
Drawing Hands, by M. C. Escher (lithograph, 1948)

•

•

•

•

12 The Leap of Faith

the leap of faith

189

From the Combining Method to the Leap of Faith

letter-pairs

letter-pairs4
letter-pairs3

letter-pairs4 letter-pairs5

letter-pairs

In the combining method, we build up to a recursive procedure by writing a number of
special-case nonrecursive procedures, starting with small arguments and working toward
larger ones. We find a generalizable way to use a smaller version in writing a larger one.
As a result, all our procedures end up looking nearly the same, so we combine them into
one procedure.

The combining method is a good way to begin thinking about recursion because
each step of a solution is clearly justified by earlier steps. The sequence of events by which
we get from a problem statement to a Scheme procedure is clear and straightforward.
The disadvantage of the combining method, though, is that it involves a lot of drudgery,
not all of which really helps toward the ultimate solution. In this chapter we’re going to
develop a new method called that overcomes this difficulty.

Let’s look again at the way we developed the procedure in the last
chapter. We went through several steps:

We wrote specific versions for zero-, one-, two-, and three-letter words.

We wrote , decided it was too complicated, and looked for a way to
use to help.

Having rewritten , we tried to write using the same
pattern. Since it didn’t quite work, we revised the pattern.

We generalized the pattern to write an unnumbered, recursive .

•

•

ReverseExample:

slightly

190 Part IV Recursion

> (reverse ’beatles)
SELTAEB

> (reverse ’beatle)
ELTAEB

reverse
LTA reverse ATL

letter-pairs7 letter-pairs6
reverse

beatles

reverse beatles
ELTAEB SELTAEB

S

We checked to make sure that the recursive pattern would work for two-letter and
three-letter words.

Since the pattern doesn’t work for zero- or one-letter words, we made those the base
cases.

Although we needed the lowest numbered procedures in order to make the entire
collection of numbered procedures work, those low-numbered ones didn’t contribute to
the critical step of finding a generalizable pattern. Once you understand the idea of
recursion, writing the individual procedures is wasted effort.

In the leap of faith method, we short-circuit this process in two ways. First, we don’t
bother thinking about small examples; we begin with, for example, a seven-letter word.
Second, we don’t use our example to write a particular numbered procedure; we write
the recursive version directly.

We’re going to write, using the leap of faith method, a recursive procedure to reverse the
letters of a word:

Is there a of a smaller argument lurking within that return value? Yes,
many of them. For example, is the of the word . But it will be most
helpful if we find a smaller subproblem that’s only smaller. (This idea corresponds
to writing using in the combining method.) The
closest smaller subproblem to our original problem is to find the of a word one
letter shorter than .

This result is pretty close to the answer we want for of . What’s the
relationship between , the answer to the smaller problem, and , the
answer to the entire problem? There’s one extra letter, , at the beginning. Where did

The Leap of Faith

runnable!
look

really

Chapter 12 The Leap of Faith 191

(define (reverse wd) ;; unfinished
(word (last wd)

(reverse (bl wd))))

(reverse ’eatles) (reverse ’beatles)
b

beatles

reverse reverse
butlast

reverse

reverse

reverse
(reverse ’paul) (reverse ’aul)

reverse

reverse1
reverse3

whatever3
whatever4

* There’s also a relationship between and , with
the extra letter at the end. We could take either of these subproblems as a starting point and end
up with a working procedure.

** Well, almost. It needs a base case.

the extra letter come from? Obviously, it’s the last letter of .*

This may seem like a sequence of trivial observations leading nowhere. But as a
result of this investigation, we can translate what we’ve learned directly into Scheme. In
English: “the of a word consists of its last letter followed by the of its

.” In Scheme:

If we think of this Scheme fragment merely as a statement of a true fact about ,
it’s not very remarkable. The amazing part is that this fragment is ** It doesn’t

runnable because it invokes itself as a helper procedure, and—if you haven’t already
been through the combining method—that looks as if it can’t work. “How can you use

when you haven’t written it yet?”

The leap of faith method is the assumption that the procedure we’re in the middle
of writing already works. That is, if we’re thinking about writing a procedure
that can compute , we assume that will work.

