
Piet Mondrian (1912)Apple Tree in Blossom,

+

4 3 5

2 7

_*

*

18 Trees

make-node

structure

trees

nodes. root node
branch nodes; leaf nodes,

305

The big advantage of full-featured lists over sentences is their ability to represent
in our data by means of sublists. In this chapter we’ll look at examples in which we
use lists and sublists to represent two-dimensional information structures. The kinds of
structures we’ll consider are called because they resemble trees in nature:

The components of a tree are called At the top is the of the tree; in the
interior of the diagram there are at the bottom are the from which
no further branches extend.

We’re going to begin by considering a tree as an abstract data type, without thinking
about how lists are used to represent trees. For example, we’ll construct trees using
a procedure named , as if that were a Scheme primitive. About halfway
through the chapter, we’ll explore the relationship between trees and lists.

World

United
States

Great
Britain

Zimbabwe

Harare Hwange

Italy

Venezia
Roma

Firenze

Riomaggiore

China

Beijing Guangzhou

SuzhouShanghai

Australia

Victoria

Sydney

Queensland

Melbourne

New South
Wales

Port
DouglasCairns

Honduras

Tegucigalpa

Ohio

Kent

Wales

Abergavenny

California

Berkeley

San
Francisco

Gilroy

England

Liverpool

Massachusetts

Cambridge

Amherst

Sudbury

Gretna
Green

Scotland

Edinburgh

Glasgow

Example: The World

datum children.

parent siblings.

306 Part V Abstraction

* Contrariwise, the tree metaphor is also part of the terminology of families.

Here is a tree that represents the world:

Each node in the tree represents some region of the world. Consider the node
labeled “Great Britain.” There are two parts to this node: The obvious part is the
label itself, the name “Great Britain.” But the regions of the world that are included
within Great Britain—that is, the nodes that are attached beneath Great Britain in the
figure—are also part of this node.

We say that every node has a and zero or more For the moment,
let’s just say that the datum can be either a word or a sentence. The children, if any,
are themselves trees. Notice that this definition is recursive—a tree is made up of trees.
(What’s the base case?)

This family metaphor is also part of the terminology of trees.* We say that a node is
the of another node, or that two nodes are In more advanced treatments,
you even hear things like “grandparent” and “cousin,” but we won’t get into that.

Italy

World

HondurasChinaZimbabweUnited
States Australia

Great
Britain

Wales

Abergavenny

England

Liverpool Gretna
Green

Scotland

Edinburgh

Glasgow

make-node

subtree

in

is

Chapter 18 Trees 307

What happens when you prune an actual tree by cutting off a branch? The cut-off
part is essentially a tree in itself, with a smaller trunk and fewer branches. The metaphor
isn’t perfect because the cut-off part doesn’t have roots, but still, we can stick the end in
the ground and hope that the cut-off end will take root as a new tree.

It’s the same with a country in our example; each country is a branch node of the
entire world tree, but also a tree in itself. Depending on how you think about it, Great
Britain can be either a component of the entire world or a collection of smaller locations.
So the branch node that represents Great Britain is the root node of a of the entire
tree.

What is a node? It might seem natural to think of a node as being just the information
in one of the circles in the diagram—that is, to think of a node as including only its
datum. In that way of thinking, each node would be separate from every other node, just
as the words in a sentence are all separate elements. However, it will be more useful to
think of a node as a structure that includes everything below that circle also: the datum
and the children. So when we think of the node for Great Britain, we’re thinking not
only of the name “Great Britain,” but also of everything Great Britain. From this
perspective, the root node of a tree includes the entire tree. We might as well say that the
node the tree.

The constructor for a tree is actually the constructor for one node, its root node. Our
constructor for trees is therefore called . It takes two arguments: the datum
and a (possibly empty) list of children. As the following example shows, constructing
what we think of as one tree requires the construction of many such nodes.

forest.

