
Zoom in on some parts of a fractal and you’ll see a miniature version of the whole thing.

SortExample:

selection

235

15 Advanced Recursion

before?

earliest-word

> (sort ’(i wanna be your man))
(BE I MAN WANNA YOUR)

> (before? ’starr ’best)
#F

By now you’ve had a good deal of experience with straightforward recursive problems,
and we hope you feel comfortable with them. In this chapter, we present some more
challenging problems. But the same leap of faith method that we used for easier problems
is still our basic approach.

First we’ll consider the example of sorting a sentence. The argument will be any sentence;
our procedure will return a sentence with the same words in alphabetical order.

We’ll use the primitive to decide if one word comes before another word
alphabetically:

How are we going to think about this problem recursively? Suppose that we’re given
a sentence to sort. A relatively easy subproblem is to find the word that ought to come
first in the sorted sentence; we’ll write later to do this.

Once we’ve found that word, we just need to put it in front of the sorted version of
the rest of the sentence. This is our leap of faith: We’re going to assume that we can
already sort this smaller sentence. The algorithm we’ve described is called sort.

236 Part IV Recursion

remove-once

remove

()

remove-once

*

* If you’ve read Part III, you might instead want to use for this purpose:

(define earliest-word sent)
(accumulate (lambda (wd1 wd2) (if (before? wd1 wd2) wd1 wd2))

sent))

Another subproblem is to find the “rest of the sentence”—all the words except for
the earliest. But in Exercise 14.1 you wrote a function that takes a word
and a sentence and returns the sentence with that word removed. (We don’t want to use

, which removes all copies of the word, because our argument sentence might
include the same word twice.)

Let’s say in Scheme what we’ve figured out so far:

We need to add a base case. The smallest sentence is , which is already sorted.

We have one unfinished task: finding the earliest word of the argument.

For your convenience, here’s :

(define (sort sent) ;; unfinished
(se (earliest-word sent)

(sort (remove-once (earliest-word sent) sent))))

(define (sort sent)
(if (empty? sent)

’()
(se (earliest-word sent)

(sort (remove-once (earliest-word sent) sent)))))

(define (earliest-word sent)
(earliest-helper (first sent) (bf sent)))

(define (earliest-helper so-far rest)
(cond ((empty? rest) so-far)

((before? so-far (first rest))
(earliest-helper so-far (bf rest)))
(else (earliest-helper (first rest) (bf rest)))))

(define (remove-once wd sent)
(cond ((empty? sent) ’())

((equal? wd (first sent)) (bf sent))
(else (se (first sent) (remove-once wd (bf sent))))))

accumulate

3

× × × ×

Example: From-Binary

first butfirst
1101
101

1

first

expt

bit

Chapter 15 Advanced Recursion 237

* A more straightforward base case would be a one-bit number, but we’ve reduced that to this
more elegant base case, following the principle we discussed on page 197.

> (from-binary 1101)
13

> (from-binary 111)
7

(define (from-binary bits) ;; incomplete
(+ (* (first bits) (expt 2 (count (bf bits))))

(from-binary (bf bits))))

(define (from-binary bits)
(if (empty? bits)

0
(+ (* (first bits) (expt 2 (count (bf bits))))

(from-binary (bf bits)))))

We want to take a word of ones and zeros, representing a binary number, and compute
the numeric value that it represents. Each binary digit (or) corresponds to a power of
two, just as ordinary decimal digits represent powers of ten. So the binary number 1101
represents (1 8) + (1 4) + (0 2) + (1 1) = 13. We want to be able to say

Where is the smaller, similar subproblem? Probably the most obvious thing to try is
our usual trick of dividing the argument into its and its . Suppose we
divide the binary number that way. We make the leap of faith by assuming that we
can translate the butfirst, , into its binary value 5. What do we have to add for the
leftmost ? It contributes 8 to the total, because it’s three bits away from the right end of
the number, so it must be multiplied by 2 . We could write this idea as follows:

That is, we multiply the bit by a power of two depending on the number of bits
remaining, then we add that to the result of the recursive call.

