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> (sentence ’she (word ’run ’s))
(SHE RUNS)

> (sentence ’she (word ’walk ’s))
(SHE WALKS)

> (sentence ’she (word ’program ’s))
(SHE PROGRAMS)

(define (third-person verb)
(sentence ’she (word verb ’s)))

We’ve really been talking about abstraction all along. Whenever you find yourself
performing several similar computations, such as

and you capture the similarity in a procedure

you’re the pattern of the computation by expressing it in a form that leaves
out the particular verb in any one instance.

In the preface we said that our approach to computer science is to teach you to think
in larger chunks, so that you can fit larger problems in your mind at once; “abstraction”
is the technical name for that chunking process.

In this part of the book we take a closer look at two specific kinds of abstraction.
One is which means the invention of new data types. The other is
the implementation of an important category of the same process
abstraction of which is a trivial example.
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Until now we’ve used words and sentences as though they were part of the natural
order of things. Now we’ll discover that Scheme sentences exist only in our minds and
take shape through the use of constructors and selectors ( , , and so on)
that we wrote. The implementation of sentences is based on a more fundamental data
type called Then we’ll see how lists can be used to invent another in-our-minds data
type, (The technical term for an invented data type is an data type.)

You already know how higher-order functions can express many computational
processes in a very compact form. Now we focus our attention on the higher-order

that implement those functions, exploring the mechanics by which we create
these process abstractions.
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(vanilla ginger strawberry lychee raspberry mocha)

(define (order flavor)
(if (member? flavor

’(vanilla ginger strawberry lychee raspberry mocha))
’(coming right up!)
(se ’(sorry we have no) flavor)))

(vanilla (ultra chocolate) (heath bar crunch) ginger (cherry garcia))

Suppose we’re using Scheme to model an ice cream shop. We’ll certainly need to know
all the flavors that are available:

For example, here’s a procedure that models the behavior of the salesperson when you
place an order:

But what happens if we want to sell a flavor like “root beer fudge ripple” or “ultra
chocolate”? We can’t just put those words into a sentence of flavors, or our program will
think that each word is a separate flavor. Beer ice cream doesn’t sound very appealing.

What we need is a way to express a collection of items, each of which is itself a
collection, like this:

This is meant to represent five flavors, two of which are named by single words, and the
other three of which are named by sentences.

Luckily for us, Scheme provides exactly this capability. The data structure we’re
using in this example is called a The difference between a sentence and a list is that
the elements of a sentence must be words, whereas the elements of a list can be anything
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(FRONT YOUR MOTHER ! BACK SHOULD KNOW !)

((FRONT (YOUR MOTHER)) (BACK (SHOULD KNOW)))

Cdr

* Don’t even try to figure out a sensible reason for this name. It’s a leftover bit of history from
the first computer on which Lisp was implemented. It stands for “contents of address register”
(at least that’s what all the books say, although it’s really the address of the accumulator
register). , coming up in the next sentence, stands for “contents of decrement register.”
The names seem silly in the Lisp context, but that’s because the Lisp people used these register
components in ways the computer designers didn’t intend. Anyway, this is all very interesting to
history buffs but irrelevant to our purposes. We’re just showing off that one of us is actually old
enough to remember these antique computers first-hand.

at all: words, , procedures, or other lists. (A list that’s an element of another list is
called a We’ll use the name list for a list that includes sublists.)

Another way to think about the difference between sentences and lists is that the
definition of “list” is self-referential, because a list can include lists as elements. The
definition of “sentence” is not self-referential, because the elements of a sentence must
be words. We’ll see that the self-referential nature of recursive procedures is vitally
important in coping with lists.

Another example in which lists could be helpful is the pattern matcher. We used
sentences to hold databases, such as this one:

This would be both easier for you to read and easier for programs to manipulate if we
used list structure to indicate the grouping instead of exclamation points:

We remarked when we introduced sentences that they’re a feature we added to
Scheme just for the sake of this book. Lists, by contrast, are at the core of what Lisp has
been about from its beginning. (In fact the name “Lisp” stands for “LISt Processing.”)

When we introduced words and sentences we had to provide ways to take them apart,
such as , and ways to put them together, such as . Now we’ll tell you
about the selectors and constructors for lists.

The function to select the first element of a list is called .* The function to
select the portion of a list containing all but the first element is called , which is
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first butfirst

null? #t #f
empty?

list

cons
Cons

car cdr

list cons append

list
List

> (list (+ 2 3) ’squash (= 2 2) (list 4 5) remainder ’zucchini)
(5 SQUASH #T (4 5) #<PROCEDURE> ZUCCHINI)

> (cons ’for ’(no one))
(FOR NO ONE)

> (cons ’julia ’())
(JULIA)

> (append ’(get back) ’(the word))
(GET BACK THE WORD)

> (list ’(i am) ’(the walrus))
((I AM) (THE WALRUS))

> (cons ’(i am) ’(the walrus))
((I AM) THE WALRUS)

> (append ’(i am) ’(the walrus))
(I AM THE WALRUS)

pronounced “could-er.” These are analogous to and for words and
sentences.

Of course, we can’t extract pieces of a list that’s empty, so we need a predicate that
will check for an empty list. It’s called and it returns for the empty list, for
anything else. This is the list equivalent of for words and sentences.

There are two constructors for lists. The function takes any number of
arguments and returns a list with those arguments as its elements.

The other constructor, , is used when you already have a list and you want to add
one new element. takes two arguments, an element and a list (in that order), and
returns a new list whose is the first argument and whose is the second.

There is also a function that combines the elements of two or more lists into a larger
list:

It’s important that you understand how , , and differ from each other:

When is invoked with two arguments, it considers them to be two proposed
elements for a new two-element list. doesn’t care whether the arguments are
themselves lists, words, or anything else; it just creates a new list whose elements are the
arguments. In this case, it ends up with a list of two lists.
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Cons Cons

cons cons
car cons cdr

list

append

list

Cons

* This is not the whole story. See the “pitfalls” section for a slightly expanded version.

requires that its second argument be a list.* will extend that list to
form a new list, one element longer than the original; the first element of the resulting
list comes from the first argument to . In other words, when you pass two
arguments, you get back a list whose is the first argument to and whose is
the second argument.

Thus, in this example, the three elements of the returned list consist of the first
argument as one single element, followed by the second argument (in this
case, two words). (You may be wondering why anyone would want to use such a strange
constructor instead of . The answer has to do with recursive procedures, but hang
on for a few paragraphs and we’ll show you an example, which will help more than any
explanation we could give in English.)

Finally, of two arguments uses the elements of arguments as elements
of its return value.

Pictorially, creates a list whose elements are the arguments:

creates an extension of its second argument with one new element:
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(define (praise flavors)
(if (null? flavors)

’()
(cons (se (car flavors) ’(is delicious))

(praise (cdr flavors)))))

> (praise ’(ginger (ultra chocolate) lychee (rum raisin)))
((GINGER IS DELICIOUS) (ULTRA CHOCOLATE IS DELICIOUS)
(LYCHEE IS DELICIOUS) (RUM RAISIN IS DELICIOUS))

creates a list whose elements are the the arguments, which must be
lists:

In this example our result is a That is, the result is a list that includes
smaller lists as elements, but each of these smaller lists is a sentence, in which only words
are allowed. That’s why we used the constructor for the overall list, but for each
sentence within the list.

This is the example worth a thousand words that we promised, to show why
is useful. wouldn’t work in this situation. You can use only when you know
exactly how many elements will be in your complete list. Here, we are writing a procedure
that works for any number of elements, so we recursively build up the list, one element
at a time.

In the following example we take advantage of structured lists to produce a translation
dictionary. The entire dictionary is a list; each element of the dictionary, a single
translation, is a two-element list; and in some cases a translation may involve a phrase
rather than a single word, so we can get three deep in lists.
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car
cdr

(Car dictionary)
Cdr

car

car cdr car

cddadr A D

(define (translate wd)
(lookup wd ’((window fenetre) (book livre) (computer ordinateur)

(house maison) (closed ferme) (pate pate) (liver foie)
(faith foi) (weekend (fin de semaine))
((practical joke) attrape) (pal copain))))

(define (lookup wd dictionary)
(cond ((null? dictionary) ’(parlez-vous anglais?))

((equal? wd (car (car dictionary)))
(car (cdr (car dictionary))))
(else (lookup wd (cdr dictionary)))))

> (translate ’computer)
ORDINATEUR

> (translate ’(practical joke))
ATTRAPE

> (translate ’recursion)
(PARLEZ-VOUS ANGLAIS?)

(car (cdr (car dictionary)))

(cadar dictionary)

(cdr (cdr (car (cdr something))))

By the way, this example will help us explain why those ridiculous names and
haven’t died out. In this not-so-hard program we find ourselves saying

to refer to the French part of the first translation in the dictionary. Let’s go through that
slowly. gives us the first element of the dictionary, one English-
French pairing. of that first element is a one-element list, that is, all but the English
word that’s the first element of the pairing. What we want isn’t the one-element list but
rather its only element, the French word, which is its .

This of of business is pretty lengthy and awkward. But Scheme gives
us a way to say it succinctly:

In general, we’re allowed to use names like up to four deep in s and s. That
one means
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cdr cdr car cdr
A D

cadr car cdr
car cdr

cadr
caddr cadddr

car

* As we said in Chapter 5, “symbol” is the official name for words that are neither strings nor
numbers.

or in other words, take the of the of the of the of its argument. Notice
that the order of letters and follows the order in which you’d write the procedure
names, but (as always) the procedure that’s invoked first is the one on the right. Don’t
make the mistake of reading as meaning “first take the and then take the .”
It means “take the of the .”

The most commonly used of these abbreviations are , which selects the second
element of a list; , which selects the third element; and , which selects the
fourth.

You’ve probably noticed that it’s hard to distinguish between a sentence (which be
made up of words) and a list that to have words as its elements.

The fact is, sentences lists. You could take of a sentence, for example, and
it’d work fine. Sentences are an abstract data type represented by lists. We created the
sentence ADT by writing special selectors and constructors that provide a different way
of using the same underlying machinery—a different interface, a different metaphor, a
different point of view.

How does our sentence point of view differ from the built-in Scheme point of view
using lists? There are three differences:

A sentence can contain only words, not sublists.

Sentence selectors are symmetrical front-to-back.

Sentences and words have the same selectors.

All of these differences fit a common theme: Words and sentences are meant to represent
English text. The three differences reflect three characteristics of English text: First,
text is made of sequences of words, not complicated structures with sublists. Second, in
manipulating text (for example, finding the plural of a noun) we need to look at the
end of a word or sentence as often as at the beginning. Third, since words and sentences
work together so closely, it makes sense to use the same tools with both. By contrast,
from Scheme’s ordinary point of view, an English sentence is just one particular case of a
much more general data structure, whereas a symbol* is something entirely different.
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last butlast
last butlast

last
first

lookup add

acronym

* We implemented words by combining three data types that are primitive in Scheme: strings,
symbols, and numbers.

(define (first sent) ;;; just for sentences
(car sent))

(define (last sent)
(if (null? (cdr sent))

(car sent)
(last (cdr sent))))

(define (butfirst sent)
(cdr sent))

(define (butlast sent)
(if (null? (cdr sent))

’()
(cons (car sent) (butlast (cdr sent)))))

The constructors and selectors for sentences reflect these three differences. For
example, it so happens that Scheme represents lists in a way that makes it easy to find
the first element, but harder to find the last one. That’s reflected in the fact that there
are no primitive selectors for lists equivalent to and for sentences. But
we want and to be a part of the sentence package, so we have to write
them in terms of the “real” Scheme list selectors. (In the versions presented here, we are
ignoring the issue of applying the selectors to words.)

If you look “behind the curtain” at the implementation, is a lot more complicated
than . But from the point of view of a sentence user, they’re equally simple.

In Chapter 16 we used the pattern matcher’s known-values database to introduce the
idea of abstract data types. In that example, the most important contribution of the ADT
was to isolate the details of the implementation, so that the higher-level procedures could
invoke and without the clutter of looking for exclamation points. We did
hint, though, that the ADT represents a shift in how the programmer thinks about the
sentences that are used to represent databases; we don’t take the acronym of a database,
even though the database a sentence and so it would be possible to apply the
procedure to it. Now, in thinking about sentences, this idea of shift in viewpoint is
more central. Although sentences are represented as lists, they behave much like words,
which are represented quite differently.* Our sentence mechanism highlights the of
sentences, rather than the implementation.
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every keep accumulate map filter
reduce

Map

map
every

Filter

keep

> (map square ’(9 8 7 6))
(81 64 49 36)

> (map (lambda (x) (se x x)) ’(rocky raccoon))
((ROCKY ROCKY) (RACCOON RACCOON))

> (every (lambda (x) (se x x)) ’(rocky raccoon))
(ROCKY ROCKY RACCOON RACCOON)

> (map car ’((john lennon) (paul mccartney)
(george harrison) (ringo starr)))

(JOHN PAUL GEORGE RINGO)

> (map even? ’(9 8 7 6))
(#F #T #F #T)

> (map (lambda (x) (word x x)) ’rain)
ERROR -- INVALID ARGUMENT TO MAP: RAIN

The higher-order functions that we’ve used until now work only for words and sentences.
But the of higher-order functions applies perfectly well to structured lists. The
official list versions of , , and are called , , and

.

takes two arguments, a function and a list, and returns a list containing the
result of applying the function to each element of the list.

The word “map” may seem strange for this function, but it comes from the mathematical
study of functions, in which they talk about a of the domain into the range. In this
terminology, one talks about “mapping a function over a set” (a set of argument values,
that is), and Lispians have taken over the same vocabulary, except that we talk about
mapping over lists instead of mapping over sets. In any case, is a genuine Scheme
primitive, so it’s the official grownup way to talk about an -like higher-order
function, and you’d better learn to like it.

also takes a function and a list as arguments; it returns a list containing only
those elements of the argument list for which the function returns a true value. This
is the same as , except that the elements of the argument list may be sublists, and
their structure is preserved in the result.
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Other Primitives for Lists

Filter

#t
keep filter Filter

Reduce accumulate

list? #t #f

equal?

member?

member

> (filter (lambda (flavor) (member? ’swirl flavor))
’((rum raisin) (root beer swirl) (rocky road) (fudge swirl)))

((ROOT BEER SWIRL) (FUDGE SWIRL))

> (filter word? ’((ultra chocolate) ginger lychee (raspberry sherbet)))
(GINGER LYCHEE)

> (filter (lambda (nums) (= (car nums) (cadr nums)))
’((2 3) (4 4) (5 6) (7 8) (9 9)))

((4 4) (9 9))

> (reduce * ’(4 5 6))
120

> (reduce (lambda (list1 list2) (list (+ (car list1) (car list2))
(+ (cadr list1) (cadr list2))))

’((1 2) (30 40) (500 600)))
(531 642)

probably makes sense to you as a name; the metaphor of the air filter that allows
air through but doesn’t allow dirt, and so on, evokes something that passes some data and
blocks other data. The only problem with the name is that it doesn’t tell you whether the
elements for which the predicate function returns are filtered in or filtered out. But
you’re already used to , and works the same way. is not a standard
Scheme primitive, but it’s a universal convention; everyone defines it the same way we do.

is just like except that it works only on lists, not on words.
Neither is a built-in Scheme primitive; both names are seen in the literature. (The
name “reduce” is official in the languages APL and Common Lisp, which do include this
higher-order function as a primitive.)

The predicate returns if its argument is a list, otherwise.

The predicate , which we’ve discussed earlier as applied to words and
sentences, also works for structured lists.

The predicate , which we used in one of the examples above, isn’t a true
Scheme primitive, but part of the word and sentence package. (You can tell because
it “takes apart” a word to look at its letters separately, something that Scheme doesn’t
ordinarily do.) Scheme does have a primitive without the question mark that’s
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member?
#t

#t #f #f

item
count item list-ref

count length

assoc

> (member ’d ’(a b c d e f g))
(D E F G)

> (member ’h ’(a b c d e f g))
#F

> (list-ref ’(happiness is a warm gun) 3)
WARM

> (assoc ’george
’((john lennon) (paul mccartney)
(george harrison) (ringo starr)))

(GEORGE HARRISON)

> (assoc ’x ’((i 1) (v 5) (x 10) (l 50) (c 100) (d 500) (m 1000)))
(X 10)

> (assoc ’ringo ’((mick jagger) (keith richards) (brian jones)
(charlie watts) (bill wyman)))

#F

like except for two differences: Its second argument must be a list (but can
be a structured list); and instead of returning it returns the portion of the argument
list starting with the element equal to the first argument. This will be clearer with an
example:

This is the main example in Scheme of the semipredicate idea that we mentioned earlier
in passing. It doesn’t have a question mark in its name because it returns values other
than and , but it works as a predicate because any non- value is considered true.

The only word-and-sentence functions that we haven’t already mentioned are
and . The list equivalent of is called (short for “reference”); it’s
different in that it counts items from zero instead of from one and takes its arguments in
the other order:

The list equivalent of is called , and it’s exactly the same except that it
doesn’t work on words.

An example earlier in this chapter was about translating from English to French. This
involved searching for an entry in a list by comparing the first element of each entry with
the information we were looking for. A list of names and corresponding values is called
an or an The Scheme primitive looks up a name in an a-list:
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Assoc #f
translate cadr

rest-of-numbers

Functions That Take Variable Numbers of Arguments

(define dictionary
’((window fenetre) (book livre) (computer ordinateur)
(house maison) (closed ferme) (pate pate) (liver foie)
(faith foi) (weekend (fin de semaine))
((practical joke) attrape) (pal copain)))

(define (translate wd)
(let ((record (assoc wd dictionary)))
(if record

(cadr record)
’(parlez-vous anglais?))))

(define (increasing? number . rest-of-numbers)
(cond ((null? rest-of-numbers) #t)

((> (car rest-of-numbers) number)
(apply increasing? rest-of-numbers))
(else #f)))

> (increasing? 4 12 82)
#T

> (increasing? 12 4 82 107)
#F

returns if it can’t find the entry you’re looking for in your association list.
Our procedure checks for that possibility before using to extract the
French translation, which is the second element of an entry.

In the beginning of this book we told you about some Scheme procedures that can take
any number of arguments, but you haven’t yet learned how to write such procedures for
yourself, because Scheme’s mechanism for writing these procedures requires the use of
lists.

Here’s a procedure that takes one or more numbers as arguments and returns true
if these numbers are in increasing order:

The first novelty to notice in this program is the dot in the first line. In listing the
formal parameters of a procedure, you can use a dot just before the last parameter to
mean that that parameter ( in this case) represents any number of
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(+ 3 4 5)
(apply + ’(3 4 5))

(increasing? rest-of-numbers)

(increasing? 3 5 8 20 6 43 72)

number rest-of-numbers

3 (5 8 20 6 43 72)
5 (8 20 6 43 72)
8 (20 6 43 72)
20 (6 43 72) ( )

increasing?
number

rest-of-numbers
rest-of-numbers
Rest-of-numbers

rest-of-numbers

apply
Apply

apply increasing?

increasing?

rest-of-numbers

number rest-of-numbers
increasing?

arguments, including zero. The value that will be associated with this parameter when
the procedure is invoked will be a list whose elements are the actual argument values.

In this example, you must invoke with at least one argument;
that argument will be associated with the parameter . If there are no more
arguments, will be the empty list. But if there are more arguments,

will be a list of their values. (In fact, these two cases are the same:
will be a list of all the remaining arguments, and if there are no

such arguments, is a list with no elements.)

The other novelty in this example is the procedure . It takes two arguments, a
procedure and a list. invokes the given procedure with the elements of the given
list as its arguments, and returns whatever value the procedure returns. Therefore, the
following two expressions are equivalent:

We use in because we don’t know how many arguments we’ll need
in its recursive invocation. We can’t just say

because that would give a list as its single argument, and it doesn’t take
lists as arguments—it takes numbers. We want to be the arguments.

We’ve used the name as the formal parameter to suggest “the
rest of the arguments,” but that’s not just an idea we made up. A parameter that follows
a dot and therefore represents a variable number of arguments is called a

Here’s a table showing the values of and in the
recursive invocations of for the example
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(define (appearances-in-book wd book)
(reduce + (map (lambda (chapter) (appearances-in-chapter wd chapter))

book)))

(define (appearances-in-chapter wd chapter)
(reduce + (map (lambda (section) (appearances-in-section wd section))

chapter)))

(define (appearances-in-section wd section)
(reduce + (map (lambda (paragraph)

(appearances-in-paragraph wd paragraph))
section)))

(define (appearances-in-paragraph wd paragraph)
(reduce + (map (lambda (sent) (appearances-in-sentence wd sent))

paragraph)))

(define (appearances-in-sentence given-word sent)
(length (filter (lambda (sent-word) (equal? sent-word given-word))

sent)))

In the example we’ve used one formal parameter before the dot, but
you may use any number of such parameters, including zero. The number of formal
parameters before the dot determines the number of arguments that must be
used when your procedure is invoked. There can be only one formal parameter the
dot.

Let’s pretend we’ve stored this entire book in a gigantic Scheme list structure. It’s a list
of chapters. Each chapter is a list of sections. Each section is a list of paragraphs. Each
paragraph is a list of sentences, which are themselves lists of words.

Now we want to know how many times the word “mathematicians” appears in the
book. We could do it the incredibly boring way:

but that be incredibly boring.

What we’re going to do is similar to the reasoning we used in developing the idea
of recursion in Chapter 11. There, we wrote a family of procedures named ,

, and so on; we then noticed that most of these procedures looked almost
identical, and “collapsed” them into a single recursive procedure. In the same spirit,
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appearances-in-

deep-appearances
map Deep-appearances

map structure
map

reduce

deep-appearances
structure

(define (appearances-in-sentence wd sent)
(reduce + (map (lambda (wd2) (appearances-in-word wd wd2))

sent)))

(define (appearances-in-word wd wd2)
(if (equal? wd wd2) 1 0))

(define (deep-appearances wd structure)
(if (word? structure)

(if (equal? structure wd) 1 0)
(reduce +

(map (lambda (sublist) (deep-appearances wd sublist))
structure))))

> (deep-appearances
’the
’(((the man) in ((the) moon)) ate (the) potstickers))

3

> (deep-appearances ’n ’(lambda (n) (if (= n 0) 1 (* n (f (- n 1))))))
4

> (deep-appearances ’mathematicians the-book-structure)
7

notice that all the procedures are very similar. We can make them
even more similar by rewriting the last one:

Now, just as before, we want to write a single procedure that combines all of these.

What’s the base case? Books, chapters, sections, paragraphs, and sentences are all
lists of smaller units. It’s only when we get down to individual words that we have to do
something different:

This is quite different from the recursive situations we’ve seen before. What looks
like a recursive call from to itself is actually inside an anonymous
procedure that will be called by . doesn’t just call
itself once in the recursive case; it uses to call itself for each element of .
Each of those calls returns a number; returns a list of those numbers. What we want
is the sum of those numbers, and that’s what will give us.

This explains why must accept words as well as lists as the
argument. Consider a case like
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structure map deep-appearances
(a) b

structure
deep-appearances

deep-appearances

deep-appearances

deep-appearances

car cdr

cdr
car car

Since has two elements, will call twice. One of
these calls uses the list as the second argument, but the other call uses the word as
the second argument.

Of course, if is a word, we can’t make recursive calls for its elements;
that’s why words are the base case for this recursion. What should
return for a word? If it’s the word we’re looking for, that counts as one appearance. If
not, it counts as no appearances.

You’re accustomed to seeing the empty list as the base case in a recursive list
processing procedure. Also, you’re accustomed to thinking of the base case as the end
of a problem; you’ve gone through all of the elements of a list, and there are
no more elements to find. In most problems, there is only one recursive invocation
that turns out to be a base case. But in using , there are
invocations for base cases—one for every word in the list structure. Reaching a base case
doesn’t mean that we’ve reached the end of the entire structure! You might want to trace
a short example to help you understand the sequence of events.

Although there’s no official name for a structure made of lists of lists of . . . of lists,
there a common convention for naming procedures that deal with these structures;
that’s why we’ve called this procedure . The word “deep” indicates
that this procedure is just like a procedure to look for the number of appearances of a
word in a list, except that it looks “all the way down” into the sub-sub- -sublists instead
of just looking at the elements of the top-level list.

This version of , in which higher-order procedures are used to
deal with the sublists of a list, is a common programming style. But for some problems,
there’s another way to organize the same basic program without higher-order procedures.
This other organization leads to very compact, but rather tricky, programs. It’s also a
widely used style, so we want you to be able to recognize it.

Here’s the idea. We deal with the base case—words—just as before. But for lists we
do what we often do in trying to simplify a list problem: We divide the list into its first
element (its ) and all the rest of its elements (its ). But in this case, the resulting
program is a little tricky. Ordinarily, a recursive program for lists makes a recursive call
for the , which is a list of the same kind as the whole argument, but does something
non-recursive for the , which is just one element of that list. This time, the of
the kind of structured list-of-lists we’re exploring may itself be a list-of-lists! So we make a
recursive call for it, as well:
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something something

cond
deep-appearances

else
car cdr

car cdr

deep-appearances
car cdr

cons

deep-pigl every praise

(define (deep-appearances wd structure)
(cond ((equal? wd structure) 1) ; base case: desired word

((word? structure) 0) ; base case: other word
((null? structure) 0) ; base case: empty list
(else (+ (deep-appearances wd (car structure))

(deep-appearances wd (cdr structure))))))

(define (deep-pigl structure)
(cond ((word? structure) (pigl structure))

((null? structure) ’())
(else (cons (deep-pigl (car structure))

(deep-pigl (cdr structure))))))

> (deep-pigl ’((this is (a structure of (words)) with)
(a (peculiar) shape)))

((ISTHAY ISAY (AAY UCTURESTRAY OFAY (ORDSWAY)) ITHWAY)
(AAY (ECULIARPAY) APESHAY))

(cons ( (car argument)) ( (cdr argument)))

This procedure has two different kinds of base case. The first two clauses are
similar to the base case in the previous version of ; they deal with a
“structure” consisting of a single word. If the structure is the word we’re looking for, then
the word appears once in it. If the structure is some other word, then the word appears
zero times. The third clause is more like the base case of an ordinary list recursion; it
deals with an empty list, in which case the word appears zero times in it. (This still may
not be the end of the entire structure used as the argument to the top-level invocation,
but may instead be merely the end of a sublist within that structure.)

If we reach the clause, then the structure is neither a word nor an empty
list. It must, therefore, be a non-empty list, with a and a . The number of
appearances in the entire structure of the word we’re looking for is equal to the number
of appearances in the plus the number in the .

In the desired result is a single number. What if we want to
build a new list-of-lists structure? Having used and to disassemble a structure,
we can use to build a new one. For example, we’ll translate our entire book into
Pig Latin:

Compare with an -pattern list recursion such as on
page 285. Both look like
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Pitfalls

((3 . 2) . 1)

> (cons ’a ’b)
(A . B)

pair.

aren’t
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Praise
deep-pigl

praise cdr
deep-pigl car cdr

deep-pigl car cdr

word sentence
list lst

L seq

cons

append

cons

cons

cons

And yet these procedures are profoundly different. is a simple left-to-right
walk through the elements of a sequence; dives in and out of sublists.
The difference is a result of the fact that does one recursive call, for the ,
while does two, for the as well as the . The pattern exhibited by

is called - recursion. (Another name for it is “tree recursion,” for a
reason we’ll see in the next chapter.)

Just as we mentioned about the names and , resist the temptation
to use as a formal parameter. We use instead, but other alternatives are capital

or (for “sequence”).

The list constructor does not treat its two arguments equivalently. The second
one must be the list you’re trying to extend. There is no equally easy way to extend a
list on the right (although you can put the new element into a one-element list and use

). If you get the arguments backward, you’re likely to get funny-looking results
that aren’t lists, such as

The result you get when you onto something that isn’t a list is called a It’s
sometimes called a “dotted pair” because of what it looks like when printed:

It’s just the printed representation that’s dotted, however; the dot isn’t part of the pair
any more than the parentheses around a list are elements of the list. Lists are made of
pairs; that’s why can construct lists. But we’re not going to talk about any pairs that

part of lists, so you don’t have to think about them at all, except to know that if dots
appear in your results you’re ing backward.

Don’t get confused between lists and sentences. Sentences have no internal structure;
the good aspect of this is that it’s hard to make mistakes about building the structure, but
the bad aspect is that you might need such a structure. You can have lists whose elements
are sentences, but it’s confusing if you think of the same structure sometimes as a list and
sometimes as a sentence.
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17.1

Boring Exercises
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cdr

deep-appearances

(word? (car structure))

(word? structure)

> (car ’(Rod Chris Colin Hugh Paul))

> (cadr ’(Rod Chris Colin Hugh Paul))

> (cdr ’(Rod Chris Colin Hugh Paul))

> (car ’Rod)

> (cons ’(Rod Argent) ’(Chris White))

> (append ’(Rod Argent) ’(Chris White))

> (list ’(Rod Argent) ’(Chris White))

> (caadr ’((Rod Argent) (Chris White)
(Colin Blunstone) (Hugh Grundy) (Paul Atkinson)))

In reading someone else’s program, it’s easy not to notice that a procedure is making
two recursive calls instead of just one. If you notice only the recursive call for the ,
you might think you’re looking at a sequential recursion.

If you’re writing a procedure whose argument is a list-of-lists, it may feel funny to let
it also accept a word as the argument value. People therefore sometimes insist on a list
as the argument, leading to an overly complicated base case. If your base case test says

then think about whether you’d have a better-organized program if the base case were

Remember that in a deep-structure recursion you may need two base cases, one for
reaching an element that isn’t a sublist, and the other for an empty list, with no elements
at all. (Our procedure is an example.) Don’t forget the empty-list
case.

What will Scheme print in response to each of the following expressions? Try to
figure it out in your head before you try it on the computer.



map

17.2

17.3

17.4

Real Exercises
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For each of the following examples, write a procedure of two arguments that, when
applied to the sample arguments, returns the sample result. Your procedures may not
include any quoted data.

Describe the value returned by this invocation of :

Describe the result of calling the following procedure with a list as its argument.
(See if you can figure it out before you try it.)

> (assoc ’Colin ’((Rod Argent) (Chris White)
(Colin Blunstone) (Hugh Grundy) (Paul Atkinson)))

> (assoc ’Argent ’((Rod Argent) (Chris White)
(Colin Blunstone) (Hugh Grundy) (Paul Atkinson)))

> (f1 ’(a b c) ’(d e f))
((B C D))

> (f2 ’(a b c) ’(d e f))
((B C) E)

> (f3 ’(a b c) ’(d e f))
(A B C A B C)

> (f4 ’(a b c) ’(d e f))
((A D) (B C E F))

> (map (lambda (x) (lambda (y) (+ x y))) ’(1 2 3 4))

(define (mystery lst)
(mystery-helper lst ’()))

(define (mystery-helper lst other)
(if (null? lst)

other
(mystery-helper (cdr lst) (cons (car lst) other))))
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17.5

17.6

17.7

17.8

17.9

17.10

17.11

(define (max2 a b)
(if (> b a) b a))

> (before-in-list? ’(back in the ussr) ’in ’ussr)
#T

> (before-in-list? ’(back in the ussr) ’the ’back)
#F

max2 max

append car cdr cons append

Append sentence append
sentence

sentence append sentence

sentence

member

list-ref

length

before-in-list?
#t

#f

Here’s a procedure that takes two numbers as arguments and returns whichever
number is larger:

Use to implement , a procedure that takes one or more numeric arguments
and returns the largest of them.

Implement using , , and . (Note: The built-in can
take any number of arguments. First write a version that accepts only two arguments.
Then, optionally, try to write a version that takes any number.)

may remind you of . They’re similar, except that
works only with lists as arguments, whereas will accept words as well as lists.
Implement using . (Note: The built-in can take any
number of arguments. First write a version that accepts only two arguments. Then,
optionally, try to write a version that takes any number. Also, you don’t have to worry
about the error checking that the real does.)

Write .

Write .

Write .

Write , which takes a list and two elements of the list. It
should return if the second argument appears in the list argument before the third
argument:

The procedure should also return if either of the supposed elements doesn’t appear
at all.



17.12

17.13

17.14

17.15

that
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flatten

branch
item

((G H) (I J))
(G H) H

known-values

> (flatten ’(((a b) c (d e)) (f g) ((((h))) (i j) k)))
(A B C D E F G H I J K)

(define (deep-count lst)
(cond ((null? lst) 0)

((word? (car lst)) (+ 1 (deep-count (cdr lst))))
(else (+ (deep-count (car lst))

(deep-count (cdr lst))))))

> (branch ’(3) ’((a b) (c d) (e f) (g h)))
(E F)

> (branch ’(3 2) ’((a b) (c d) (e f) (g h)))
F

> (branch ’(2 3 1 2) ’((a b) ((c d) (e f) ((g h) (i j)) k) (l m)))
H

((C D) (E F) ((G H) (I J)) K)

Write a procedure called that takes as its argument a list, possibly
including sublists, but whose ultimate building blocks are words (not Booleans or
procedures). It should return a sentence containing all the words of the list, in the order
in which they appear in the original:

Here is a procedure that counts the number of words anywhere within a structured
list:

Although this procedure works, it’s more complicated than necessary. Simplify it.

Write a procedure that takes as arguments a list of numbers and a nested
list structure. It should be the list-of-lists equivalent of , like this:

In the last example above, the second element of the list is

The third element of that smaller list is ; the first element of that is
; and the second element of is just .

Modify the pattern matcher to represent the database as a list of
two-element lists, as we suggested at the beginning of this chapter.
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> (valid-infix? ’(4 + 3 * (5 - 2)))
#T

> (valid-infix? ’(4 + 3 * (5 2)))
#F

Write a predicate that takes a list as argument and returns if
and only if the list is a legitimate infix arithmetic expression (alternating operands and
operators, with parentheses—that is, sublists—allowed for grouping).


