wd)
(se wd (downup - (bl wd)) wd))

(define (downup1 wd)
(se wd))

Also, although it may be harder to notice, we can even rewrite along the
same lines:

Although was easy to write, the problem is that it won’t work unless we also
define , which in turn depends on , and so on. This is a lot of
repetitive, duplicated, and redundant typing. Since these procedures are all basically the
same, what we’d like to do is combine them into a single procedure:

Isn’t this a great idea? We’ve written one short procedure that serves as a kind of
abbreviation for 59 other ones.

Unfortunately, it doesn’t work.

What’s gone wrong here? Not quite every numbered looks like

The only numbered that doesn’t follow the pattern is :



Base Cases and Recursive Calls

* It’s a disease. Coal miners get it.

recursive
base

around!

smaller

subproblems

178 Part IV Recursion

(define (downup wd)
(if (= (count wd) 1)

(se wd)
(se wd (downup (bl wd)) wd)))

> (downup ’toe)
(TOE TO T TO TOE)

> (downup ’banana)
(BANANA BANAN BANA BAN BA B BA BAN BANA BANAN BANANA)

downup

downup a pneumonoultra-
microscopicsilicovolcanoconinosis

Downup

downup
downup

downup downup

downup
downup

downup downup
downup

downup
downup happy downup happ hap ha

h

So if we collapse all the numbered s into a single procedure, we have to treat
one-letter words as a special case:

This version of will work for any length word, from to
* or beyond.

illustrates the structure of every recursive procedure. There is a choice among
expressions to evaluate: At least one is a case, in which the procedure (e.g.,

) itself is invoked with a smaller argument; at least one is a case, that is, one
that can be solved without calling the procedure recursively. For , the base case
is a single-letter argument.

How can this possibly work? We’re defining in terms of . In English
class, if the teacher asks you to define “around,” you’d better not say, “You know, ”
But we appear to be doing just that. We’re telling Scheme: “In order to find of
a word, find of another word.”

The secret is that it’s not just any old other word. The new word is than the
word we were originally asked to . So we’re saying, “In order to find of a
word, find of a shorter word.” We are posing a whole slew of asking
for the of words smaller than the one we started with. So if someone asks us the

of , along the way we have to compute the s of , , ,
and .



Pig Latin

rearrangement

Chapter 11 Introduction to Recursion 179

downup h

downup

downup pigl0
pigl1 downup

pigl0
pigl0 ay pigl1

pigl1 ay
pigl1 ay

(define (pigl0 wd)
(word wd ’ay))

> (pigl0 ’alabaster)
ALABASTERAY

(define (pigl1 wd) ;; obvious version
(word (bf wd) (first wd) ’ay))

> (pigl1 ’salami)
ALAMISAY

A recursive procedure doesn’t work unless every possible argument can eventually
be reduced to some base case. When we are asked for of , the procedure just
knows what to do without calling itself recursively.

We’ve just said that there has to be a base case. It’s also important that each recursive
call has to get us somehow closer to the base case. For , “closer” means that in the
recursive call we use a shorter word. If we were computing a numeric function, the base
case might be an argument of zero, and the recursive calls would use smaller numbers.

Let’s take another example; we’ll write the Pig Latin procedure that we showed off in
Chapter 1. We’re trying to take a word, move all the initial consonants to the end, and
add “ay.”

The simplest case is that there are no initial consonants to move:

(This will turn out to be the base case of our eventual recursive procedure.)

The next-simplest case is a word that starts with one consonant. The obvious way to
write this is

but, as in the example, we’d like to find a way to use in implementing
. This case isn’t exactly like , because there isn’t a piece of the return

value that we can draw a box around to indicate that returns that piece. Instead,
puts the letters at the end of some word, and so does . The difference

is that puts at the end of a of its argument word. To make this
point clearer, we’ll rewrite in a way that separates the rearrangement from the
addition:



something something

180 Part IV Recursion

pigl0
(word ’ay) (pigl0 ) pigl0
ay pigl1

pigl1 pigl2

pigl1

pigl2

(define (pigl1 wd)
(word (word (bf wd) (first wd))

’ay))

> (pigl1 ’pastrami)
ASTRAMIPAY

(define (pigl1 wd)
(pigl0 (word (bf wd) (first wd))))

(define (pigl2 wd)
(pigl1 (word (bf wd) (first wd))))

> (pigl2 ’trample)
AMPLETRAY

(define (pigl3 wd)
(pigl2 (word (bf wd) (first wd))))

> (pigl3 ’chrome)
OMECHRAY

pigl4 cond

Now we actually replace the -like part with an invocation. We want to replace
with . If we use to attach the

at the end, our new version of looks like this:

How about a word starting with two consonants? By now we know that we’re going
to try to use as a helper procedure, so let’s skip writing the long way. We
can just move the first consonant to the end of the word, and handle the result, a word
with only one consonant in front, with :

For a three-initial-consonant word we move one letter to the end and call :

So how about a version that will work for any word?* The recursive case will involve

* As it happens, there are no English words that start with more than four consonants. (There
are only a few even with four; “phthalate” is one, and some others are people’s names, such as
“Schneider.”) So we could solve the problem without recursion by writing the specific procedures
up to and then writing a five-way to choose the appropriate specific case. But as you
will see, it’s easier to solve the more general case! A single recursive procedure, which can handle
even nonexistent words with hundreds of initial consonants, is less effort than the conceptually
simpler four-consonant version.



