

14 Common Patterns in Recursive Procedures

patterns, templates,

any

does

meaningful

higher-order

217

* That’s because there are two kinds of people: those who think there are two kinds of people,
and those who don’t.

There are two ideas about how to solve programming problems.* One idea is that
programmers work mostly by recognizing categories of problems that come up repeatedly
and remembering the solution that worked last time; therefore, programming students
should learn a lot of program or and fill in the blanks for each specific
problem. Another idea is that there are a few powerful principles in programming, and
that if a learner understands the principles, they can be applied to problem, even
one that doesn’t fit a familiar pattern.

Research suggests that an expert programmer, like an expert at any skill, work
mainly by recognizing patterns. Nevertheless, we lean toward the powerful-principle
idea. The expert’s memory is not full of arbitrary patterns; it’s full of patterns,
because the expert has gone through the process of struggling to reason out how each
procedure works and how to write new procedures.

Still, we think it’s worth pointing out a few patterns that are so common that you’ll
have seen several examples of each before you finish this book. Once you learn these
patterns, you can write similar procedures almost automatically. But there’s an irony in
learning patterns: In Scheme, once you’ve identified a pattern, you can write a general-
purpose procedure that handles all such cases without writing individual procedures
for each situation. Then you don’t have to use the pattern any more! Chapter 8
presents several general pattern-handling procedures, called procedures. In
this chapter we’ll consider the patterns corresponding to those higher-order procedures,
and we’ll use the names of those procedures to name the patterns.

EveryThe Pattern

almost

exactly

218 Part IV Recursion

first square pigl
butfirst

letter-pairs
every

letter-pairs

(define (square-sent sent)
(if (empty? sent)

’()
(se (square (first sent))

(square-sent (bf sent)))))

(define (pigl-sent sent)
(if (empty? sent)

’()
(se (pigl (first sent))

(pigl-sent (bf sent)))))

(define (letter-pairs wd)
(if (= (count wd) 1)

’()
(se (word (first wd) (first (bf wd)))

(letter-pairs (bf wd)))))

What’s the point of learning patterns if you can use higher-order procedures instead?
There are at least two points. The first, as you’ll see very soon, is that some problems
follow one of the patterns; in that case, you can’t use the corresponding higher-order
procedure, which works only for problems that follow the pattern. But you can
use your understanding of the pattern to help with these related problems. The second
point is that in Chapter 19 we’ll show how the higher-order functions are themselves
implemented using these recursive patterns.

This chapter isn’t an official list of all important patterns; as you gain programming
experience, you’ll certainly add more patterns to your repertoire.

Here’s a procedure to square every number in a sentence of numbers:

Here’s a procedure to translate every word of a sentence into Pig Latin:

The pattern here is pretty clear. Our recursive case will do something straightforward
to the of the sentence, such as ing it or ing it, and we’ll combine
that with the result of a recursive call on the of the sentence.

The procedure that we wrote in Chapter 11 is an example of a
procedure that follows the pattern pretty closely, but not exactly. The difference
is that looks at its argument sentence two words at a time.

KeepThe Pattern

square-sent
se butfirst

disjoint-pairs

every

non-overlapping

Chapter 14 Common Patterns in Recursive Procedures 219

* If you’ve read Chapter 8, you know that you could implement and
without recursion, using the higher order function. But try using to implement

; you’ll find that you can’t quite make it work.

> (disjoint-pairs ’tripoli) ;; the new problem
(TR IP OL I)

> (letter-pairs ’tripoli) ;; compare the old one
(TR RI IP PO OL LI)

(define (disjoint-pairs wd)
(cond ((empty? wd) ’())

((= (count wd) 1) (se wd))
(else (se (word (first wd) (first (bf wd)))

(disjoint-pairs (bf (bf wd)))))))

(define (keep-three-letter-words sent)
(cond ((empty? sent) ’())

((= (count (first sent)) 3)
(se (first sent) (keep-three-letter-words (bf sent))))
(else (keep-three-letter-words (bf sent)))))

square-sent pigl-sent
every every

letter-pairs

Compare this with the earlier definition of . The recursive case still uses
to combine one part of the result with a recursive call based on the of the

argument, but here both the first letter and the second letter of the argument contribute
to the first word of the result. That’s why the base case also has to be different; the
recursive case requires at least two letters, so the base case is a one-letter word.*

Let’s solve a slightly different problem. This time, we want to break the word down
into pairs of letters, like this:

The main difference between these two functions is that in we
eliminate two letters at once in the recursive call. A second difference is that we have to
deal with the special case of odd-length words.