Of course it’s not a leap of faith, in the sense of something accepted as
miraculous but not understood. The assumption is justified by our understanding of the
combining method. For example, we understand that the four-letter is relying
on the three-letter version of the problem, not really on itself, so there’s no circular
reasoning involved. And we know that if we had to, we could write through

“by hand.”

The reason that our technique in this chapter may seem more mysterious than the
combining method is that this time we are thinking about the problem top-down. In
the combining method, we had already written before we even raised the
question of . Now we start by thinking about the larger problem and assume

Factorial

× × ⋅ ⋅ ⋅ ×
× × × ×

× × ⋅ ⋅ ⋅ × ×

×

The Base Case

Example:

n n

192 Part IV Recursion

reverse

reverse

reverse

> (reverse ’x)
X

(define (reverse wd)
(if (= (count wd) 1)

wd
(word (last wd)

(reverse (bl wd)))))

that we can rely on the smaller one. Again, we’re entitled to that assumption because
we’ve gone through the process from smaller to larger so many times already.

The leap of faith method, once you understand it, is faster than the combining
method for writing new recursive procedures, because we can write the recursive solution
immediately, without bothering with many individual cases. The reason we showed you
the combining method first is that the leap of faith method seems too much like magic, or
like “cheating,” until you’ve seen several believable recursive programs. The combining
method is the way to learn about recursion; the leap of faith method is the way to write
recursive procedures once you’ve learned.

Of course, our definition of isn’t finished yet: As always, we need a base case.
But base cases are the easy part. Base cases transform simple arguments into simple
answers, and you can do that transformation in your head.

For example, what’s the simplest argument to ? If you answered “a
one-letter word” then pick a one-letter word and decide what the result should be:

of a one-letter word should just be that same word:

We’ll use the leap of faith method to solve another problem that we haven’t already solved
with the combining method.

The factorial of a number is defined as 1 2 . So the factorial of 5 (written
“5!”) is 1 2 3 4 5. Suppose you want Scheme to figure out the factorial of some
large number, such as 843. You start from the definition: 843! is 1 2 842 843.
Now you have to look for another factorial problem whose answer will help us find the
answer to 843!. You might notice that 2!, that is, 1 2, is part of 843!, but that doesn’t

smaller

× ⋅ ⋅ ⋅ ×
× × −

−

× × × × ×

reverse
butfirst butlast
factorial

n n n

n

not

Chapter 12 The Leap of Faith 193

(define (factorial n) ;; first version
(* n (factorial (- n 1))))

(define (factorial1 n)
1)

(define (factorial2 n)
(* 2 (factorial1 (- n 1))))

(define (factorial3 n)
(* 3 (factorial2 (- n 1))))

;; ...

(define (factorial842 n)
(* 842 (factorial841 (- n 1))))

* What makes us confident? We imagine that we’ve worked on this problem using the combining
method, so that we’ve written procedures like these:

and therefore we’re entitled to use those lower-numbered versions in finding the factorial of 843.
We haven’t actually written them, but we could have, and that’s what justifies using them. The
reason we can take 842! on faith is that 842 is smaller than 843; it’s the smaller values that we’re
pretending we’ve already written.

** As it happens, the part in parentheses does equal the factorial of a number, 6 itself. But
expressing the solution for 6 in terms of the solution for 6 doesn’t lead to a recursive procedure;
we have to express this solution in terms of a one.

help very much because there’s no simple relationship between 2! and 843!. A more
fruitful observation would be that 842! is 1 842—that is, all but the last number in
the product we’re trying to compute. So 843! = 843 842!. In general, ! is (1)!.
We can embody this idea in a Scheme procedure:

Asking for (1)! is the leap of faith. We’re expressing an answer we don’t know, 843!,
in terms of another answer we don’t know, 842!. But since 842! is a smaller, similar
subproblem, we are confident that the same algorithm will find it.*

Remember that in the problem we mentioned that we could have chosen
either the or the of the argument as the smaller subproblem? In the
case of the problem we don’t have a similar choice. If we tried to subdivide
the problem as

6! = 1 (2 3 4 5 6)

then the part in parentheses would be the factorial of a smaller number.**

−

return
value

n

194 Part IV Recursion

Likely Guesses for Smaller Subproblems

(define (factorial n)
(if (= n 1)

1
(* n (factorial (- n 1)))))

factorial

reverse

beatles
SELTAEB
ELTAEB
beatle
beatle (bl ’beatles)
SELTAEB (word ’s ’ELTAEB)
(word (last arg)

(reverse (bl arg)))

butfirst butlast reverse

As the base case for , we’ll use 1! = 1.