Problems for You to Try

is

does

Chapter 11 Introduction to Recursion 181

(define (pigl wd)
(if (member? (first wd) ’aeiou)

(word wd ’ay)
(pigl (word (bf wd) (first wd)))))

> (explode ’dynamite)
(D Y N A M I T E)

> (letter-pairs ’george)
(GE EO OR RG GE)

pigl (word (bf wd) (first wd))
pigl1 pigl2 pigl3

ay pigl0

pigl
pigl scheme chemes

pigl scheme
chemes

Scheme
chemes

Chemes hemesc
pigl (pigl ’hemesc) (pigl ’emesch)

emesch pigl emeschay
(pigl ’emesch)

taking the of , to match the pattern we found in
, , and . The base case will be a word that begins with a vowel, for

which we’ll just add on the end, as does:

It’s an unusual sense in which ’s recursive call poses a “smaller” subproblem.
If we’re asked for the of , we construct a new word, , and ask for

of that. This doesn’t seem like much progress. We were asked to translate ,
a six-letter word, into Pig Latin, and in order to do this we need to translate ,
another six-letter word, into Pig Latin.

But actually this progress, because for Pig Latin the base case isn’t a one-letter
word, but rather a word that starts with a vowel. has three consonants before the
first vowel; has only two consonants before the first vowel.

doesn’t begin with a vowel either, so we construct the word and try
to that. In order to find we need to know .
Since begin with a vowel, returns . Once we know

, we’ve thereby found the answer to our original question.

You’ve now seen two examples of recursive procedures that we developed using the
combining method. We started by writing special-case procedures to handle small
problems of a particular size, then simplified the larger versions by using smaller versions
as helper procedures. Finally we combined all the nearly identical individual versions
into a single recursive procedure, taking care to handle the base case separately.

Here are a couple of problems that can be solved with recursive procedures. Try
them yourself before reading further. Then we’ll show you our solutions.



Our Solutions

two

182 Part IV Recursion

explode

explode3
explode2 explode3

Explode2
explode2

explode4 explode3

explode explode3

(define (explode0 wd)
’())

(define (explode1 wd)
(se wd))

(define (explode2 wd)
(se (first wd) (last wd)))

(define (explode3 wd)
(se (first wd) (first (bf wd)) (last wd)))

> (explode3 ’tnt)
(T N T)

(define (explode3 wd)
(se (first wd) (explode2 (bf wd))))

(define (explode4 wd)
(se (first wd) (explode3 (bf wd))))

What’s the smallest word we can ? There’s no reason we can’t explode an empty
word:

That wasn’t very interesting, though. It doesn’t suggest a pattern that will apply to larger
words. Let’s try a few larger cases:

With the procedure is starting to get complicated enough that we want
to find a way to use to help. What does is to pull three separate
letters out of its argument word, and collect the three letters in a sentence. Here’s a
sample:

pulls letters out of a word and collects them in a sentence. So we could
let deal with two of the letters of our three-letter argument, and handle the
remaining letter separately:

We can use similar reasoning to define in terms of :

Now that we see the pattern, what’s the base case? Our first three numbered
s are all different in shape from , but now that we know what the



Chapter 11 Introduction to Recursion 183

explode2 explode1
explode1 explode0

explode1
explode0 butfirst

letter-pairs

(define (explode2 wd)
(se (first wd) (explode1 (bf wd))))

(define (explode1 wd)
(se (first wd) (explode0 (bf wd))))

(define (explode wd)
(if (empty? wd)

’()
(se (first wd) (explode (bf wd)))))

(define (letter-pairs0 wd)
’())

(define (letter-pairs1 wd)
’())

(define (letter-pairs2 wd)
(se wd))

(define (letter-pairs3 wd)
(se (bl wd) (bf wd)))

(define (letter-pairs4 wd)
(se (bl (bl wd))

(bl (bf wd))
(bf (bf wd))))

pattern should be we’ll find that we can write in terms of , and
even in terms of :

We would never have thought to write in that roundabout way, especially
since pays no attention to its argument, so computing the doesn’t
contribute anything to the result, but by following the pattern we can let the recursive
case handle one-letter and two-letter words, so that only zero-letter words have to be
special:

Now for . What’s the smallest word we can use as its argument?
Empty and one-letter words have no letter pairs in them:

This pattern is not very helpful.