As usual, we have written the algorithm for the recursive case before figuring out the
base case. But it’s pretty easy; a number with no bits (an empty word) has the value zero.*

Although this procedure is correct, it’s worth noting that a more efficient version
can be written by dissecting the number from right to left. As you’ll see, we can then
avoid the calls to , which are expensive because we have to do more multiplication
than should be necessary.

Example: Mergesort

1101 butlast
110

1100

mergesort

merge

mergesort,

merge

believe

238 Part IV Recursion

(define (from-binary bits)
(if (empty? bits)

0
(+ (* (from-binary (bl bits)) 2)

(last bits))))

(define (mergesort sent)
(if (<= (count sent) 1)

sent
(merge (mergesort (one-half sent))

(mergesort (other-half sent)))))

Suppose we want to find the value of the binary number . The of
this number, , has the value six. To get the value of the entire number, we double
the six (because would have the value 12, just as in ordinary decimal numbers 430
is ten times 43) and then add the rightmost bit to get 13. Here’s the new version:

This version may look a little unusual. We usually combine the value returned by the
recursive call with some function of the current element. This time, we are combining
the current element itself with a function of the recursive return value. You may want
to trace this procedure to see how the intermediate return values contribute to the final
result.

Let’s go back to the problem of sorting a sentence. It turns out that sorting one element
at a time, as in selection sort, isn’t the fastest possible approach. One of the fastest sorting
algorithms is called and it works like this: In order to mergesort a sentence,
divide the sentence into two equal halves and recursively sort each half. Then take the
two sorted subsentences and them together, that is, create one long sorted sentence
that contains all the words of the two halves. The base case is that an empty sentence or
a one-word sentence is already sorted.

The leap of faith here is the idea that we can magically the halves of the
sentence. If you try to trace this through step by step, or wonder exactly what happens
at what time, then this algorithm may be very confusing. But if you just that the
recursive calls will do exactly the right thing, then it’s much easier to understand this
program. The key point is that if the two smaller pieces have already been sorted, it’s
pretty easy to merge them while keeping the result in order.

We still need some helper procedures. You wrote in Exercise 14.15. It uses
the following technique: Compare the first words of the two sentences. Let’s say the first
word of the sentence on the left is smaller. Then the first word of the return value is the

SubsetsExample:

Chapter 15 Advanced Recursion 239

* Try writing down all the subsets of a five-letter word if you don’t believe us.

butfirst

one-half other-half
one-half

other-half
odds evens

rat r a t ra rt at rat ""

butfirst

(define (merge left right)
(cond ((empty? left) right)

((empty? right) left)
((before? (first left) (first right))
(se (first left) (merge (bf left) right)))
(else (se (first right) (merge left (bf right))))))

(define (one-half sent)
(if (<= (count sent) 1)

sent
(se (first sent) (one-half (bf (bf sent))))))

(define (other-half sent)
(if (<= (count sent) 1)

’()
(se (first (bf sent)) (other-half (bf (bf sent))))))

(subsets (bf wd))

first word of the sentence on the left. The rest of the return value comes from recursively
merging the of the left sentence with the entire right sentence. (It’s precisely
the opposite of this if the first word of the other sentence is smaller.)

Now we have to write and . One of the easiest ways to
do this is to have return the elements in odd-numbered positions, and have

return the elements in even-numbered positions. These are the same as
the procedures (from Exercise 14.4) and (from Chapter 12).