308 Part V Abstraction

Datum Children

make-node datum children

You’ll notice that we haven’t defined all of the places shown in the figure. That’s because
we got tired of doing all this typing; we’re going to invent some abbreviations later. For
now, we’ll take time out to show you the selectors for trees.

of a tree node returns the datum of that node. of a node returns a list
of the children of the node. (A list of trees is called a)

Here are some abbreviations to help us construct the world tree with less typing.
Unlike , , and , which are intended to work on trees in
general, these abbreviations were designed with the world tree specifically in mind:

(define world-tree ;; painful-to-type version
(make-node
’world
(list (make-node

’italy
(list (make-node ’venezia ’())

(make-node ’riomaggiore ’())
(make-node ’firenze ’())
(make-node ’roma ’())))

(make-node
’(united states)
(list (make-node ’california

(list (make-node ’berkeley ’())
(make-node ’(san francisco) ’())
(make-node ’gilroy ’())))

(make-node ’massachusetts
(list (make-node ’cambridge ’())

(make-node ’amherst ’())
(make-node ’sudbury ’()))))))))

> (datum world-tree)
WORLD

> (datum (car (children world-tree)))
ITALY

> (datum (car (children (cadr (children world-tree)))))
CALIFORNIA

> (datum (car (children (car (children
(cadr (children world-tree)))))))

BERKELEY

Chapter 18 Trees 309

With these abbreviations the world tree is somewhat easier to define:

(define (leaf datum)
(make-node datum ’()))

(define (cities name-list)
(map leaf name-list))

(define world-tree
(make-node
’world
(list (make-node

’italy
(cities ’(venezia riomaggiore firenze roma)))

(make-node
’(united states)
(list (make-node

’california
(cities ’(berkeley (san francisco) gilroy)))

(make-node
’massachusetts
(cities ’(cambridge amherst sudbury)))

(make-node ’ohio (cities ’(kent)))))
(make-node ’zimbabwe (cities ’(harare hwange)))
(make-node ’china

(cities ’(beijing shanghai guangzhou suzhou)))
(make-node
’(great britain)
(list
(make-node ’england (cities ’(liverpool)))
(make-node ’scotland

(cities ’(edinburgh glasgow (gretna green))))
(make-node ’wales (cities ’(abergavenny)))))

(make-node
’australia
(list
(make-node ’victoria (cities ’(melbourne)))
(make-node ’(new south wales) (cities ’(sydney)))
(make-node ’queensland

(cities ’(cairns (port douglas))))))
(make-node ’honduras (cities ’(tegucigalpa))))))

How Big Is My Tree?

Mutual Recursion

several

mutual recursion.

310 Part V Abstraction

count-leaves
count-leaves

map

count-leaves

count-leaves count-leaves-in-forest count-leaves-
in-forest count-leaves

(define (count-leaves tree)
(if (leaf? tree)

1
(reduce + (map count-leaves (children tree)))))

(define (leaf? node)
(null? (children node)))

> (count-leaves world-tree)
27

(define (count-leaves tree)
(if (leaf? tree)

1
(count-leaves-in-forest (children tree))))

(define (count-leaves-in-forest forest)
(if (null? forest)

0
(+ (count-leaves (car forest))

(count-leaves-in-forest (cdr forest)))))

Now that we have the tree, how many cities are there in our world?

At first glance, this may seem like a simple case of recursion, with
calling . But since what looks like a single recursive call is really a call to

, it is equivalent to recursive calls, one for each child of the given tree node.

In Chapter 14 we wrote recursive procedures that were equivalent to using higher-order
functions. Let’s do the same for .

Note that calls , and
calls . This pattern is called

Mutual recursion is often a useful technique for dealing with trees. In the typical
recursion we’ve seen before this chapter, we’ve moved sequentially through a list or
sentence, with each recursive call taking us one step to the right. In the following
paragraphs we present three different models to help you think about how the shape of
a tree gives rise to a mutual recursion.

down
across

Chapter 18 Trees 311

* You probably think of trees as being short or tall. But since our trees are upside-down, the
convention is to call them shallow or deep.

count-leaves
count-leaves-in-forest

count-leaves
count-leaves-in-forest

car cdr
car car

car

count-leaves

count-leaves count-leaves-in-forest

count-leaves-in-forest

count-leaves
children

count-leaves count-leaves-in-forest

count-leaves

In the first model, we’re going to think of as an initialization
procedure, and as its helper procedure. Suppose we
want to count the leaves of a tree. Unless the argument is a very shallow* tree, this
will involve counting the leaves of all of the children of that tree. What we want is
a straightforward sequential recursion over the list of children. But we’re given the
wrong argument: the tree itself, not its list of children. So we need an initialization
procedure, , whose job is to extract the list of children and invoke a
helper procedure, , with that list as argument.