This does

184 Part IV Recursion

letter-pairs4 letter-pairs3
explode letter-pairs4

letter-pairs3

letter-pairs5 letter-pairs4

(bl (bl wd)) wd wd

letter-pairs4 letter-pairs5

> (letter-pairs4 ’nems)
(NE EM MS )

(define (letter-pairs4 wd)
(se (bl (bl wd))

(letter-pairs3 (bf wd))))

(define (letter-pairs5 wd) ;; wrong
(se (bl (bl wd))

(letter-pairs4 (bf wd))))

> (letter-pairs5 ’bagel)
(BAG AG GE EL)

(define (first-two wd)
(word (first wd) (first (bf wd))))

(define (letter-pairs4 wd)
(se (first-two wd) (letter-pairs3 (bf wd))))

(define (letter-pairs5 wd)
(se (first-two wd) (letter-pairs4 (bf wd))))

Again, we want to simplify by using to help. The
problem is similar to : The value returned by is a three-word
sentence, and we can use to generate two of those words.

This gives rise to the following procedure:

Does this pattern work for defining in terms of ?

The problem is that means “the first two letters of ” only when
has four letters. In order to be able to generalize the pattern, we need a way to ask for
the first two letters of a word that works no matter how long the word is. You wrote a
procedure to solve this problem in Exercise 5.15:

Now we can use this for and :

pattern generalize.



⇒

⇒

11.1

11.2

Pitfalls

Boring Exercises

Chapter 11 Introduction to Recursion 185

explode letter-pairs2
letter-pairs3

downup

letter-pairs

downup4

count-ums

(define (letter-pairs wd)
(if (<= (count wd) 1)

’()
(se (first-two wd)

(letter-pairs (bf wd)))))

(define (letter-pairs2 wd)
(se (first-two wd)

(letter-pairs1 (bf wd))))

(define (letter-pairs3 wd)
(se (first-two wd)

(letter-pairs2 (bf wd))))

* Exercise 8.12 in Part III asks you to solve this same problem using higher-order functions.
Here we are asking you to use recursion. Whenever we pose the same problem in both parts, we’ll
cross-reference them in brackets as we did here. When you see the problem for the second time,
you might want to consult your first solution for ideas.

Note that we treat two-letter and three-letter words as recursive cases and not as base cases.
Just as in the example of , we noticed that we could rewrite
and to follow the same pattern as the larger cases:

Every recursive procedure must include two parts: one or more recursive cases, in
which the recursion reduces the size of the problem, and one or more base cases, in
which the result is computable without recursion. For example, our first attempt at

fell into this pitfall because we had no base case.

Don’t be too eager to write the recursive procedure. As we showed in the
example, what looks like a generalizable pattern may not be.

Write using only the word and sentence primitive procedures.

[8.12]* When you teach a class, people will get distracted if you say “um” too many
times. Write a that counts the number of times “um” appears in a sentence:



11.3

186 Part IV Recursion

count-ums

count-ums

phone-unspell
POPCORN 7672676

phone-unspell

Here are some special-case procedures for sentences of particular lengths:

Write recursively.

[8.13] Write a procedure that takes a spelled version of a phone
number, such as , and returns the real phone number, in this case .
You will need a helper procedure that translates a single letter into a digit:

Here are some some special-case procedures:

> (count-ums
’(today um we are going to um talk about the combining um method))

3

(define (count-ums0 sent)
0)

(define (count-ums1 sent)
(if (equal? ’um (first sent))

1
0))

(define (count-ums2 sent)
(if (equal? ’um (first sent))

(+ 1 (count-ums1 (bf sent)))
(count-ums1 (bf sent))))

(define (count-ums3 sent)
(if (equal? ’um (first sent))

(+ 1 (count-ums2 (bf sent)))
(count-ums2 (bf sent))))

(define (unspell-letter letter)
(cond ((member? letter ’abc) 2)

((member? letter ’def) 3)
((member? letter ’ghi) 4)
((member? letter ’jkl) 5)
((member? letter ’mno) 6)
((member? letter ’prs) 7)
((member? letter ’tuv) 8)
((member? letter ’wxy) 9)
(else 0)))



Real Exercises

Chapter 11 Introduction to Recursion 187

phone-unspell

initials

countdown

copies

Use recursion to solve these problems, not higher order functions (Chapter 8)!

11.4

11.5

11.6

11.7

Write recursively.

Who first said “use what you have to get what you need”?

Write a procedure that takes a sentence as its argument and returns a
sentence of the first letters in each of the sentence’s words:

Write a procedure that works like this:

Write a procedure that takes a number and a word as arguments and
returns a sentence containing that many copies of the given word:

(define (phone-unspell1 wd)
(unspell-letter wd))

(define (phone-unspell2 wd)
(word (unspell-letter (first wd))

(unspell-letter (first (bf wd)))))

(define (phone-unspell3 wd)
(word (unspell-letter (first wd))

(unspell-letter (first (bf wd)))
(unspell-letter (first (bf (bf wd))))))

> (initials ’(if i needed someone))
(I I N S)

> (countdown 10)
(10 9 8 7 6 5 4 3 2 1 BLASTOFF!)

> (countdown 3)
(3 2 1 BLASTOFF!)

> (copies 8 ’spam)
(SPAM SPAM SPAM SPAM SPAM SPAM SPAM SPAM)