To make the leap of faith method work, we have to find a smaller, similar subproblem
whose solution will help solve the given problem. How do we find such a smaller
subproblem?

In the examples so far, we’ve generally found it by finding a smaller, similar
within the return value we’re trying to achieve. Then we worked backward from

the smaller solution to figure out what smaller argument would give us that value. For
example, here’s how we solved the problem:

original argument
desired return value
smaller return value
corresponding argument
relationship of arguments is
relationship of return values is
Scheme expression

Similarly, we looked at the definition of 843! and noticed within it the factorial of a
smaller number, 842.

But a smaller return value won’t necessarily leap out at us in every case. If not, there
are some likely guesses we can try. For example, if the problem is about integers, it makes
sense to try 1 as a smaller argument. If the problem is about words or sentences,
try the or the . (Often, as in the example, either will
be helpful.) Once you’ve guessed at a smaller argument, see what the corresponding
return value should be, then compare that with the original desired return value as we’ve
described earlier.

In fact, these two argument-guessing techniques would have suggested the same
subproblems that we ended up using in our two examples so far. The reason we didn’t
teach these techniques from the beginning is that we don’t want you to think they’re

Downup

Evens

Example:

Example:

Chapter 12 The Leap of Faith 195

downup

butfirst
butlast

butfirst
butlast

butfirst butlast

> (downup ’paul)
(PAUL PAU PA P PA PAU PAUL)

> (downup ’aul)
(AUL AU A AU AUL)

> (downup ’pau)
(PAU PA P PA PAU)

(define (downup wd) ;; no base case
(se wd (downup (bl wd)) wd))

> (evens ’(i want to hold your hand))
(WANT HOLD HAND)

essential parts of the leap of faith method. These are just good guesses; they don’t always
work. When they don’t, you have to be prepared to think more flexibly.

Here’s how we might rewrite using the leap of faith method. Start by looking at
the desired return value for a medium-sized example:

Since this is a procedure whose argument is a word, we guess that the or the
might be helpful.

This is a case in which it matters which we choose; the solution for the
of the original argument doesn’t help, but the solution for the is most of the
solution for the original word. All we have to do is add the original word itself at the
beginning and end:

As before, this is missing the base case, but by now you know how to fill that in.

Here’s a case in which mindlessly guessing or doesn’t lead to a very
good solution. We want a procedure that takes a sentence as its argument and returns a
sentence of the even-numbered words of the original sentence:

196 Part IV Recursion

evens butfirst butlast

Butfirst Butlast
evens evens

evens

evens (i want to hold your hand) evens
(i want to hold your) hand evens
(i want to hold your)

evens (i want to hold) your your

evens

> (evens ’(want to hold your hand))
(TO YOUR)

> (evens ’(i want to hold your))
(WANT HOLD)

(define (losing-evens sent) ;; no base case
(se (losing-evens (bl sent))

(last sent)))

(define (losing-evens sent)
(if (empty? sent)

’()
(se (losing-evens (bl sent))

(last sent))))

> (losing-evens ’(i want to hold your hand))
(I WANT TO HOLD YOUR HAND)

> (evens ’(i want to hold your))
(WANT HOLD)

> (evens ’(i want to hold))
(WANT HOLD)

We look at of the and of this sentence:

is clearly not helpful; it gives all the wrong words. looks promising.
The relationship between of the bigger sentence and of the smaller
sentence is that the last word of the larger sentence is missing from of the smaller
sentence.

For a base case, we’ll take the empty sentence:

This isn’t quite right.