The helper procedure follows the usual sequential list pattern: Do something to the
of the list, and recursively handle the of the list. Now, what do we have to do

to the ? In the usual sequential recursion, the of the list is something simple,
such as a word. What’s special about trees is that here the is itself a tree, just like
the entire data structure we started with. Therefore, we must invoke a procedure whose
domain is trees: .

This model is built on two ideas. One is the idea of the domain of a function; the
reason we need two procedures is that we need one that takes a tree as its argument
and one that takes a list of trees as its argument. The other idea is the leap of faith; we
assume that the invocation of within will
correctly handle each child without tracing the exact sequence of events.

The second model is easier to state but less rigorous. Because of the two-dimensional
nature of trees, in order to visit every node we have to be able to move in two different
directions. From a given node we have to be able to move to its children, but from
each child we must be able to move to its next sibling.

The job of is to move from left to right through a list of
children. (It does this using the more familiar kind of recursion, in which it invokes itself
directly.) The downward motion happens in , which moves down one
level by invoking . How does the program move down more than one level? At
each level, is invoked recursively from .

The third model is also based on the two-dimensional nature of trees. Imagine for a
moment that each node in the tree has at most one child. In that case,
could move from the root down to the single leaf with a structure very similar to the
actual procedure, but carrying out a sequential recursion:

Searching for a Datum in the Tree

tree recursion

is

312 Part V Abstraction

count-leaves
Count-leaves-in-forest

count-leaves

count-leaves
count-leaves-in-forest

car cdr

cdr
car

count-leaves

in-tree?

filter

(define (count-leaf tree)
(if (leaf? tree)

1
(count-leaf (child tree))))

(define (in-tree? place tree)
(or (equal? place (datum tree))

(not (null? (filter (lambda (subtree) (in-tree? place subtree))
(children tree))))))

The trouble with this, of course, is that at each downward step there isn’t a single “next”
node. Instead of a single path from the root to the leaf, there are multiple paths from the
root to many leaves. To make our idea of downward motion through sequential recursion
work in a real tree, at each level we must “clone” as many times as there
are children. is the factory that manufactures the clones.
It hires one little person for each child and accumulates their results.

The key point in recursion on trees is that each child of a tree is itself a perfectly
good tree. This recursiveness in the nature of trees gives rise to a very recursive structure
for programs that use trees. The reason we say “very” recursive is that each invocation of

causes not just one but several recursive invocations, one for each child,
by way of .

In fact, we use the name for any situation in which a procedure invocation
results in more than one recursive call, even if there isn’t an argument that’s a tree. The
computation of Fibonacci numbers from Chapter 13 is an example of a tree recursion
with no tree. The - recursions in Chapter 17 are also tree recursions; any
structured list-of-lists has a somewhat tree-like, two-dimensional character even though it
doesn’t use the formal mechanisms we’re exploring in this chapter. The recursion
is a “horizontal” one, moving from one element to another within the same list; the
recursion is a “vertical” one, exploring a sublist of the given list.

Procedures that explore trees aren’t always as simple as . We started
with that example because we could write it using higher-order functions, so that you’d
understand the structure of the problem before we had to take on the complexity of
mutual recursion. But many tree problems don’t quite fit our higher-order functions.

For example, let’s write a predicate that takes the name of a place and a
tree as arguments and tells whether or not that place is in the tree. It possible to make
it work with :

where

Chapter 18 Trees 313

Locating a Datum in the Tree

filter
filter

in-tree? in-forest?

