
Part VI
Sequential Programming

wash-the-dishes

reserve-seat
issue-ticket

effect, sequence, state.

do

effect,

sequence

340

to go-to-work
get-dressed
eat-breakfast
catch-the-bus

The three big ideas in this part are and

Until now, we’ve been doing functional programming, where the focus is on functions
and their return values. Invoking a function is like asking a question: “What’s two plus
two?” In this part of the book we’re going to talk about giving commands to the computer
as well as asking it questions. That is, we’ll invoke procedures that tell Scheme to
something, such as . (Unfortunately, the Scheme standard leaves
out this primitive.) Instead of merely computing a value, such a procedure has an
an action that changes something.

Once we’re thinking about actions, it’s very natural to consider a of actions.
First cooking dinner, then eating, and then washing the dishes is one sequence. First
eating, then washing the dishes, and then cooking is a much less sensible sequence.

Although these ideas of sequence and effect are coming near the end of our book,
they’re the ideas with which almost every introduction to programming begins. Most
books compare a program to a recipe or a sequence of instructions, along the lines of

This sequential programming style is simple and natural, and it does a good job of
modeling computations in which the problem concerns a sequence of events. If you’re
writing an airline reservation system, a sequential program with and

commands makes sense. But if you want to know the acronym of a
phrase, that’s not inherently sequential, and a question-asking approach is best.

•

•

•

define

state.

model

341

Some actions that Scheme can take affect the “outside” world, such as printing
something on the computer screen. But Scheme can also carry out internal actions,
invisible outside the computer, but changing the environment in which Scheme itself
carries out computations. Defining a new variable with is an example; before the
definition, Scheme wouldn’t understand what that name means, but once the definition
has been made, the name can be used in evaluating later expressions. Scheme’s
knowledge about the leftover effects of past computations is called its The third big
idea in this part of the book is that we can write programs that maintain state information
and use it to determine their results.

Like sequence, the notion of state contradicts functional programming. Earlier in
the book, we emphasized that every time a function is invoked with the same arguments,
it must return the same value. But a procedure whose returned value depends on
state—on the past history of the computation—might return a different value on each
invocation, even with identical arguments.

We’ll explore several situations in which effects, sequence, and state are useful:

Interactive, question-and-answer programs that involve keyboard input while the com-
putation is in progress;

Programs that must read and write long-term data file storage;

Computations that an actual sequence of events in time and use the state of the
program to model information about the state of the simulated events.

After introducing Scheme’s mechanisms for sequential programming, we’ll use those
mechanisms to implement versions of two commonly used types of business computer
applications, a spreadsheet and a database program.

x o

Printing

20 Input and Output

function

conversation

list

343

(define (bottles n)
(if (= n 0)

’()
(append (verse n)

(bottles (- n 1)))))

trace* The only exception is that we’ve used , which prints messages about the progress of a
computation.

In the tic-tac-toe project in Chapter 10, we didn’t write a complete game program. We
wrote a that took a board position and or as arguments, returning the next
move. We noted at the time that a complete game program would also need to carry
on a with the user. Instead of computing and returning one single value, a
conversational program must carry out a sequence of events in time, reading information
from the keyboard and displaying other information on the screen.

Before we complete the tic-tac-toe project, we’ll start by exploring Scheme’s mecha-
nisms for interactive programming.

Up until now, we’ve never told Scheme to print anything. The programs we’ve written
have computed values and returned them; we’ve relied on the read-eval-print loop to
print these values.*

But let’s say we want to write a program to print out all of the words to “99 Bottles of
Beer on the Wall.” We could implement a function to produce a humongous of the
lines of the song, like this:

print

344 Part VI Sequential Programming

The problem is that we don’t want a list. All we want is to print out the lines of the song;
storing them in a data structure is unnecessary and inefficient. Also, some versions of
Scheme would print the above list like this:

or even all on one line. We can’t rely on Scheme’s mechanism for printing lists if we want
to be sure of a particular arrangement on the screen.