In the pattern, we collect the results of transforming each element of a word
or sentence into something else. This time we’ll consider a different kind of problem:
choosing some of the elements and forgetting about the others. First, here is a procedure
to select the three-letter words from a sentence:

two

220 Part IV Recursion

every keep
keep

every every
keep

every keep

keep

evens doubles

> (keep-three-letter-words ’(one two three four five six seven))
(ONE TWO SIX)

(define (keep-vowels wd)
(cond ((empty? wd) "")

((vowel? (first wd))
(word (first wd) (keep-vowels (bf wd))))
(else (keep-vowels (bf wd)))))

> (keep-vowels ’napoleon)
AOEO

> (doubles ’bookkeeper)
OOKKEE

> (doubles ’mississippi)
SSSSPP

(define (doubles wd)
(cond ((= (count wd) 1) "")

((equal? (first wd) (first (bf wd)))
(word (first wd) (first (bf wd)) (doubles (bf (bf wd)))))
(else (doubles (bf wd)))))

Next, here is a procedure to select the vowels from a word:

Let’s look at the differences between the pattern and the pattern. First
of all, the procedures have three possible outcomes, instead of just two as in most

-like procedures. In the pattern, we only have to distinguish between the
base case and the recursive case. In the pattern, there is still a base case, but
there are recursive cases; we have to decide whether or not to keep the first available
element in the return value. When we do keep an element, we keep the element itself,
not some function of the element.

As with the pattern, there are situations that follow the pattern only
approximately. Suppose we want to look for doubled letters within a word:

This isn’t a pure pattern example because we can’t decide whether to keep the first
letter by looking at that letter alone; we have to examine two at a time. But we can write
a procedure using more or less the same pattern:

As in the example of Chapter 12, the base case of is unusual, and one
of the recursive calls chops off two letters at once in forming the smaller subproblem.

−∞

AccumulateThe Pattern

cond

+ word

max

Chapter 14 Common Patterns in Recursive Procedures 221

* Of course, if your version of Scheme has , you can use it as the return value for an empty
sentence, instead of changing the pattern.

(define (addup nums)
(if (empty? nums)

0
(+ (first nums) (addup (bf nums)))))

(define (scrunch-words sent)
(if (empty? sent)

""
(word (first sent) (scrunch-words (bf sent)))))

> (addup ’(8 3 6 1 10))
28

> (scrunch-words ’(ack now ledge able))
ACKNOWLEDGEABLE

(define (sent-max sent)
(if (= (count sent) 1)

(first sent)
(max (first sent)

(sent-max (bf sent)))))

But the structure of the with a base case clause, a clause for keeping letters, and a
clause for rejecting letters is maintained.

Here are two recursive procedures for functions that combine all of the elements of the
argument into a single result:

What’s the pattern? We’re using some combiner (or) to connect the word
we’re up to with the result of the recursive call. The base case tests for an empty argument,
but the base case return value must be the identity element of the combiner function.

If there is no identity element for the combiner, as in the case of , we modify the
pattern slightly:*

Combining Patterns

sum

222 Part IV Recursion

(define (add-numbers sent)
(accumulate + (keep number? sent)))

keep accumulate

keep Add-numbers
keep

accumulate

every keep

safe-pigl keep
every

(define (add-numbers sent)
(cond ((empty? sent) 0)

((number? (first sent))
(+ (first sent) (add-numbers (bf sent))))
(else (add-numbers (bf sent)))))

> (add-numbers ’(if 6 were 9))
15

(define (safe-pigl sent)
(cond ((empty? sent) ’())

((has-vowel? (first sent))
(se (pigl (first sent)) (safe-pigl (bf sent))))
(else (safe-pigl (bf sent)))))

(define (has-vowel? wd)
(not (empty? (keep-vowels wd))))

* Here’s the higher-order function version, from Chapter 8:

The higher-order function version is more self-documenting and easier to write. The recursive
version, however, is slightly more efficient, because it avoids building up a sentence as an
intermediate value only to discard it in the final result. If we were writing this program for our own
use, we’d probably choose the higher-order function version; but if we were dealing with sentences
of length 10,000 instead of length 10, we’d pay more attention to efficiency.