(define (in-tree? place tree)
(or (equal? place (datum tree))

(in-forest? place (children tree))))

(define (in-forest? place forest)
(if (null? forest)

#f
(or (in-tree? place (car forest))

(in-forest? place (cdr forest)))))

> (in-tree? ’abergavenny world-tree)
#T

> (in-tree? ’abbenay world-tree)
#F

> (in-tree? ’venezia (cadr (children world-tree)))
#F

> (locate ’berkeley world-tree)
(WORLD (UNITED STATES) CALIFORNIA BERKELEY)

This awkward construction, however, also performs unnecessary computation. If the
place we’re looking for happens to be in the first child of a node, will nevertheless
look in all the other children as well. We can do better by replacing the use of
with a mutual recursion:

Although any mutual recursion is a little tricky to read, the structure of this program
does fit the way we’d describe the algorithm in English. A place is in a tree if one of two
conditions holds: the place is the datum at the root of the tree, or the place is (recursively)
in one of the child trees of this tree. That’s what says. As for , it
says that a place is in one of a group of trees if the place is in the first tree, or if it’s in one
of the remaining trees.

Our next project is similar to the previous one, but a little more intricate. We’d like to
be able to locate a city and find out all of the larger regions that enclose the city. For
example, we want to say

Instead of just getting a yes-or-no answer about whether a city is in the tree, we now want
to find out it is.

314 Part V Abstraction

Representing Trees as Lists

world
Locate

#f
(united states)

world
locate
#f locate

#f

locate in-tree?
in-forest? locate-in-forest

locate

make-node datum children

((UNITED STATES) CALIFORNIA BERKELEY)

(define (locate city tree)
(if (equal? city (datum tree))

(list city)
(let ((subpath (locate-in-forest city (children tree))))
(if subpath

(cons (datum tree) subpath)
#f))))

(define (locate-in-forest city forest)
(if (null? forest)

#f
(or (locate city (car forest))

(locate-in-forest city (cdr forest)))))

(define (make-node datum children)
(cons datum children))

The algorithm is recursive: To look for Berkeley within the world, we need to be
able to look for Berkeley within any subtree. The node has several children
(countries). recursively asks each of those children to find a path to Berkeley.
All but one of the children return , because they can’t find Berkeley within their
territory. But the node returns

To make a complete path, we just prepend the name of the current node, , to this
path. What happens when tries to look for Berkeley in Australia? Since all of
Australia’s children return , there is no path to Berkeley from Australia, so
returns .

Compare the structure of with that of . The helper procedures
and are almost identical. The main procedures look

different, because has a harder job, but both of them check for two possibilities:
The city might be the datum of the argument node, or it might belong to one of the
child trees.

We’ve done a lot with trees, but we haven’t yet talked about the way Scheme stores trees
internally. How do , , and work? It turns out to be very
convenient to represent trees in terms of lists.

Abstract Data Types

Chapter 18 Trees 315

locate

make-node datum children

car cdr

In other words, a tree is a list whose first element is the datum and whose remaining
elements are subtrees.

Ordinarily, however, we’re not going to print out trees in their entirety. As in the
example, we’ll extract just some subset of the information and put it in a more

readable form.

The procedures , , and define an abstract data type for
trees. Using this ADT, we were able to write several useful procedures to manipulate trees
before pinning down exactly how a tree is represented as a Scheme list.

Although it would be possible to refer to the parts of a node by using and
directly, your programs will be more readable if you use the ADT-specific selectors and

(define (datum node)
(car node))

(define (children node)
(cdr node))

> world-tree
(WORLD

(ITALY (VENEZIA) (RIOMAGGIORE) (FIRENZE) (ROMA))
((UNITED STATES)
(CALIFORNIA (BERKELEY) ((SAN FRANCISCO)) (GILROY))
(MASSACHUSETTS (CAMBRIDGE) (AMHERST) (SUDBURY))
(OHIO (KENT)))