Instead we’ll write a program to a verse, rather than return it in a list:

(define (verse n)
(list (cons n ’(bottles of beer on the wall))

(cons n ’(bottles of beer))
’(if one of those bottles should happen to fall)
(cons (- n 1) ’(bottles of beer on the wall))
’()))

> (bottles 3)
((3 BOTTLES OF BEER ON THE WALL)
(3 BOTTLES OF BEER)
(IF ONE OF THOSE BOTTLES SHOULD HAPPEN TO FALL)
(2 BOTTLES OF BEER ON THE WALL)
()
(2 BOTTLES OF BEER ON THE WALL)
(2 BOTTLES OF BEER)
(IF ONE OF THOSE BOTTLES SHOULD HAPPEN TO FALL)
(1 BOTTLES OF BEER ON THE WALL)
()
(1 BOTTLES OF BEER ON THE WALL)
(1 BOTTLES OF BEER)
(IF ONE OF THOSE BOTTLES SHOULD HAPPEN TO FALL)
(0 BOTTLES OF BEER ON THE WALL)
())

((3 BOTTLES OF BEER ON THE WALL) (3 BOTTLES OF BEER) (IF ONE OF
THOSE BOTTLES SHOULD HAPPEN TO FALL) (2 BOTTLES OF BEER ON THE
WALL) () (2 BOTTLES OF BEER ON THE WALL) (2 BOTTLES OF BEER) (IF
ONE OF THOSE BOTTLES SHOULD HAPPEN TO FALL) (1 BOTTLES OF BEER ON
THE WALL) () (1 BOTTLES OF BEER ON THE WALL) (1 BOTTLES OF BEER)
(IF ONE OF THOSE BOTTLES SHOULD HAPPEN TO FALL) (0 BOTTLES OF BEER
ON THE WALL) ())

(define (bottles n)
(if (= n 0)

’burp
(begin (verse n)

(bottles (- n 1)))))

Side Effects and Sequencing

(bottles 3)
burp bottles

Show

value

side effects sequencing.

Chapter 20 Input and Output 345

* We know that it’s still not as beautiful as can be, because of the capital letters and parentheses,
but we’ll get to that later.

(define (verse n)
(show (cons n ’(bottles of beer on the wall)))
(show (cons n ’(bottles of beer)))
(show ’(if one of those bottles should happen to fall))
(show (cons (- n 1) ’(bottles of beer on the wall)))
(show ’()))

> (bottles 3)
(3 BOTTLES OF BEER ON THE WALL)
(3 BOTTLES OF BEER)
(IF ONE OF THOSE BOTTLES SHOULD HAPPEN TO FALL)
(2 BOTTLES OF BEER ON THE WALL)
()
(2 BOTTLES OF BEER ON THE WALL)
(2 BOTTLES OF BEER)
(IF ONE OF THOSE BOTTLES SHOULD HAPPEN TO FALL)
(1 BOTTLES OF BEER ON THE WALL)
()
(1 BOTTLES OF BEER ON THE WALL)
(1 BOTTLES OF BEER)
(IF ONE OF THOSE BOTTLES SHOULD HAPPEN TO FALL)
(0 BOTTLES OF BEER ON THE WALL)
()
BURP

Notice that Scheme doesn’t print an outer set of parentheses. Each line was printed
separately; there isn’t one big list containing all of them.*

Why was “burp” printed at the end? Just because we’re printing things explicitly
doesn’t mean that the read-eval-print loop stops functioning. We typed the expression

. In the course of evaluating that expression, Scheme printed several lines
for us. But the of the expression was the word , because that’s what
returned.

How does our program work? There are two new ideas here: and

Until now, whenever we’ve invoked a procedure, our only goal has been to get a
return value. The procedures we’ve used compute and return a value, and do nothing
else. is different. Although every Scheme procedure returns a value, the Scheme

side

> (show 7)
7
#F

show

Show
show

show

do

346 Part VI Sequential Programming

(define (effect x)
(show x)
’done)

(define (value x)
x)

> (effect ’(oh! darling))
(OH! DARLING)
DONE

> (value ’(oh! darling))
(OH! DARLING)

> (bf (effect ’(oh! darling)))
(OH! DARLING)
ONE

show #f

show
burp

show

* Suppose returns in your version of Scheme. Then you might see

But since the return value is unspecified, we try to write programs in such a way that we never use
’s return value as the return value from our procedures. That’s why we return values like
.

** The term effect is based on the idea that a procedure may have a useful return value as
its main purpose and may also have an effect “on the side.” It’s a misnomer to talk about the side
effect of , since the effect is its main purpose. But nobody ever says “side return value”!

language standard doesn’t specify what value the printing procedures should return.*
Instead, we are interested in their side effects. In other words, we invoke because
we want it to something, namely, print its argument on the screen.