This procedure combines aspects of with aspects of . We want to do
two things at once: get rid of the words that aren’t numbers and compute the of those
that are numbers. (A simple would construct a sentence of them.)
looks exactly like the pattern, except that there’s a funny combiner and a funny
base case, which look more like .*

Here’s an example that combines and . We want a procedure that takes
a sentence as its argument and translates every word of the sentence into Pig Latin, but
leaves out words that have no vowels, because the Pig Latin translator doesn’t work for
such words. The procedure will be like a pattern in that it keeps only
words that contain vowels, but like an in that the result contains transformed
versions of the selected words, rather than the words themselves.

n

n

Helper Procedures

acronym
keep every

accumulate

every-nth

keep

n
every-nth

n
cond

n
n

original

Chapter 14 Common Patterns in Recursive Procedures 223

> (safe-pigl ’(my pet fly is named xyzzy))
(ETPAY ISAY AMEDNAY)

(define (acronym sent)
(cond ((empty? sent) "")

((real-word? (first sent))
(word (first (first sent))

(acronym (bf sent))))
(else (acronym (bf sent)))))

> (every-nth 3 ’(with a little help from my friends))
(LITTLE MY)

(define (every-nth n sent) ;; wrong!
(cond ((empty? sent) ’())

((= n 1)
(se (first sent) (every-nth (bf sent))))
(else (every-nth (- n 1) (bf sent)))))

Finally, here’s an example that combines all three patterns. In Chapter 1 we wrote
(using higher-order procedures) the procedure, which selects the “real” words
of a sentence (the pattern), takes the first letter of each word (the pattern),
and combines these initial letters into a single word (the pattern). In a
recursive procedure we can carry out all three steps at once:

Don’t become obsessed with trying to make every recursive problem fit one of the
three patterns we’ve shown here. As we said at the beginning of the chapter, what’s most
important is that you understand the principles of recursion in general, and understand
how versatile recursion is. The patterns are just special cases that happen to come up
fairly often.

Let’s say we want a procedure that takes a number and a sentence as
arguments and selects every th word from the sentence.

We get in trouble if we try to write this in the obvious way, as a sort of pattern.

The problem is with the that’s in boldface. We’re thinking that it’s going to be the
of the invocation of , that is, 3. But in fact, we’ve already counted

down so that in this invocation its value is 1. (Check out the first half of the same
clause.) This procedure will correctly skip the first two words but will keep all the

?

How to Use Recursive Patterns

original

initialization helper

224 Part IV Recursion

every-something

every-something

keep-if-something

keep-if-something
keep-if-something

every-nth

interval
remaining Remaining

every-nth-helper interval
n remaining

every keep accumulate

(define (every-nth n sent)
(every-nth-helper n n sent))

(define (every-nth-helper interval remaining sent)
(cond ((empty? sent) ’())

((= remaining 1)
(se (first sent)

(every-nth-helper interval interval (bf sent))))
(else (every-nth-helper interval (- remaining 1) (bf sent)))))

(define (sent)
(if (empty? sent)

’()
(se ((first sent))

((bf sent)))))

(define (sent)
(cond ((empty? sent) ’())

(((first sent))
(se (first sent) ((bf sent))))
(else ((bf sent)))))

words after that point. That’s because we’re trying to remember two different numbers:
the number we should always skip between kept words, and the number of words we still
need to skip this time.

If we’re trying to remember two numbers, we need two names for them. The way
to achieve this is to have our official procedure call a helper procedure that
takes an extra argument and does the real work:

This procedure always calls itself recursively with the same value of , but with
a different value of each time. keeps getting smaller by one in
each recursive call until it equals 1. On that call, a word is kept for the return value, and
we call recursively with the value of , that is, the
value of , as the new . If you like, you can think of this combination of an

procedure and a procedure as another pattern for your collection.