We’re now going to attack a much harder problem. We want to know all the subsets
of the letters of a word—that is, words that can be formed from the original word by
crossing out some (maybe zero) of the letters. For example, if we start with a short word
like , the subsets are , , , , , , , and the empty word (). As the word
gets longer, the number of subsets gets bigger very quickly.*

As with many problems about words, we’ll try assuming that we can find the subsets
of the of our word. In other words, we’re hoping to find a solution that will
include an expression like

all

is

240 Part IV Recursion

brat
butfirst brat

rat
rat brat

(subsets ’rat) (subsets ’brat)

rat "" r a t ra rt at rat
b br ba bt bra brt bat brat

rat
b rat

downup

b
every

(subsets ’brat)

b rat

"" b r a t br ba bt ra rt at bra brt bat rat brat

(define (prepend-every letter sent)
(if (empty? sent)

’()
(se (word letter (first sent))

(prepend-every letter (bf sent)))))

(prepend-every ’b (subsets ’rat))

(define (subsets wd) ;; first version
(se (subsets (bf wd))

(prepend-every (first wd) (subsets (bf wd)))))

Let’s actually take a four-letter word and look at its subsets. We’ll pick , because
we already know the subsets of its . Here are the subsets of :

You might notice that many of these subsets are also subsets of . In fact, if
you think about it, of the subsets of are also subsets of . So the words in

are some of the words we need for .

Let’s separate those out and look at the ones left over:

subsets:
others:

Right about now you’re probably thinking, “They’ve pulled a rabbit out of a hat, the
way my math teacher always does.” The words that aren’t subsets of all start with

, followed by something that a subset of . You may be thinking that you never
would have thought of that yourself. But we’re just following the method: Look at the
smaller case and see how it fits into the original problem. It’s not so different from what
happened with .

Now all we have to do is figure out how to say in Scheme, “Put a in front of every
word in this sentence.” This is a straightforward example of the pattern:

The way we’ll use this in is

Of course in the general case we won’t have and in our program, but instead
will refer to the formal parameter:

We still need a base case. By now you’re accustomed to the idea of using an empty
word as the base case. It may be strange to think of the empty word as a set in the first
place, let alone to try to find its subsets. But a set of zero elements is a perfectly good set,
and it’s the smallest one possible.

⇒

⇒

did
lot

Pitfalls

subsets

subsets

let

subsets

range

Chapter 15 Advanced Recursion 241

(define (subsets wd) ;; second version
(if (empty? wd)

(se "")
(se (subsets (bf wd))

(prepend-every (first wd) (subsets (bf wd))))))

(define (subsets wd)
(if (empty? wd)

(se "")
(let ((smaller (subsets (bf wd))))
(se smaller

(prepend-every (first wd) smaller)))))

let

* We discussed this point in a pitfall in Chapter 12.

** How come we’re worrying about efficiency all of a sudden? We really pull this out of a hat.
The thing is, it’s a slower without the . Adding one letter to the length of a word doubles
the time required to find its subsets; adding 10 letters multiplies the time by about 1000.

The empty set has only one subset, the empty set itself. What should of the
empty word return? It’s easy to make a mistake here and return the empty word itself.
But we want to return a sentence, containing all the subsets, and we should
stick with returning a sentence even in the simple case.* (This mistake would come from
not thinking about the of our function, which is sentences. This is why we put so
much effort into learning about domains and ranges in Chapter 2.) So we’ll return a
sentence containing one (empty) word to represent the one subset.

This program is entirely correct. Because it uses two identical recursive calls,
however, it’s a lot slower than necessary. We can use to do the recursive subproblem
only once:**

We’ve already mentioned the need to be careful about the value returned in the base
case. The procedure is particularly error-prone because the correct value, a
sentence containing the empty word, is quite unusual. An empty subset isn’t the same as
no subsets at all!

Sometimes you write a recursive procedure with a correct recursive case and a
reasonable base case, but the program still doesn’t work. The trouble may be that the
base case doesn’t quite catch all of the ways in which the problem can get smaller. A

⇒

two

means

242 Part IV Recursion

mergesort

(empty? sent) mergesort
(test)

one-half other-half

merge

fib

fib

for while

(<= (count sent) 1)

(merge (mergesort (one-half ’(test)))
(mergesort (other-half ’(test))))

(merge (mergesort ’(test)) (mergesort ’()))

(define (fib n) ;; wrong!
(if (= n 1)

1
(+ (fib (- n 1))

(fib (- n 2)))))

second base case may be needed. For example, in , why did we write the
following line?

This tests for two base cases, empty sentences and one-word sentences, whereas in most
other examples the base case is just an empty sentence. Suppose the base case test
were and suppose we invoke with a one-word sentence,

. We would end up trying to compute the expression

If you look back at the definitions of and , you’ll see that this is
equivalent to

The first argument to is the same expression we started with! Here is a situation
in which the problem doesn’t get smaller in a recursive call. Although we’ve been trying
to avoid complicated base cases, in this situation a straightforward base case isn’t enough.
To avoid an infinite recursion, we must have two base cases.

Another example is the procedure from Chapter 13. Suppose it were defined
like this:

It would be easy to make this mistake, because everybody knows that in a recursion
dealing with numbers, the base case is the smallest possible number. But in , each
computation depends on smaller values, and we discover that we need two base cases.

The technique of recursion is often used to do something repetitively, but don’t get
the idea that the word “recursion” repetition. Recursion is a technique in which
a procedure invokes itself. We do use recursion to solve repetitive problems, but don’t
confuse the method with the ends it achieves. In particular, if you’ve programmed in
other languages that have special-purpose looping mechanisms (the ones with names
like and), those aren’t recursive. Conversely, not every recursive procedure
carries out a repetition.

Exercises

15.1

15.2

15.3

15.4

substring

not

Chapter 15 Advanced Recursion 243

to-binary

palindrome?

substrings

bat
brat

substring?
#t

> (to-binary 9)
1001

> (to-binary 23)
10111

> (palindrome? ’(flee to me remote elf))
#T

> (palindrome? ’(flee to me remote control))
#F

> (substring? ’ssip ’mississippi)
#T

> (substring? ’misip ’mississippi)
#F

Write a procedure :

A “palindrome” is a sentence that reads the same backward as forward. Write a
predicate that takes a sentence as argument and decides whether it is a
palindrome. For example:

Do not reverse any words or sentences in your solution.

Write a procedure that takes a word as its argument. It should return
a sentence containing all of the substrings of the argument. A is a subset whose
letters come consecutively in the original word. For example, the word is a subset,
but a substring, of .

Write a predicate procedure that takes two words as arguments and
returns if and only if the first word is a substring of the second. (See Exercise 15.3 for
the definition of a substring.)

Be careful about cases in which you encounter a “false start,” like this:

and also about subsets that don’t appear as consecutive letters in the second word:

15.5

15.6

unscramble

nested

in Jack

244 Part IV Recursion

> (phone-spell 2235766)
(AADJPMM AADJPMN CCFLSOO)

> (unscramble ’(this is the roach the gladiator killed))
(THIS IS THE GLADIATOR THAT KILLED THE ROACH)

> (unscramble ’(this is the rat the cat the dog the boy the
girl saw owned chased bit))

(THIS IS THE GIRL THAT SAW THE BOY THAT OWNED THE DOG THAT
CHASED THE CAT THAT BIT THE RAT)

Suppose you have a phone number, such as 223-5766, and you’d like to figure out
a clever way to spell it in letters for your friends to remember. Each digit corresponds
to three possible letters. For example, the digit 2 corresponds to the letters A, B, and
C. Write a procedure that takes a number as argument and returns a sentence of all the
possible spellings:

. . .

(We’re not showing you all 2187 words in this sentence.) You may assume there are no
zeros or ones in the number, since those don’t have letters.

Hint: This problem has a lot in common with the subsets example.

Let’s say a gladiator kills a roach. If we want to talk about the roach, we say “the
roach the gladiator killed.” But if we want to talk about the gladiator, we say “the gladiator
that killed the roach.”

People are pretty good at understanding even rather long sentences as long as they’re
straightforward: “This is the farmer who kept the cock that waked the priest that married
the man that kissed the maiden that milked the cow that tossed the dog that worried the
cat that killed the rat that ate the malt that lay in the house that Jack built.” But even a
short sentence is confusing: “This is the rat the cat the dog worried killed.” Which
rat was that?

Write a procedure that takes a nested sentence as argument and returns a
straightforward sentence about the same cast of characters:

You may assume that the argument has exactly the structure of these examples, with no
special cases like “that lay the house” or “that built.”

245

•
•
•
•
•
•
•

poker-value

Project: Scoring Poker Hands

* Later on we’ll think about seven-card variants of poker.

> (poker-value ’(h4 s4 c6 s6 c4))
(FULL HOUSE - FOURS OVER SIXES)

> (poker-value ’(h7 s3 c5 c4 d6))
(SEVEN-HIGH STRAIGHT)

> (poker-value ’(dq d10 dj da dk))
(ROYAL FLUSH - DIAMONDS)

> (poker-value ’(da d6 d3 c9 h6))
(PAIR OF SIXES)

The idea of this project is to invent a procedure that works like this:

As you can see, we are representing cards and hands just as in the Bridge project, except
that poker hands have only five cards.*

Here are the various kinds of poker hands, in decreasing order of value:

Royal flush: ten, jack, queen, king, and ace, all of the same suit
Straight flush: five cards of sequential rank, all of the same suit
Four of a kind: four cards of the same rank
Full house: three cards of the same rank, and two of a second rank
Flush: five cards of the same suit, not sequential rank
Straight: five cards of sequential rank, not all of the same suit
Three of a kind: three cards of the same rank, no other matches

•
•
•

246 Part IV Recursion

> (compute-ranks ’(q 3 4 3 4))
(ONE Q TWO 3 TWO 4)

one four (1 Q 2 3 2 4)

member?

three of a kind
three sixes

Two pair: two pairs of cards, of two different ranks
Pair: two cards of the same rank, no other matches
Nothing: none of the above

An ace can be the lowest card of a straight (ace, 2, 3, 4, 5) or the highest card of a straight
(ten, jack, queen, king, ace), but a straight can’t “wrap around”; a hand with queen, king,
ace, 2, 3 would be worthless (unless it’s a flush).

Notice that most of the hand categories are either entirely about the ranks of the
cards (pairs, straight, full house, etc.) or entirely about the suits (flush). It’s a good idea
to begin your program by separating the rank information and the suit information. To
check for a straight flush or royal flush, you’ll have to consider both kinds of information.

In what form do you want the suit information? Really, all you need is a true or
false value indicating whether or not the hand is a flush, because there aren’t any poker
categories like “three of one suit and two of another.”

What about ranks? There are two kinds of hand categories involving ranks: the ones
about equal ranks (pairs, full house) and the ones about sequential ranks (straight). You
might therefore want the rank information in two forms. A sentence containing all of
the ranks in the hand, in sorted order, will make it easier to find a straight. (You still have
to be careful about aces.)

For the equal-rank categories, what you want is some data structure that will let you
ask questions like “are there three cards of the same rank in this hand?” We ended up
using a representation like this:

One slightly tricky aspect of this solution is that we spelled out the numbers of cards,
to , instead of using the more obvious . The reason, as you can

probably tell just by looking at the latter version, is that it would lead to confusion between
the names of the ranks, most of which are digits, and the numbers of occurrences, which
are also digits. More specifically, by spelling out the numbers of occurrences, we can use

to ask easily if there is a three-of-a-kind rank in the hand.

You may find it easier to begin by writing a version that returns only the name of a
category, such as , and only after you get that to work, revise it to give
more specific results such as .

Extra Work for Hotshots

Project: Scoring Poker Hands 247

In some versions of poker, each player gets seven cards and can choose any five of the
seven to make a hand. How would it change your program if the argument were a
sentence of seven cards? (For example, in five-card poker there is only one possible
category for a hand, but in seven-card you have to pick the best category that can be made
from your cards.) Fix your program so that it works for both five-card and seven-card
hands.

Another possible modification to the program is to allow for playing with “wild”
cards. If you play with “threes wild,” it means that if there is a three in your hand you’re
allowed to pretend it’s whatever card you like. For this modification, your program will
require a second argument indicating which cards are wild. (When you play with wild
cards, there’s the possibility of having five of a kind. This beats a straight flush.)