It’s true that of is the same as of
plus the word at the end. But what about of

? By the reasoning we’ve been using, we would expect that to
be of plus the word . But since the word is the
fifth word of the argument sentence, it shouldn’t be part of the result at all. Here’s how

should work:

evens evens
butlast

Simplifying Base Cases

Chapter 12 The Leap of Faith 197

(define (evens sent) ;; better version
(cond ((empty? sent) ’())

((odd? (count sent))
(evens (bl sent)))
(else (se (evens (bl sent))

(last sent)))))

(define (evens sent) ;; best version
(if (<= (count sent) 1)

’()
(se (first (bf sent))

(evens (bf (bf sent))))))

* It may feel strange that in the case of an odd-length sentence, the answer to the recursive
subproblem is the same as the answer to the original problem, rather than a smaller answer. But
remember that it’s the argument, not the return value, that has to get smaller in each recursive
step.

When the sentence has an odd number of words, its is the same as the of
its .* So here’s our new procedure:

This version works, but it’s more complicated than necessary. What makes it
complicated is that on each recursive call we switch between two kinds of problems:
even-length and odd-length sentences. If we dealt with the words two at a time, each
recursive call would see the same kind of problem.

Once we’ve decided to go through the sentence two words at a time, we can reopen
the question of whether to go right-to-left or left-to-right. It will turn out that the latter
gives us the simplest procedure:

Since we go through the sentence two words at a time, an odd-length argument sentence
always gives rise to an odd-length recursive subproblem. Therefore, it’s not good enough
to check for an empty sentence as the only base case. We need to treat both the empty
sentence and one-word sentences as base cases.

The leap of faith is mostly about recursive cases, not base cases. In the examples in this
chapter, we’ve picked base cases without talking about them much. How do you pick a
base case?

198 Part IV Recursion

reverse

m
wd

M (reverse
"")

(define (reverse wd)
(if (= (count wd) 1)

wd
(word (last wd)

(reverse (bl wd)))))

(word (last wd)
(reverse (bl wd)))

(word (last ’m)
(reverse (bl ’m)))

(word ’m
(reverse ""))

(define (reverse wd)
(if (empty? wd)

""
(word (last word)

(reverse (bl word)))))

In general, we recommend using the smallest possible base case argument, because
that usually leads to the simplest procedures. For example, consider using the empty
word, empty sentence, or zero instead of one-letter words, one-word sentences, or one.

How can you go about finding the simplest possible base case? Our first example in
this chapter was . We arbitrarily chose to use one-letter words as the base case:

Suppose we want to consider whether a smaller base case would work. One approach
is to pick an argument that would be handled by the current base case, and see what
would happen if we tried to let the recursive step handle it instead. (To go along with
this experiment, we pick a smaller base case, since the original base case should now be
handled by the recursive step.) In this example, we pick a one-letter word, let’s say , and
use that as the value of in the expression

The result is

which is the same as

We want this to have as its value the word . This will work out provided that
has the empty word as its value. So we could rewrite the procedure this way:

Chapter 12 The Leap of Faith 199

(reverse "")
reverse

reverse

downup

’a wd

A
downup

factorial 1

0
1 n

(define (downup wd)
(if (= (count wd) 1)

(se wd)
(se wd (downup (bl wd)) wd)))

> (downup ’a)
(A)

(se ’a (downup "") ’a)

(define (factorial n)
(if (= n 1)

1
(* n (factorial (- n 1)))))

(* 1 (factorial 0))

We were led to this empty-word base case by working downward from the needs of the
one-letter case. However, it’s also important to ensure that the return value used for the
empty word is the correct value, not only to make the recursion work, but for an empty
word in its own right. That is, we have to convince ourselves that should
return an empty word. But it should; the of any word is a word containing the
same letters as the original word. If the original has no letters, the must have
no letters also. This exemplifies a general principle: Although we choose a base case
argument for the sake of the recursive step, we must choose the corresponding return
value for the sake of the argument itself, not just for the sake of the recursion.