One way in which recursive patterns can be useful is if you think of them as templates
with empty slots to fill in for a particular problem. Here are template versions of the

, , and patterns as applied to sentences:

all

Chapter 14 Common Patterns in Recursive Procedures 225

accumulate-somehow

accumulate-somehow

’no-number

(first sent)

first-number

no-number

keep

number?

cond

sent
no-number

butfirst
else

(define (sent)
(if (empty? sent)

((first sent)
((bf sent)))))

(define (first-number sent) ;; first guess
(cond ((empty? sent) ’())

(((first sent))
(se (first sent) (first-number (bf sent))))
(else (first-number (bf sent)))))

((empty? sent))

((number? (first sent)))

(define (first-number sent)
(cond ((empty? sent) ’no-number)

((number? (first sent)) (first sent))
(else (first-number (bf sent)))))

Suppose you’re trying to write a procedure that takes a sentence
as its argument and returns the first number in that sentence, but returns the word

if there are no numbers in the argument. The first step is to make a guess
about which pattern will be most useful. In this case the program should start with an
entire sentence and select a portion of that sentence, namely one word. Therefore, we
start with the pattern.

The next step is to fill in the blank. Obviously, since we’re looking for a number,
goes in the blank.

The trouble is that this procedure returns the numbers in the given sentence.
Now our job is to see how the pattern must be modified to do what we want. The overall
structure of the pattern is a with three clauses; we’ll consider each clause separately.

What should the procedure return if is empty? In that case, there is no first
number in the sentence, so it should return :

What if the first word of the sentence is a number? The program should return just
that number, ignoring the rest of the sentence:

What if the first word of the sentence isn’t a number? The procedure must make a
recursive call for the , and whatever that recursive call returns is the answer.
So the clause does not have to be changed.

Here’s the whole procedure:

Problems That Don’t Follow Patterns

behavior

debugging

226 Part IV Recursion

keep

no-number

sent-before?
#t

every

keep
accumulate

accumulate

> (sent-before? ’(hold me tight) ’(sun king))
#T

> (sent-before? ’(lovely rita) ’(love you to))
#F

> (sent-before? ’(strawberry fields forever)
’(strawberry fields usually))

#T

* Dictionaries use a different ordering rule, in which the sentences are treated as if they were
single words, with the spaces removed. By the dictionary rule, “a c” is treated as if it were “ac” and
comes after “ab”; by our rule, “a c” comes before “ab” because we compare the first words (“a” and
“ab”).

After filling in the blank in the pattern, we solved this problem by focusing
on the details of the procedure definition. We examined each piece of the definition to
decide what changes were necessary. Instead, we could have focused on the of
the procedure. We would have found two ways in which the program didn’t do what it
was supposed to do: For an argument sentence containing numbers, it would return all
of the numbers instead of just one of them. For a sentence without numbers, it would
return the empty sentence instead of . We would then have finished the job
by the procedure to fix each of these problems. The final result would have
been the same.

We want to write the procedure , which takes two sentences as arguments
and returns if the first comes alphabetically before the second. The general idea is
to compare the sentences word by word. If the first words are different, then whichever
is alphabetically earlier determines which sentence comes before the other. If the first
words are equal, we go on to compare the second words.*

Does this problem follow any of the patterns we’ve seen? It’s not an , because
the result isn’t a sentence in which each word is a transformed version of a word in
the arguments. It’s not a , because the result isn’t a subset of the words in the
arguments. And it’s not exactly an . We do end up with a single true or
false result, rather than a sentence full of results. But in a typical problem,

⇒

Pitfalls

keep

keep se

keep
keep

empty?

Chapter 14 Common Patterns in Recursive Procedures 227

(define (sent-before? sent1 sent2)
(cond ((empty? sent1) #t)

((empty? sent2) #f)
((before? (first sent1) (first sent2)) #t)
((before? (first sent2) (first sent1)) #f)
(else (sent-before? (bf sent1) (bf sent2)))))

every word of the argument contributes to the solution. In this case only one word from
each sentence determines the overall result.

On the other hand, this problem does have something in common with the
pattern: We know that on each invocation there will be three possibilities. We might
reach a base case (an empty sentence); if not, the first words of the argument sentences
might or might not be relevant to the solution.

We’ll have a structure similar to the usual pattern, except that there’s no
involved; if we find unequal words, the problem is solved without further recursion. Also,
we have two arguments, and either of them might be empty.

Although thinking about the pattern helped us to work out this solution, the result
really doesn’t look much like a . We had to invent most of the details by thinking
about this particular problem, not by thinking about the pattern.