What exactly do we mean by “side effect”? The kinds of procedures that we’ve used
before this chapter can compute values, invoke helper procedures, provide arguments to
the helper procedures, and return a value. There may be a lot of activity going on within
the procedure, but the procedure affects the world outside of itself only by returning a
value that some other procedure might use. affects the world outside of itself by
putting something on the screen. After has finished its work, someone who looks
at the screen can tell that was used.**

Here’s an example to illustrate the difference between values and effects:

Chapter 20 Input and Output 347

effect
lots-of-effect lots-of-value

let c

* In Chapter 4, we said that the body of a procedure was always one single expression. We lied.
But as long as you don’t use any procedures with side effects, it doesn’t do you any good to evaluate
more than one expression in a body.

** For example:

> (cond ((< 4 0)
(show ’(how interesting))
(show ’(4 is less than zero?))
#f)

((> 4 0)
(show ’(more reasonable))
(show ’(4 really is more than zero))
’value)

(else
(show ’(you mean 4=0?))
#f))

(MORE REASONABLE)
(4 REALLY IS MORE THAN ZERO)
VALUE

> (bf (value ’(oh! darling)))
(DARLING)

> (define (lots-of-effect x)
(effect x)
(effect x)
(effect x))

> (define (lots-of-value x)
(value x)
(value x)
(value x))

> (lots-of-effect ’(oh! darling))
(OH! DARLING)
(OH! DARLING)
(OH! DARLING)
DONE

> (lots-of-value ’(oh! darling))
(OH! DARLING)

This example also demonstrates the second new idea, sequencing: Each of ,
, and contains more than one expression in its

body. When you invoke such a procedure, Scheme evaluates all the expressions in the
body, in order, and returns the value of the last one.* This also works in the body of a

, which is really the body of a procedure, and in each clause of a ond.**

Begin

function

348 Part VI Sequential Programming

The Special Form

This Isn’t Functional Programming

lots-of-value value

lots-of-effect
effect

effect show

lots-of-effect

bottles
if

if if
(verse n)

begin

begin

(define (bottles n) ;; wrong
(if (= n 0)

’()
(verse n)
(bottles (- n 1))))

(define bottles n)
(if (= n 0)

’burp
(begin (verse n)

(bottles (- n 1)))))

When we invoked , Scheme invoked three times; it dis-
carded the values returned by the first two invocations, and returned the value from
the third invocation. Similarly, when we invoked , Scheme invoked

three times and returned the value from the third invocation. But each
invocation of caused its argument to be printed by invoking .

The procedure accomplished sequencing by having more than one
expression in its body. This works fine if the sequence of events that you want to perform
is the entire body of a procedure. But in we wanted to include a sequence as
one of the alternatives in an construction. We couldn’t just say

because must have exactly three arguments. Otherwise, how would know whether
we meant to be the second expression in the true case, or the first expression
in the false case?

Instead, to turn the sequence of expressions into a single expression, we use the
special form . It takes any number of arguments, evaluates them from left to right,
and returns the value of the last one.

(One way to think about sequences in procedure bodies is that every procedure body has
an invisible surrounding it.)

Sequencing and side effects are radical departures from the idea of functional program-
ming. In fact, we’d like to reserve the name for something that computes and

is
really

lambda

show

Not Moving to the Next Line

emphasis
independent

Chapter 20 Input and Output 349

(* (+ 3 4) (- 92 15))

(begin
(show (+ 3 4))
(show (- 92 15)))

> (begin (show-addition 3 4)
(show-addition 6 8)
’done)

3+4=7
6+8=14
DONE

* Sometimes people sloppily say that the procedure a function. In fact, you may hear people
be sloppy and call a non-functional procedure a function!

returns one value, with no side effects. “Procedure” is the general term for the thing
that returns—an embodiment of an algorithm. If the algorithm is the kind that
computes and returns a single value without side effects, then we say that the procedure
implements a function.*

There is a certain kind of sequencing even in functional programming. If you say

it’s clear that the addition has to happen before the multiplication, because the result
of the addition provides one of the arguments to the multiplication. What’s new in
the sequential programming style is the on sequence, and the fact that the
expressions in the sequence are instead of contributing values to each other.
In this multiplication problem, for example, we don’t care whether the addition happens
before or after the subtraction. If the addition and subtraction were in a sequence, we’d
be using them for independent purposes:

This is what we mean by being independent. Neither expression helps in computing
the other. And the order matters because we can see the order in which the results are
printed.