We’ll try the base case reduction technique on :

If we want to use the empty word as the base case, instead of one-letter words, then we
have to ensure that the recursive case can return a correct answer for a one-letter word.
The behavior we want is

But if we substitute for in the recursive-case expression we get

which will have two copies of the word in its value no matter what value we give to
of the empty word. We can’t avoid treating one-letter words as a base case.

In writing , we used as the base case.

Our principle of base case reduction suggests that we try for . To do this, we substitute
for in the recursive case expression:

200 Part IV Recursion

1

letter-pairs

(first (bf wd))

(define (factorial n)
(if (= n 0)

1
(* n (factorial (- n 1)))))

(define (letter-pairs wd)
(if (<= (count wd) 1)

’()
(se (first-two wd)

(letter-pairs (bf wd)))))

(define (first-two wd)
(word (first wd) (first (bf wd))))

(first-two ’a)

(word (first ’a) (first (bf ’a)))

We’d like this to have the value ; this will be true only if we define 0! = 1. Now we can say

In this case, the new procedure is no simpler than the previous version. Its only advantage
is that it handles a case, 0!, that mathematicians find useful.

Here’s another example in which we can’t reduce the base case to an empty word.
In Chapter 11 we used the combining method to write :

It might occur to you that one-letter words could be handled by the recursive case, and
the base case could then handle only the empty word. But if you try to evaluate the
expression for the recursive case as applied to a one-letter word, you find that

is equivalent to

which is an error. There is no second letter of a one-letter word. As soon as you see the
expression within this program, you know that one-letter words must
be part of the base case. The same kind of reasoning can be used in many problems; the
base case must handle anything that’s too small to fit the needs of the recursive case.

⇒

⇒

Pitfalls

down

first splat first first

down

that

Chapter 12 The Leap of Faith 201

> (down ’town)
(TOWN TOW TO T)

(define (down wd) ;; wrong!
(if (empty? wd)

’()
(se wd (down (first wd)))))

(define (down wd) ;; incomplete
(se wd))

(define (down wd) ;; wrong!
(se wd (bl wd)))

(define (down wd)
(if (empty? wd)

’()
(se wd (down (bl wd)))))

One possible pitfall is a recursive case that doesn’t make progress, that is, one that
doesn’t reduce the size of the problem in the recursive call. For example, let’s say we’re
trying to write the procedure that works this way:

Here’s an incorrect attempt:

The recursive call looks as if it reduces the size of the problem, but try it with an actual
example. What’s of the word ? What’s of that result? What’s
of result?

A pitfall that sounds unlikely in the abstract but is actually surprisingly common is to
try to do the second step of the procedure “by hand” instead of trusting the recursion to
do it. For example, here’s another attempt at that procedure:

. . .

You know the first word in the result has to be the argument word. Then what? The next
thing is the same word with its last letter missing:

. . .

Instead of taking care of the entire rest of the problem with a recursive call, it’s tempting
to take only one more step, figuring out how to include the second word of the required
solution. But that approach won’t get you to a general recursive solution. Just take the
first step and then trust the recursion for the rest:

⇒

⇒

202 Part IV Recursion

downup (se wd)

downup

(define (square-sent sent) ;; wrong
(if (empty? sent)

’()
(se (square (first sent))

(square (first (bf sent)))
(square-sent (bf sent)))))

> (square-sent ’(2 3))
ERROR: Invalid argument to FIRST: ()

(define (square-sent sent) ;; still wrong
(if (= (count sent) 1)

’()
(se (square (first sent))

(square (first (bf sent)))
(square-sent (bf sent)))))

> (square-sent ’(2 3))
(4 9)

> (square-sent ’(7))
()

The value returned in the base case of your procedure must be in the range of the
function you are representing. If your function is supposed to return a number, it must
return a number all the time, even in the base case. You can use this idea to help you
check the correctness of the base case expression.

For example, in , the base case returns for the base case argument
of a one-letter word. How did we think to enclose the word in a sentence? We know that
in the recursive cases always returns a sentence, so that suggests to us that it must
return a sentence in the base case also.

If your base case doesn’t make sense in its own right, it probably means that you’re
trying to compensate for a mistake in the recursive case.