(ZIMBABWE (HARARE) (HWANGE))
(CHINA (BEIJING) (SHANGHAI) (GUANGSZHOU) (SUZHOW))
((GREAT BRITAIN)
(ENGLAND (LIVERPOOL))
(SCOTLAND (EDINBURGH) (GLASGOW) ((GRETNA GREEN)))
(WALES (ABERGAVENNY)))

(AUSTRALIA
(VICTORIA (MELBOURNE))
((NEW SOUTH WALES) (SYDNEY))
(QUEENSLAND (CAIRNS) ((PORT DOUGLAS))))

(HONDURAS (TEGUCIGALPA)))

> (car (children world-tree))
(ITALY (VENEZIA) (RIOMAGGIORE) (FIRENZE) (ROMA))

caddr caddr

count-leaves

datum children

caddr world-tree

respecting
data abstraction

violation.

316 Part V Abstraction

(in-tree? ’venezia (caddr world-tree))

(in-tree? ’venezia (cadr (children world-tree)))

(in-tree? ’venezia (list-ref (children world-tree) 1))

(define (make-node datum children)
(list ’the ’node ’with ’datum datum ’and ’children children))

(define (datum node) (list-ref node 4))

(define (children node) (list-ref node 7))

> (make-node ’italy (cities ’(venezia riomaggiore firenze roma)))
(THE NODE WITH DATUM ITALY AND CHILDREN

((THE NODE WITH DATUM VENEZIA AND CHILDREN ())
(THE NODE WITH DATUM RIOMAGGIORE AND CHILDREN ())
(THE NODE WITH DATUM FIRENZE AND CHILDREN ())
(THE NODE WITH DATUM ROMA AND CHILDREN ())))

constructors. Consider this example:

What does mean in this context? Is the of a tree a datum? A child? A
forest? Of course you could work it out by careful reasoning, but the form in which we
presented this example originally was much clearer:

Even better would be

Using the appropriate selectors and constructors is called the data abstrac-
tion. Failing to use the appropriate selectors and constructors is called a

Since we wrote the selectors and constructor for trees ourselves, we could have
defined them to use some different representation:

You might expect that this change in the representation would require changes to all the
procedures we wrote earlier, such as . But in fact, those procedures would
continue to work perfectly because they don’t see the representation. (They respect the
data abstraction.) As long as and find the right information, it doesn’t
matter how the trees are stored. All that matters is that the constructors and selectors
have to be compatible with each other.

On the other hand, the example in this section in which we violated the data
abstraction by using to find the second child of would fail if

_
+

6

54

33 47

/+

+*

× −

match

(+ 3 4)prefix

infix

parsing

Chapter 18 Trees 317

An Advanced Example: Parsing Arithmetic Expressions

(define (match pattern sent)
(match-using-known-values pattern sent ’()))

* Another example of a data abstraction violation is in Chapter 16. When creates an
empty known-values database, we didn’t use a constructor. Instead, we merely used a quoted empty
sentence:

we changed the representation. Many cases like this one, in which formerly working
programs failed after a change in representation, led programmers to use such moralistic
terms as “respecting” and “violating” data abstractions.*

Consider the notation for arithmetic expressions. Scheme uses notation: .
By contrast, people who aren’t Scheme programmers generally represent arithmetic
computations using an notation, in which the function symbol goes between two
arguments: 3 + 4.

Our goal in this section is to translate an infix arithmetic expression into a tree
representing the computation. This translation process is called the expression.
For example, we’ll turn the expression

4 + 3 7 5/(3 + 4) + 6

into the tree

4 3

+

× −

+
- * / (3 + 4)

4 +
3

+ 3
3 * 7

> (parse ’(4 + 3 * 7 - 5 / (3 + 4) + 6))

precedence

318 Part V Abstraction

The point of using a tree is that it’s going to be very easy to perform the computation
once we have it in tree form. In the original infix form, it’s hard to know what to do first,
because there are rules that determine an implicit grouping: Multiplication
and division come before addition and subtraction; operations with the same precedence
are done from left to right. Our sample expression is equivalent to

(((4 + (3 7)) (5/(3 + 4))) + 6)

In the tree representation, it’s easy to see that the operations nearer the leaves are done
first; the root node is the last operation, because it depends on the results of lower-level
operations.

Our program will take as its argument an infix arithmetic expression in the form of
a list:

Each element of the list must be one of three things: a number; one of the four symbols ,
, , or ; or a sublist (such as the three-element list in this example) satisfying

the same rule. (You can imagine that we’re implementing a pocket calculator. If we were
implementing a computer programming language, then we’d also accept variable names
as operands. But we’re not bothering with that complication because it doesn’t really
affect the part of the problem about turning the expression into a tree.)

What makes this problem tricky is that we can’t put the list elements into the tree as
soon as we see them. For example, the first three elements of our sample list are , ,
and . It’s tempting to build a subtree of those three elements:

But if you compare this picture with the earlier picture of the correct tree, you’ll see that
the second argument to this invocation isn’t the number , but rather the subexpression

.

By this reasoning you might think that we have to examine the entire expression
before we can start building the tree. But in fact we can sometimes build a subtree with
confidence. For example, when we see the minus sign in our sample expression, we can

Remaining Expression_ Operations_ Operands_

4+3*7–5/(3+4)+6

+3*7–5/(3+4)+6

3*7–5/(3+4)+6

*7–5/(3+4)+6

()

()

(+)

(+)

()

3 4()
4()
4()

7–5/(3+4)+6

–5/(3+4)+6

(* +)

(* +) 7 3 4()
3 4()

3 * 7 *
-

*
+

+
+ *

+
*

- *
*handle

Chapter 18 Trees 319

* Actually, as we’ll see shortly, the elements of the operand list are trees, so what we put in the
operand list is a one-node tree whose datum is the number.

tell that the subexpression that comes before it is complete, because has higher
precedence than does.

Here’s the plan. The program will examine its argument from left to right. Since
the program can’t finish processing each list element right away, it has to maintain
information about the elements that have been examined but not entirely processed. It’s
going to be easier to maintain that information in two parts: one list for still-pending
operations and another for still-pending operands. Here are the first steps in parsing
our sample expression; the program examines the elements of the argument, putting
numbers onto the operand list and operation symbols onto the operation list:*

At this point, the program is looking at the operator in the infix expression. If this
newly seen operator had lower precedence than the that’s already at the head of the
list of operations, then it would be time to carry out the operation by creating a tree
with at the root and the first two operands in the list as its children. Instead, since has
higher precedence than , the program isn’t ready to create a subtree but must instead
add the to its operation list.

This time, the newly seen operation has lower precedence than the at the head
of the operation list. Therefore, it’s time for the program to the operator, by

–5/(3+4)+6 (+) *
73

4()

–5/(3+4)+6 () ()*

+
4

73

5/(3+4)+6

/(3+4)+6

(–)

(–)

()*

+
4

73

()*

+
4

73
5

(3+4)+6 (/ –) ()*

+
4

73
5

*
-

- +

+

-

320 Part V Abstraction

making a subtree containing that operator and the first two elements of the operand list.
This new subtree becomes the new first element of the operand list.

Because the program decided to handle the waiting operator, it still hasn’t moved
the operator from the infix expression to the operator list. Now the program must
compare with the at the head of the list. These two operators have the same
precedence. Since we want to carry out same-precedence operators from left to right, it’s
time to handle the operator.

Finally the program can move the operator onto the operator list. The next several
steps are similar to ones we’ve already seen.

+6 (/ –) ()*

+
4

73
5

+
43

+6

+6

6

(–)

()

(+)

(+) ()*

+
4

73

–
/

5
43

+6

()*

+
4

73

–
/

5
43

+

()*

+
4

73

–
/

5
43

+

()*

+
4

73
+

/
5

43

ytpme

parse

/
+ - +

Chapter 18 Trees 321

This is a new situation: The first unseen element of the infix expression is neither a
number nor an operator, but a sublist. We recursively this subexpression, adding
the resulting tree to the operand list.