Each invocation of prints a separate line. What if we want a program that prints
several things on the same line, like this:

Strings

do

any

350 Part VI Sequential Programming

display

show

newline

show display
newline

(define (show-addition x y)
(display x)
(display ’+)
(display y)
(display ’=)
(show (+ x y)))

(define (verse n)
(show (cons n ’(bottles of beer on the wall)))
(show (cons n ’(bottles of beer)))
(show ’(if one of those bottles should happen to fall))
(show (cons (- n 1) ’(bottles of beer on the wall)))
(newline)) ; replaces (show ’())

(define (verse n)
(display n)
(show " bottles of beer on the wall,")
(display n)
(show " bottles of beer.")
(show "If one of those bottles should happen to fall,")
(display (- n 1))
(show " bottles of beer on the wall.")
(newline))

We use , which doesn’t move to the next line after printing its argument:

(The last one is a because we want to start a new line after it.)

What if you just want to print a blank line? You use :

In fact, isn’t an official Scheme primitive; we wrote it in terms of and
.

Throughout the book we’ve occasionally used strings, that is, words enclosed in double-
quote marks so that Scheme will permit the use of punctuation or other unusual
characters. Strings also preserve the case of letters, so they can be used to beautify our
song even more. Since character can be in a string, including spaces, the easiest
thing to do in this case is to treat all the letters, spaces, and punctuation characters of
each line of the song as one long word. (If we wanted to be able to compute functions of
the individual words in each line, that wouldn’t be such a good idea.)

Chapter 20 Input and Output 351

A Higher-Order Procedure for Sequencing

bottles of beer on the wall,

for-each

for-each

map
Map

show

> (verse 6)
6 bottles of beer on the wall,
6 bottles of beer.
If one of those bottles should happen to fall,
5 bottles of beer on the wall.

#F ; or whatever is returned by (newline)

(define (show-list lst)
(if (null? lst)

’done
(begin (show (car lst))

(show-list (cdr lst)))))

> (show-list ’((dig a pony) (doctor robert) (for you blue)))
(DIG A PONY)
(DOCTOR ROBERT)
(FOR YOU BLUE)
DONE

> (for-each show ’((mean mr mustard) (no reply) (tell me why)))
(MEAN MR MUSTARD)
(NO REPLY)
(TELL ME WHY)

It’s strange to think of “ ” as a single word. But the
rule is that anything inside double quotes counts as a single word. It doesn’t have to be
an English word.

Sometimes we want to print each element of a list separately:

Like other patterns of computation involving lists, this one can be abstracted into a
higher-order procedure. (We can’t call it a “higher-order function” because this one is for
computations with side effects.) The procedure is part of standard Scheme:

The value returned by is unspecified.

Why couldn’t we just use for this purpose? There are two reasons. One is just
an efficiency issue: constructs a list containing the values returned by each of its
sub-computations; in this example, it would be a list of three instances of the unspecified
value returned by . But we aren’t going to use that list for anything, so there’s no
point in constructing it. The second reason is more serious. In functional programming,
the order of evaluation of subexpressions is unspecified. For example, when we evaluate
the expression

map

For-each

ttt
x o

Tic-Tac-Toe Revisited

do

strategy

352 Part VI Sequential Programming

(- (+ 4 5) (* 6 7))

(define (stupid-ttt position letter)
(location ’ position))

(define (location letter word)
(if (equal? letter (first word))

1
(+ 1 (location letter (bf word)))))

(define (play-ttt x-strat o-strat)
(play-ttt-helper x-strat o-strat ’ ’x))

(define (play-ttt-helper x-strat o-strat position whose-turn)
(cond ((already-won? position (opponent whose-turn))

(list (opponent whose-turn) ’wins!))
((tie-game? position) ’(tie game))
(else (let ((square (if (equal? whose-turn ’x)

(x-strat position ’x)
(o-strat position ’o))))

(play-ttt-helper x-strat
o-strat
(add-move square whose-turn position)
(opponent whose-turn))))))

we don’t know whether the addition or the multiplication happens first. Similarly, the
order in which computes the results for each element is unspecified. That’s okay
as long as the ultimately returned list of results is in the right order. But when we are
using side effects, we care about the order of evaluation. In this case, we want to make
sure that the elements of the argument list are printed from left to right.
guarantees this ordering.

We’re working up toward playing a game of tic-tac-toe against the computer. But as a first
step, let’s have the computer play against itself. What we already have is , a
function: one that takes a board position as argument (and also a letter or) and
returns the chosen next move. In order to play a game of tic-tac-toe, we need two players;
to make it more interesting, each should have its own strategy. So we’ll write another
one, quickly, that just moves in the first empty square it sees:

Now we can write a program that takes two strategies as arguments and actually plays
a game between them.

x o

add-move

Accepting User Input

interactive

Chapter 20 Input and Output 353

* You wrote the procedures and in Exercises 10.1 and 10.2:

(define (already-won? position who)
(member? (word who who who) (find-triples position)))

(define (tie-game? position)
(not (member? ’ position)))

(define (add-move square letter position)
(if (= square 1)

(word letter (bf position))
(word (first position)

(add-move (- square 1) letter (bf position)))))

> (play-ttt ttt stupid-ttt)
(X WINS!)