For example, suppose you’ve fallen into the pitfall of trying to handle the second
word of a sentence by hand, and you’ve written the following procedure:

After some experimentation, you find that you can get this example to work by changing
the base case:

The trouble is that the base case doesn’t make sense on its own:

{

Boring Exercises

12.1

12.2

12.3

12.4

factorial 0 -1

sentence butfirst first

f

f sent
sent sent

f sent sent

f f

Chapter 12 The Leap of Faith 203

(define (addup nums)
(if (empty? (bf nums))

(first nums)
(+ (first nums) (addup (bf nums)))))

(define (acronym sent) ;; wrong
(if (= (count sent) 1)

(first sent)
(word (first (first sent))

(acronym (bf sent)))))

In fact, this procedure doesn’t work for any sentences of length other than two. The
moral is that it doesn’t work to correct an error in the recursive case by introducing an
absurd base case.

Here is a definition of a procedure that returns the sum of the numbers in its
argument sentence:

Although this works, it could be simplified by changing the base case. Do that.

Fix the bug in the following definition:

Can we reduce the base case argument from to ? If so, show the
resulting procedure. If not, why not?

Here’s the definition of a function :

() =
, if is empty;

((()), ()), otherwise.

Implement as a Scheme procedure. What does do?

−

Real Exercises

12.5

12.6

12.7

12.8

every keep accumulate

exaggerate

base-grade
grade-modifier

spell-number

numbers

Solve all of the following problems with recursive procedures. If you’ve read Part III, do not use any
higher-order functions such as , , or .

204 Part IV Recursion

> (exaggerate ’(i ate 3 potstickers))
(I ATE 6 POTSTICKERS)

> (exaggerate ’(the chow fun is good here))
(THE CHOW FUN IS GREAT HERE)

> (gpa ’(A A+ B+ B))
3.67

> (spell-number 1971)
(ONE NINE SEVEN ONE)

(define (spell-digit digit)
(item (+ 1 digit)

’(zero one two three four five six seven eight nine)))

[8.8] Write an procedure which exaggerates sentences:

It should double all the numbers in the sentence, and it should replace “good” with
“great,” “bad” with “terrible,” and anything else you can think of.

[8.11] Write a GPA procedure. It should take a sentence of grades as its argument
and return the corresponding grade point average:

Hint: write a helper procedure that takes a grade as argument and returns
0, 1, 2, 3, or 4, and another helper procedure that returns .33, 0, or
.33, depending on whether the grade has a minus, a plus, or neither.

Write a procedure that spells out the digits of a number:

Use this helper procedure:

Write a procedure that takes a sentence as its argument and returns
another sentence containing only the numbers in the argument:

12.9

12.10

12.11

12.12

12.13

reduce

Chapter 12 The Leap of Faith 205

real-words
real-word?

remove

count

arabic

roman-value

C MCM

describe-time

1 CENTURY 1 CENTURIES

> (numbers ’(76 trombones and 110 cornets))
(76 110)

> (remove ’the ’(the song love of the loved by the beatles))
(SONG LOVE OF LOVED BY BEATLES)

> (arabic ’MCMLXXI)
1971

> (arabic ’MLXVI)
1066

> (describe-time 22222)
(6 HOURS 10 MINUTES 22 SECONDS)

> (describe-time 4967189641)
(1 CENTURIES 57 YEARS 20 WEEKS 6 DAYS 8 HOURS 54 MINUTES 1 SECONDS)

Write a procedure that takes a sentence as argument and returns
all the “real” words of the sentence, using the same rule as the procedure
from Chapter 1.

Write a procedure that takes a word and a sentence as arguments and
returns the same sentence, but with all copies of the given word removed:

Write the procedure , which returns the number of words in a sentence or
the number of letters in a word.

Write a procedure which converts Roman numerals into Arabic numerals:

You will probably find the procedure from Chapter 6 helpful. Don’t
forget that a letter can the overall value if the letter that comes after it has a larger
value, such as the in .

Write a new version of the procedure from Exercise 6.14.
Instead of returning a decimal number, it should behave like this:

Can you make the program smart about saying instead of ?