In the next chapter we’ll look at examples of recursive procedures that are quite
different from any of these patterns. Remember, the patterns are a shortcut for many
common problems, but don’t learn the shortcut at the expense of the general technique.

Review the pitfalls from Chapter 12; they’re still relevant.

How do you test for the base case? Most of the examples in this chapter have used
, and it’s easy to fall into the habit of using that test without thinking. But, for

example, if the argument is a number, that’s probably the wrong test. Even when the
argument is a sentence or a non-numeric word, it may not be empty in the base case, as
in the Pig Latin example.

⇒

⇒

⇒

doesn’t

228 Part IV Recursion

> (pairs ’toy)
(TT TO TY OT OO OY YT YO YY)

(define (copies num wd)
(if (= num 0)

’()
(se wd (copies (- num 1) wd))))

pairs

every-nth-helper every-nth

sent-before?
sent1 sent2

wd
(empty? wd)

every-nth-helper cond

remaining remaining

A serious pitfall is failing to recognize a situation in which you need an extra variable
and therefore need a helper procedure. If at each step you need the entire original
argument as well as the argument that’s getting closer to the base case, you probably
need a helper procedure. For example, write a procedure that takes a word as
argument and returns a sentence of all possible two-letter words made of letters from the
argument word, allowing duplicates, like this:

A simple pitfall, when using a helper procedure, is to write a recursive call in the
helper that calls the main procedure instead of calling the helper. (For example, what
would have happened if we’d had invoke instead of
invoking itself?)

Some recursive procedures with more than one argument require more than one
base case. But some don’t. One pitfall is to leave out a necessary base case; another is to
include something that looks like a base case but doesn’t fit the structure of the program.

For example, the reason needs two base cases is that on each
recursive call, both and get smaller. Either sentence might run out first,
and the procedure should return different values in those two cases.

On the other hand, Exercise 11.7 asked you to write a procedure that has two
arguments but needs only one base case:

In this example, the argument get smaller from one invocation to the next. It
would be silly to test for .

A noteworthy intermediate case is . It does have two
clauses that check for two different arguments reaching their smallest allowable values,
but the clause isn’t a base case. If has the value 1, the procedure
still invokes itself recursively.

The only general principle we can offer is that you have to think about what base
cases are appropriate, not just routinely copy whatever worked last time.

Exercises

14.1

14.2

14.3

14.4

14.5

14.6

Chapter 14 Common Patterns in Recursive Procedures 229

every keep accumulate

MORNING

(DI OB LA DA)

letter-count

member?

> (remove-once ’morning ’(good morning good morning))
(GOOD GOOD MORNING)

> (up ’town)
(T TO TOW TOWN)

> (remdup ’(ob la di ob la da)) ;; remove duplicates
(OB LA DI DA)

> (odds ’(i lost my little girl))
(I MY GIRL)

> (letter-count ’(fixing a hole))
11

Classify each of these problems as a pattern (, , or), if possible,
and then write the procedure recursively. In some cases we’ve given an example of
invoking the procedure we want you to write, instead of describing it.

(It’s okay if your solution removes the other instead, as long as it removes only
one of them.)

(It’s okay if your procedure returns instead, as long as it removes all but
one instance of each duplicated word.)

[8.7] Write a procedure that takes a sentence as its argument and
returns the total number of letters in the sentence:

Write .

230 Part IV Recursion

14.7

14.8

14.9

14.10

14.11

differences

expand

location

#f

count-adjacent-duplicates

remove-adjacent-duplicates

> (differences ’(4 23 9 87 6 12))
(19 -14 78 -81 6)

> (expand ’(4 calling birds 3 french hens))
(CALLING CALLING CALLING CALLING BIRDS FRENCH FRENCH FRENCH HENS)

> (expand ’(the 7 samurai))
(THE SAMURAI SAMURAI SAMURAI SAMURAI SAMURAI SAMURAI SAMURAI)

> (location ’me ’(you never give me your money))
4

> (count-adjacent-duplicates ’(y a b b a d a b b a d o o))
3

> (count-adjacent-duplicates ’(yeah yeah yeah))
2

Write , which takes a sentence of numbers as its argument and
returns a sentence containing the differences between adjacent elements. (The length
of the returned sentence is one less than that of the argument.)