Then we proceed as before, processing the because it has higher precedence than
the , then the because it has the same priority as the , and so on.

ytpme () ()*

+
4

73

–
/

5
43

+

6
+

(3 + *)

322 Part V Abstraction

Once the program has examined every element of the infix expression, the operators
remaining on the operator list must be handled. In this case there is only one such
operator. Once the operators have all been handled, there should be one element
remaining on the operand list; that element is the desired tree for the entire original
expression.

The following program implements this algorithm. It works only for correctly
formed infix expressions; if given an argument like , it’ll give an incorrect result
or a Scheme error.

(define (parse expr)
(parse-helper expr ’() ’()))

(define (parse-helper expr operators operands)
(cond ((null? expr)

(if (null? operators)
(car operands)
(handle-op ’() operators operands)))

((number? (car expr))
(parse-helper (cdr expr)

operators
(cons (make-node (car expr) ’()) operands)))

((list? (car expr))
(parse-helper (cdr expr)

operators
(cons (parse (car expr)) operands)))

(else (if (or (null? operators)
(> (precedence (car expr))

(precedence (car operators))))
(parse-helper (cdr expr)

(cons (car expr) operators)
operands)

(handle-op expr operators operands)))))

⇒

⇒

Pitfalls

children

Chapter 18 Trees 323

We promised that after building the tree it would be easy to compute the value of
the expression. Here is the program to do that:

A leaf node is a perfectly good actual argument to a tree procedure, even though the
picture of a leaf node doesn’t look treeish because there aren’t any branches. A common
mistake is to make the base case of the recursion be a node whose children are leaves,
instead of a node that’s a leaf itself.

The value returned by is not a tree, but a forest. It’s therefore not a
suitable actual argument to a procedure that expects a tree.

(define (handle-op expr operators operands)
(parse-helper expr

(cdr operators)
(cons (make-node (car operators)

(list (cadr operands) (car operands)))
(cddr operands))))

(define (precedence oper)
(if (member? oper ’(+ -)) 1 2))

(define (compute tree)
(if (number? (datum tree))

(datum tree)
((function-named-by (datum tree))

(compute (car (children tree)))
(compute (cadr (children tree))))))

(define (function-named-by oper)
(cond ((equal? oper ’+) +)

((equal? oper ’-) -)
((equal? oper ’*) *)
((equal? oper ’/) /)
(else (error "no such operator as" oper))))

> (compute (parse ’(4 + 3 * 7 - 5 / (3 + 4) + 6)))
30.285714285714

Exercises

18.1

18.2

18.3

18.4

18.5

leaf

324 Part V Abstraction

world-tree

list
cons

depth,

count-nodes

prune
prune

prune
#f

((SAN FRANCISCO))

(define (make-node datum children)
(list datum children))

What does

mean in the printout of ? Why two sets of parentheses?

Suppose we change the definition of the tree constructor so that it uses
instead of :

How do we have to change the selectors so that everything still works?

Write a procedure that takes a tree as argument and returns the largest
number of nodes connected through parent-child links. That is, a leaf node has depth
1; a tree in which all the children of the root node are leaves has depth 2. Our world
tree has depth 4 (because the longest path from the root to a leaf is, for example, world,
country, state, city).

Write , a procedure that takes a tree as argument and returns the
total number of nodes in the tree. (Earlier we counted the number of nodes.)

Write , a procedure that takes a tree as argument and returns a copy of the
tree, but with all the leaf nodes of the original tree removed. (If the argument to
is a one-node tree, in which the root node has no children, then should return

because the result of removing the root node wouldn’t be a tree.)

18.6

Chapter 18 Trees 325

parse-scheme
parse

compute

compute

> (compute (parse-scheme ’(* (+ 4 3) 2)))
14

Write a program that parses a Scheme arithmetic expression
into the same kind of tree that produces for infix expressions. Assume that all
procedure invocations in the Scheme expression have two arguments.

The resulting tree should be a valid argument to :

(You can solve this problem without the restriction to two-argument invocations if you
rewrite so that it doesn’t assume every branch node has two children.)