> (play-ttt stupid-ttt ttt)
(O WINS!)

already-won? tie-game?

We use a helper procedure because we need to keep track of two pieces of information
besides the strategy procedures: the current board position and whose turn it is (or).
The helper procedure is invoked recursively for each move. First it checks whether the
game is already over (won or tied).* If not, the helper procedure invokes the current
player’s strategy procedure, which returns the square number for the next move. For
the recursive call, the arguments are the same two strategies, the new position after the
move, and the letter for the other player.

We still need , the procedure that takes a square and an old position as
arguments and returns the new position.

The work we did in the last section was purely functional. We didn’t print anything
(except the ultimate return value, as always) and we didn’t have to read information from
a human player, because there wasn’t one.

You might expect that the structure of an game program would be very
different, with a top-level procedure full of sequential operations. But the fact is that we
hardly have to change anything to turn this into an interactive game. All we need is a

1

4

3

8

read
Read not

354 Part VI Sequential Programming

(define (ask-user position letter)
(print-position position)
(display letter)
(display "’s move: ")
(read))

(define (print-position position) ;; first version
(show position))

> (play-ttt ttt ask-user)
X

O’S MOVE:
O XX
O’S MOVE:
O OXXX
O’S MOVE:
OXOOXXX
O’S MOVE:
(TIE GAME)

(define (echo)
(display "What? ")
(let ((expr (read)))
(if (equal? expr ’stop)

’okay
(begin
(show expr)
(echo)))))

new “strategy” procedure that asks the user where to move, instead of computing a move
based on built-in rules.

(Ultimately we’re going to want a beautiful two-dimensional display of the current
position, but we don’t want to get distracted by that just now. That’s why we’ve written a
trivial temporary version.)

What the user typed is just the single digits shown in boldface at the ends of the lines.

What’s new here is that we invoke the procedure . It waits for you to type
a Scheme expression, and returns that expression. Don’t be confused: does
evaluate what you type. It returns exactly the same expression that you type:

Aesthetic Board Display

Chapter 20 Input and Output 355

hello

(+ 2 3)

(first (glass onion))

stop

Here’s our beautiful position printer:

*

* Alternate version:

You can take your choice, depending on which you think is easier, recursion or higher-order
functions.

(define (subword wd start end)
(cond ((> start 1) (subword (bf wd) (- start 1) (- end 1)))

((< end (count wd)) (subword (bl wd) start end))
(else wd)))

> (echo)
What?
HELLO
What?
(+ 2 3)
What?
(FIRST (GLASS ONION))
What?
OKAY

(define (print-position position)
(print-row (subword position 1 3))
(show "-+-+-")
(print-row (subword position 4 6))
(show "-+-+-")
(print-row (subword position 7 9))
(newline))

(define (print-row row)
(maybe-display (first row))
(display "|")
(maybe-display (first (bf row)))
(display "|")
(maybe-display (last row))
(newline))

(define (maybe-display letter)
(if (not (equal? letter ’))

(display letter)
(display " ")))

(define (subword wd start end)
((repeated bf (- start 1))
((repeated bl (- (count wd) end))
wd)))

She Loves You

Reading and Writing Normal Text

356 Part VI Sequential Programming

read

read

read

read-line

read-line Read-line

> (print-position ’ x oo xx)
|X|
-+-+-
O|O|
-+-+-
|X|X

(define (music-critic) ;; first version
(show "What’s your favorite Beatles song?")
(let ((song (read)))
(show (se "I like" song "too."))))

> (music-critic)
What’s your favorite Beatles song?

(I like SHE too.)

(define (music-critic) ;; second version
(read-line) ; See explanation on next page.
(show "What’s your favorite Beatles song?")
(let ((song (read-line)))
(show (se "I like" song "too."))))

Here’s how it works:

The procedure works fine as long as what you type looks like a Lisp program. That
is, it reads one expression at a time. In the tic-tac-toe program the user types a single
number, which is a Scheme expression, so works fine. But what if we want to read
more than one word?

If the user had typed the song title in parentheses, then it would have been a single
Scheme expression and would have accepted it. But we don’t want the users of our
program to have to be typing parentheses all the time.

Scheme also lets you read one character at a time. This allows you to read any text,
with no constraints on its format. The disadvantage is that you find yourself putting a lot
of effort into minor details. We’ve provided a procedure that reads one line
of input and returns a sentence. The words in that sentence will contain any punctuation
characters that appear on the line, including parentheses, which are not interpreted as
sublist delimiters by . also preserves the case of letters.

She Loves You

Chapter 20 Input and Output 357

> (music-critic)
What’s your favorite Beatles song?

(I like She Loves You too.)

> (begin (read-line) (my-procedure))

read-line music-critic
read-line read Read

read
Read

read

read-line

read read-line

read
read

read-line
read

music-critic read
read music-critic

read-line

music-critic
music-critic

read-line music-critic read-line music-critic

read-line
read-line

read-line

show

Why do we call and ignore its result at the beginning of ?
It has to do with the interaction between and . treats what you
type as a sequence of Scheme expressions; each invocation of reads one of them.

pays no attention to formatting details, such as several consecutive spaces or line
breaks. If, for example, you type several expressions on the same line, it will take several
invocations of to read them all.

By contrast, treats what you type as a sequence of lines, reading one line
per invocation, so it does pay attention to line breaks.

Either of these ways to read input is sensible in itself, but if you mix the two, by
invoking sometimes and sometimes in the same program, the results
can be confusing. Suppose you type a line containing an expression and your program
invokes to read it. Since there might have been another expression on the line,

doesn’t advance to the next line until you ask for the next expression. So if you
now invoke , thinking that it will read another line from the keyboard, it will
instead return an empty list, because what it sees is an empty line—what’s left after
uses up the expression you typed.

You may be thinking, “But doesn’t call !” That’s true, but
Scheme itself used to read the expression that you used to invoke .
So the first invocation of is needed to skip over the spurious empty line.

Our solution works only if is invoked directly at a Scheme prompt.
If were a subprocedure of some larger program that has already called

before calling , the extra in
would really read and ignore a useful line of text.

If you write a procedure using that will sometimes be called directly and
sometimes be used as a subprocedure, you can’t include an extra call in it.
Instead, when you call your procedure directly from the Scheme prompt, you must say

Another technical detail about is that since it preserves the capitalization
of words, its result may include strings, which will be shown in quotation marks if you
return the value rather than ing it:

Formatted Text

She Loves You

She Loves You

358 Part VI Sequential Programming

show-line,

show show-line
read-line show-line

Read-line
Show-line

align

(define (music-critic-return)
(read-line)
(show "What’s your favorite Beatles song?")
(let ((song (read-line)))
(se "I like" song "too.")))

> (music-critic-return)
What’s your favorite Beatles song?

("I like" "She" "Loves" "You" "too.")

(define (music-critic)
(read-line)
(show "What’s your favorite Beatles song?")
(let ((song (read-line)))
(show-line (se "I like" song "too."))))

> (music-critic)
What’s your favorite Beatles song?

I like She Loves You too.

We have also provided which takes a sentence as argument. It prints
the sentence without surrounding parentheses, followed by a newline. (Actually, it takes
any list as argument; it prints all the parentheses except for the outer ones.)

The difference between and isn’t crucial. It’s just a matter of
a pair of parentheses. The point is that and go together.

reads a bunch of disconnected words and combines them into a sentence.
takes a sentence and prints it as if it were a bunch of disconnected words.

Later, when we read and write files in Chapter 22, this ability to print in the same form in
which we read will be important.

We’ve been concentrating on the use of sequential programming with explicit printing
instructions for the sake of conversational programs. Another common application of
sequential printing is to display tabular information, such as columns of numbers. The
difficulty is to get the numbers to line up so that corresponding digits are in the same
position, even when the numbers have very widely separated values. The function

Chapter 20 Input and Output 359

Align

align
display show

Align

Align

(define (square-root-table nums)
(if (null? nums)

’done
(begin (display (align (car nums) 7 1))

(show (align (sqrt (car nums)) 10 5))
(square-root-table (cdr nums)))))

> (square-root-table ’(7 8 9 10 20 98 99 100 101 1234 56789))
7.0 2.64575
8.0 2.82843
9.0 3.00000

10.0 3.16228
20.0 4.47214
98.0 9.89949
99.0 9.94987
100.0 10.00000
101.0 10.04988

1234.0 35.12834
56789.0 238.30443
DONE

> (align 12345679 4 0)
"123+"

can be used to convert a number to a printable word with a fixed number of positions
before and after the decimal point:

takes three arguments. The first is the value to be displayed. The second is the
width of the column in which it will be displayed; the returned value will be a word with
that many characters in it. The third argument is the number of digits that should be
displayed to the right of the decimal point. (If this number is zero, then no decimal
point will be displayed.) The width must be great enough to include all the digits, as well
as the decimal point and minus sign, if any.

As the program example above indicates, does not print anything. It’s a
function that returns a value suitable for printing with or .

What if the number is too big to fit in the available space?

returns a word containing the first few digits, as many as fit, ending with a plus
sign to indicate that part of the value is missing.

can also be used to include non-numeric text in columns. If the first argument
is not a number, then only two arguments are needed; the second is the column width.

align

align

align

show
read

Sequential Programming and Order of Evaluation

user interface

360 Part VI Sequential Programming

(define (name-table names)
(if (null? names)

’done
(begin (display (align (cadar names) 11))

(show (caar names))
(name-table (cdr names)))))

> (name-table ’((john lennon) (paul mccartney)
(george harrison) (ringo starr)))

LENNON JOHN
MCCARTNEY PAUL
HARRISON GEORGE
STARR RINGO
DONE

In this case returns a word with extra spaces at the right, if necessary, so that the
argument word will appear at the left in its column:

As with numbers, if a non-numeric word won’t fit in the allowed space, returns a
partial word ending with a plus sign.

This function is not part of standard Scheme. Most programming languages,
including some versions of Scheme, offer much more elaborate formatting capabilities
with many alternate ways to represent both numbers and general text. Our version is a
minimal capability to show the flavor and to meet the needs of projects in this book.

Our expanded tic-tac-toe program includes both functional and sequential parts. The
program computes its strategy functionally but uses sequences of commands to control
the by alternately printing information to the screen and reading information
from the keyboard.

By adding sequential programming to our toolkit, we’ve increased our ability to write
interactive programs. But there is a cost that goes along with this benefit: We now have
to pay more attention to the order of events than we did in purely functional programs.

The obvious concern about order of events is that sequences of expressions
must come in the order in which we want them to appear, and expressions must fit
into the sequence properly so that the user is asked for the right information at the right
time.

does

Chapter 20 Input and Output 361

(7 8)

let let
left

show-and-return
read

(list (+ 3 4) (- 10 2))

(define (show-and-return x)
(show x)
x)

> (list (show-and-return (+ 3 4)) (show-and-return (- 10 2)))
8
7
(7 8)

> (let ((left (show-and-return (+ 3 4))))
(list left (show-and-return (- 10 2))))

7
8
(7 8)

But there is another, less obvious issue about order of events. When the evaluation of
expressions can have side effects in addition to returning values, the order of evaluation
of argument subexpressions becomes important. Here’s an example to show what we
mean. Suppose we type the expression

The answer, of course, is . It doesn’t matter whether Scheme computes the seven
first (left to right) or the eight first (right to left). But here’s a similar example in which
it matter:

The value that’s ultimately returned, in this example, is the same as before. But the two
numeric values that go into the list are also printed separately, so we can see which is
computed first. (We’ve shown the case of right-to-left computation; your Scheme might
be different.)

Suppose you want to make sure that the seven prints first, regardless of which order
your Scheme uses. You could do this:

The expression in the body of a can’t be evaluated until the variables (such as
) have had their values computed.

It’s hard to imagine a practical use for the artificial procedure,
but a similar situation arises whenever we use . Suppose we want to write a procedure
to ask a person for his or her full name, returning a two-element list containing the first
and last name. A natural mistake to make would be to write this procedure:

⇒

Pitfalls

John
Lennon

all

362 Part VI Sequential Programming

John
read list

let

read
play-ttt-helper read

ask-user x

read play-ttt-helper let
read

let read

(define (ask-for-name) ;; wrong
(show "Please type your first name, then your last name:")
(list (read) (read)))

> (ask-for-name)
Please type your first name, then your last name:

(LENNON JOHN)

(define (ask-for-name)
(show "Please type your first name, then your last name:")
(let ((first-name (read)))
(list first-name (read))))

(x-strat position ’x)

What went wrong? We happen to be using a version of Scheme that evaluates argument
subexpressions from right to left. Therefore, the word was read by the rightmost
call to , which provided the second argument to . The best solution is to use

as we did above:

Even this example looks artificially simple, because of the two invocations of
that are visibly right next to each other in the erroneous version. But look at

. The word doesn’t appear in its body at all. But when we
invoke it using as the strategy procedure for , the expression

hides an invocation of . The structure of includes a that
controls the timing of that . (As it turns out, in this particular case we could have
gotten away with writing the program without . The hidden invocation of is
the only subexpression with a side effect, so there aren’t two effects that might get out of
order. But we had to think carefully about the program to be sure of that.)

It’s easy to get confused about what is printed explicitly by your program and what is
printed by Scheme’s read-eval-print loop. Until now, printing was of the second kind.
Here’s an example that doesn’t do anything very interesting but will help make the point
clear:

⇒

⇒

⇒

returned,

last

Chapter 20 Input and Output 363

display
wright display

name
MATT wright

name

let

read-line read-line
read read

read

yes
read

(define (name)
(display "MATT ")
’wright)

> (name)
MATT WRIGHT

> (bf (name))
MATT RIGHT

(let ((result (compute-this-first)))
(begin
(compute-this-second)
(compute-this-third)
result))

(define (ask-question question) ;; wrong
(show question)
(cond ((equal? (read) ’yes) #t)

((equal? (read) ’no) #f)
(else (show "Please answer yes or no.")

(ask-question question))))

At first glance it looks as if putting the word “Matt” inside a call to is unnecessary.
After all, the word is printed even without using . But watch this:

Every time you invoke , whether or not as the entire expression used at a Scheme
prompt, the word is printed. But the word is and may or may not
be printed depending on the context in which is invoked.

A sequence of expressions returns the value of the expression. If that isn’t what
you want, you must remember the value you want to return using :

Don’t forget that the first call to , or any call to after a call
to , will probably read the empty line that left behind.

Sometimes you want to use what the user typed more than once in your program.
But don’t forget that has an effect as well as a return value. Don’t try to read the
same expression twice:

If the answer is , this procedure will work fine. But if not, the second invocation of
will read a second expression, not test the same expression again as intended. To

20.1

20.2

20.3

20.4

20.5

Boring Exercises

Real Exercises

(converse)
Brian Harvey

I’m fine.

364 Part VI Sequential Programming

read
let

newline

show newline display

name-table

(define (ask-question question)
(show question)
(let ((answer (read)))
(cond ((equal? answer ’yes) #t)

((equal? answer ’no) #f)
(else (show "Please answer yes or no.")

(ask-question question)))))

(cond ((= 2 3) (show ’(lady madonna)) ’(i call your name))
((< 2 3) (show ’(the night before)) ’(hello little girl))
(else ’(p.s. i love you)))

>
Hello, I’m the computer. What’s your name?
Hi, Brian. How are you?
Glad to hear it.

avoid this problem, invoke only once for each expression you want to read, and use
to remember the result:

What happens when we evaluate the following expression? What is printed, and
what is the return value? Try to figure it out in your head before you try it on the
computer.

What does return in your version of Scheme?

Define in terms of and .

Write a program that carries on a conversation like the following example. What
the user types is in boldface.

Our procedure uses a fixed width for the column containing the last
names of the people in the argument list. Suppose that instead of liking British-invasion
music you are into late romantic Russian composers:

20.6

20.7

20.8

20.9

Chapter 20 Input and Output 365

name-table

ask-user

ask-user
ask-user

play-ttt-helper

game x o
x games

x o

> (name-table ’((piotr tchaikovsky) (nicolay rimsky-korsakov)
(sergei rachmaninov) (modest musorgsky)))

> (name-table ’((bill evans) (paul motian) (scott lefaro)))

Alternatively, perhaps you like jazz:

Modify so that it figures out the longest last name in its argument list, adds
two for spaces, and uses that number as the width of the first column.

The procedure isn’t robust. What happens if you type something that
isn’t a number, or isn’t between 1 and 9? Modify it to check that what the user types is a
number between 1 and 9. If not, it should print a message and ask the user to try again.

Another problem with is that it allows a user to request a square that
isn’t free. If the user does this, what happens? Fix to ensure that this can’t
happen.

At the end of the game, if the computer wins or ties, you never find out which
square it chose for its final move. Modify the program to correct this. (Notice that this
exercise requires you to make non-functional.)

The way we invoke the game program isn’t very user-friendly. Write a procedure
that asks you whether you wish to play or , then starts a game. (By definition,

plays first.) Then write a procedure that allows you to keep playing repeatedly.
It can ask “do you want to play again?” after each game. (Make sure that the outcome of
each game is still reported, and that the user can choose whether to play or before
each game.)