Write , which takes a sentence as its argument. It returns a sentence similar
to the argument, except that if a number appears in the argument, then the return value
contains that many copies of the following word:

Write a procedure called that takes two arguments, a word and a
sentence. It should return a number indicating where in the sentence that word can be
found. If the word isn’t in the sentence, return . If the word appears more than once,
return the location of the first appearance.

Write the procedure that takes a sentence as
an argument and returns the number of words in the sentence that are immediately
followed by the same word:

Write the procedure that takes a sentence as
argument and returns the same sentence but with any word that’s immediately followed
by the same word removed:

14.12

14.13

14.14

14.15

Chapter 14 Common Patterns in Recursive Procedures 231

progressive-squares?
#t

pigl

same-shape?
#t

merge
Merge

> (remove-adjacent-duplicates ’(y a b b a d a b b a d o o))
(Y A B A D A B A D O)

> (remove-adjacent-duplicates ’(yeah yeah yeah))
(YEAH)

> (progressive-squares? ’(3 9 81 6561))
#T

> (progressive-squares? ’(25 36 49 64))
#F

> (same-shape? ’(the fool on the hill) ’(you like me too much))
#T

> (same-shape? ’(the fool on the hill) ’(and your bird can sing))
#F

> (merge ’(4 7 18 40 99) ’(3 6 9 12 24 36 50))
(3 4 6 7 9 12 18 24 36 40 50 99)

Write a procedure that takes a sentence of numbers
as its argument. It should return if each number (other than the first) is the square
of the number before it:

What does the procedure from Chapter 11 do if you invoke it with a word
like “frzzmlpt” that has no vowels? Fix it so that it returns “frzzmlptay.”

Write a predicate that takes two sentences as arguments. It should
return if two conditions are met: The two sentences must have the same number of
words, and each word of the first sentence must have the same number of letters as the
word in the corresponding position in the second sentence.

Write , a procedure that takes two sentences of numbers as arguments.
Each sentence must consist of numbers in increasing order. should return a single
sentence containing all of the numbers, in order. (We’ll use this in the next chapter as
part of a sorting algorithm.)

14.16 syllables

232 Part IV Recursion

Write a procedure that takes a word as its argument and returns the
number of syllables in the word, counted according to the following rule: the number
of syllables is the number of vowels, except that a group of consecutive vowels counts as
one. For example, in the word “soaring,” the group “oa” represents one syllable and the
vowel “i” represents a second one.

Be sure to choose test cases that expose likely failures of your procedure. For example,
what if the word ends with a vowel? What if it ends with two vowels in a row? What if it
has more than two consecutive vowels?

(Of course this rule isn’t good enough. It doesn’t deal with things like silent “e”s
that don’t create a syllable (“like”), consecutive vowels that don’t form a diphthong
(“cooperate”), letters like “y” that are vowels only sometimes, etc. If you get bored, see
whether you can teach the program to recognize some of these special cases.)

•
•
•

stub

233

number-name

FIFTEEN 15

number-name

Project: Spelling Names of Huge Numbers

> (number-name 5513345)
(FIVE MILLION FIVE HUNDRED THIRTEEN THOUSAND THREE HUNDRED FORTY FIVE)

> (number-name (factorial 20))
(TWO QUINTILLION FOUR HUNDRED THIRTY TWO QUADRILLION NINE HUNDRED TWO
TRILLION EIGHT BILLION ONE HUNDRED SEVENTY SIX MILLION SIX HUNDRED
FORTY THOUSAND)

’(thousand million billion trillion quadrillion quintillion
sextillion septillion octillion nonillion decillion)

> (number-name 1428425) ;; intermediate version
(1 MILLION 428 THOUSAND 425)

Write a procedure that takes a positive integer argument and returns a
sentence containing that number spelled out in words:

There are some special cases you will need to consider:

Numbers in which some particular digit is zero

Numbers like 1,000,529 in which an entire group of three digits is zero.

Numbers in the teens.

Here are two hints. First, split the number into groups of three digits, going from
right to left. Also, use the sentence

You can write this bottom-up or top-down. To work bottom-up, pick a subtask and
get that working before you tackle the overall structure of the problem. For example,
write a procedure that returns the word given the argument .

To work top-down, start by writing , freely assuming the existence of
whatever helper procedures you like. You can begin debugging by writing procedures
that fit into the overall program but don’t really do their job correctly. For example, as
an intermediate stage you might end up with a program that works like this:

