

Ports

22 Files

open

port,

387

read read-line display show show-line newline

mergesort
read

file1

(show ’(across the universe) file1)
(show-line ’(penny lane) file2)
(read file3)

We learned in Chapter 20 how to read from the keyboard and write to the screen. The
same procedures (, , , , , and)
can also be used to read and write data files on the disk.

Imagine a complicated program that reads a little bit of data at a time from a lot of
different files. For example, soon we will write a program to merge two files the way we
merged two sentences in in Chapter 15. In order to make this work, each
invocation of must specify which file to read from this time. Similarly, we might
want to direct output among several files.

Each of the input/output procedures can take an extra argument to specify a file:

What are and so on? You might think that the natural thing would be for them to
be words, that is, the names of files.

It happens not to work that way. Instead, before you can use a file, you have to
it. If you want to read a file, the system has to check that the file exists. If you want to
write a file, the system has to create a new, empty file. The Scheme procedures that open
a file return a which is what Scheme uses to remember the file you opened. Ports
are useful only as arguments to the input/output procedures. Here’s an example:

close

388 Part VI Sequential Programming

Close-output-port define

songs
show

show

let
in

> (let ((port (open-output-file "songs")))
(show ’(all my loving) port)
(show ’(ticket to ride) port)
(show ’(martha my dear) port)
(close-output-port port))

(ALL MY LOVING)
(TICKET TO RIDE)
(MARTHA MY DEAR)

(define in (open-input-file "songs"))

> (read in)
(ALL MY LOVING)

> (read in)
(TICKET TO RIDE)

> (read in)
(MARTHA MY DEAR)

> (close-input-port in)

(, like , has an unspecified return value that we’re not
going to include in the examples.)

We’ve created a file named and put three expressions, each on its own line,
in that file. Notice that nothing appeared on the screen when we called . Because
we used a port argument to , the output went into the file. Here’s what’s in the file:

The example illustrates two more details about using files that we haven’t mentioned
before: First, the name of a file must be given in double-quote marks. Second, when
you’re finished using a file, you have to the port associated with it. (This is very
important. On some systems, if you forget to close the port, the file disappears.)

The file is now permanent. If we were to exit from Scheme, we could read the file
in a word processor or any other program. But let’s read it using Scheme:

(In this illustration, we’ve used a global variable to hold the port because we wanted to
show the results of reading the file step by step. In a real program, we’d generally use a

structure like the one we used to write the file. Now that we’ve closed the port, the
variable contains a port that can no longer be used.)

Chapter 22 Files 389

Writing Files for People to Read

show-line show

songs2

read-line read-line

show-line
read-line show

read

* Another difference, not apparent in this example, is that and can handle
structured lists. can print a structured list, leaving off only the outermost parentheses,
but will treat any parentheses in the file as ordinary characters; it always returns a
sentence.

> (let ((port (open-output-file "songs2")))
(show-line ’(all my loving) port)
(show-line ’(ticket to ride) port)
(show-line ’(martha my dear) port)
(close-output-port port))

ALL MY LOVING
TICKET TO RIDE
MARTHA MY DEAR

(define in (open-input-file "songs2"))

> (read-line in)
(ALL MY LOVING)

> (close-input-port in)

show read
Show-line

read-line

A file full of sentences in parentheses is a natural representation for information that will
be used by a Scheme program, but it may seem awkward if the file will be read by human
beings. We could use instead of to create a file, still with one song title
per line, but without the parentheses:

The file will contain

What should we do if we want to read this file back into Scheme? We must read the
file a line at a time, with . In effect, treats the breaks between
lines as if they were parentheses:

(Notice that we don’t have to read the entire file before closing the port. If we open the
file again later, we start over again from the beginning.)

As far as Scheme is concerned, the result of writing the file with and
reading it with was the same as that of writing it with and reading it
with . The difference is that without parentheses the file itself is more “user-friendly”
for someone who reads it outside of Scheme.*

Using a File as a Database

something,

end-of-file object.

390 Part VI Sequential Programming

list-ref

read-line skip-songs

Read read-line

Skip-songs done

read

(define (get-song n)
(let ((port (open-input-file "songs2")))
(skip-songs (- n 1) port)
(let ((answer (read-line port)))
(close-input-port port)
answer)))

(define (skip-songs n port)
(if (= n 0)

’done
(begin (read-line port)

(skip-songs (- n 1) port))))

> (get-song 2)
(TICKET TO RIDE)

(define (print-file name)
(let ((port (open-input-file name)))
(print-file-helper port)
(close-input-port port)
’done))

It’s not very interesting merely to read the file line by line. Instead, let’s use it as a very
small database in which we can look up songs by number. (For only three songs, it would
be more realistic and more convenient to keep them in a list and look them up with

. Pretend that this file has 3000 songs, too many for you to want to keep them
all at once in your computer’s memory.)

When we invoke in , we pay no attention to the value
it returns. Remember that the values of all but the last expression in a sequence are
discarded. and are the first procedures we’ve seen that have both a
useful return value and a useful side effect—moving forward in the file.

returns the word when it’s finished. We don’t do anything with
that return value, and there’s no particular reason why we chose that word. But every
Scheme procedure has to return and this was as good as anything.

What if we asked for a song number greater than three? In other words, what if we
read beyond the end of the file? In that case, will return a special value called an

The only useful thing to do with that value is to test for it. Our next
sample program reads an entire file and prints it to the screen:

Transforming the Lines of a File

function
justify

contents

function

Chapter 22 Files 391

print-file-helper

butfirst

butfirst

file-map map

map

file-map

(define (print-file-helper port) ;; first version
(let ((stuff (read-line port)))
(if (eof-object? stuff)

’done
(begin (show-line stuff)

(print-file-helper port)))))

> (print-file "songs")
ALL MY LOVING
TICKET TO RIDE
MARTHA MY DEAR
DONE

Did you notice that each recursive call in has exactly the
same argument as the one before? How does the problem get smaller? (Up to now,
recursive calls have involved something like the of an old argument, or one
less than an old number.) When we’re reading a file, the sense in which the problem
gets smaller at each invocation is that we’re getting closer to the end of the file. You
don’t the port; reading it makes the unread portion of the file smaller as a
side effect.

Often we want to transform a file one line at a time. That is, we want to copy lines from
an input file to an output file, but instead of copying the lines exactly, we want each
output line to be a of the corresponding input line. Here are some examples:
We have a file full of text and we want to the output so that every line is exactly the
same length, as in a book. We have a file of students’ names and grades, and we want a
summary with the students’ total and average scores. We have a file with people’s first
and last names, and we want to rearrange them to be last-name-first.

We’ll write a procedure , analogous to but for files. It will take three
arguments: The first will be a procedure whose domain and range are sentences; the
second will be the name of the input file; the third will be the name of the output file.

Of course, this isn’t exactly like the way works—if it were exactly analogous, it
would take only two arguments, the procedure and the of a file. But one of the
important features of files is that they let us handle amounts of information that are too
big to fit all at once in the computer’s memory. Another feature is that once we write a file,
it’s there permanently, until we erase it. So instead of having a that
returns the contents of the new file, we have a procedure that writes its result to the disk.

print-file

fn

dddbmt

file-map

392 Part VI Sequential Programming

(define (file-map fn inname outname)
(let ((inport (open-input-file inname))

(outport (open-output-file outname)))
(file-map-helper fn inport outport)
(close-input-port inport)
(close-output-port outport)
’done))

(define (file-map-helper fn inport outport)
(let ((line (read-line inport)))
(if (eof-object? line)

’done
(begin (show-line (fn line) outport)

(file-map-helper fn inport outport)))))

David Harmon
Trevor Davies
John Dymond
Michael Wilson
Ian Amey

Harmon, David
Davies, Trevor
Dymond, John
Wilson, Michael
Amey, Ian

Compare this program with the earlier example. The two are almost
identical. One difference is that now the output goes to a file instead of to the screen;
the other is that we apply the function to each line before doing the output. But
that small change vastly increases the generality of our program. We’ve performed our
usual trick of generalizing a pattern by adding a procedure argument, and instead of a
program that carries out one specific task (printing the contents of a file), we have a tool
that can be used to create many programs.

We’ll start with an easy example: putting the last name first in a file full of names.
That is, if we start with an input file named that contains

we want the output file to contain

Since we are using to handle our progress through the file, all we have
to write is a procedure that takes a sentence (one name) as its argument and returns the
same name but with the last word moved to the front and with a comma added:

Chapter 22 Files 393

butlast first

file-map

grades

We use rather than in case someone in the file has a middle name.

To use this procedure we call like this:

Although you don’t see the results on the screen, you can

to see that we got the results we wanted.

Our next example is averaging grades. Suppose the file contains this text:

The output we want is:

Here’s the program:

As before, you can

to see that we got the results we wanted.

(define (lastfirst name)
(se (word (last name) ",") (bl name)))

> (file-map lastfirst "dddbmt" "dddbmt-reversed")
DONE

> (print-file "dddbmt-reversed")

John 88 92 100 75 95
Paul 90 91 85 80 91
George 85 87 90 72 96
Ringo 95 84 88 87 87

John total: 450 average: 90
Paul total: 437 average: 87.4
George total: 430 average: 86
Ringo total: 441 average: 88.2

(define (process-grades line)
(se (first line)

"total:"
(accumulate + (bf line))
"average:"
(/ (accumulate + (bf line))

(count (bf line)))))

> (file-map process-grades "grades" "results")

> (print-file "results")

5

Justifying Text

file-map

r5rs

r5rs

show-line
pad

justify

justify

Revised Report on the Algorithmic Language Scheme,

394 Part VI Sequential Programming

Programming languages should be designed not by
piling feature on top of feature, but by
removing the weaknesses and restrictions that
make additional features appear necessary.
Scheme demonstrates that a very small number of
rules for forming expressions, with no
restrictions on how they are composed, suffice
to form a practical and efficient programming
language that is flexible enough to support most
of the major programming paradigms in use today.

Programming languages should be designed not by
piling feature on top of feature, but by
removing the weaknesses and restrictions that
make additional features appear necessary.
Scheme demonstrates that a very small number of
rules for forming expressions, with no
restrictions on how they are composed, suffice
to form a practical and efficient programming
language that is flexible enough to support most
of the major programming paradigms in use today.

Many word-processing programs text; that is, they insert extra space between words
so that every line reaches exactly to the right margin. We can do that using .

Let’s suppose we have a file , written in some text editor, that looks like this:

(This is the first paragraph of the edited
by William Clinger and Jonathan Rees.)

Here is what the result should be if we justify our text:

The tricky part is that ordinarily we don’t control the spaces that appear when a
sentence is printed. We just make sure the words are right, and we get one space between
words automatically. The solution used in this program is that each line of the output file
is constructed as a single long word, including space characters that we place explicitly
within it. (Since requires a sentence as its argument, our procedure will
actually return a one-word sentence. In the following program, constructs the word,
and makes a one-word sentence containing it.)

This program, although short, is much harder to understand than most of our short
examples. There is no big new idea involved; instead, there are a number of unexciting

−n

this time

Chapter 22 Files 395

Justify

char-count
Extra-spaces

pad

pad

pad

pad

(define (justify line width)
(if (< (count line) 2)

line
(se (pad line

(- (count line) 1)
(extra-spaces width (char-count line))))))

(define (char-count line)
(+ (accumulate + (every count line)) ; letters within words

(- (count line) 1))) ; plus spaces between words

(define (extra-spaces width chars)
(if (> chars width)

0 ; none if already too wide
(- width chars)))

but necessary details. How many spaces between words? Do some words get more
space than others? The program structure is messy because the problem itself is messy.
Although it will be hard to read and understand, this program is a more realistic example
of input/output programming than the cleanly structured examples we’ve shown until
now.

takes two arguments, the line of text (a sentence) and a number indicating
the desired width (how many characters). Here’s the algorithm: First the program
computes the total number of characters the sentence would take up without adding
extras. That’s the job of , which adds up the lengths of all the words, and
adds to that the 1 spaces between words. subtracts that length from
the desired line width to get the number of extra spaces we need.

The hard part of the job is done by . It’s invoked with three arguments: the part
of the line not yet processed, the number of opportunities there are to insert extra spaces
in that part of the line (that is, the number of words minus one), and the number of
extra spaces that the program still needs to insert. The number of extra spaces to insert

is the integer quotient of the number wants to insert and the number of
chances it’ll have. That is, if there are five words on the line, there are four places where

can insert extra space. If it needs to insert nine spaces altogether, then it should
insert 9/4 or two spaces at the first opportunity. (Are you worried about the remainder?
It will turn out that doesn’t lose any spaces because it takes the quotient over again
for each word break. The base case is that the number of remaining word breaks (the
divisor) is one, so there will be no remainder, and all the leftover extra spaces will be
inserted at the last word break.)

396 Part VI Sequential Programming

Preserving Spacing of Text from Files

justify

r5rs-just print-file
r5rs read-line

Read-line

read-line

read-string

* Like all the input and output primitives, can be invoked with or without a port
argument.

(define (pad line chances needed)
(if (= chances 0) ; only one word in line

(first line)
(let ((extra (quotient needed chances)))
(word (first line)

(spaces (+ extra 1))
(pad (bf line) (- chances 1) (- needed extra))))))

(define (spaces n)
(if (= n 0)

""
(word " " (spaces (- n 1)))))

> (file-map (lambda (sent) (justify sent 50)) "r5rs" "r5rs-just")

All My Loving

All My Loving

read-string

Because takes two arguments, we have to decide what line width we want
to give it. Here’s how to make each line take 50 characters:

If we try to print the file from the previous section using ,
it’ll look exactly like . That’s because doesn’t preserve consecutive
spaces in the lines that it reads. cares only where each word (consisting of
non-space characters) begins and ends; it pays no attention to how many spaces come
between any two words. The lines

and

are the same, as far as tells you.

For situations in which we do care about spacing, we have another way to read a line
from a file. The procedure reads all of the characters on a line, returning
a single word that contains all of them, spaces included:*

Merging Two Files

Chapter 22 Files 397

read-string print-file

mergesort
first

> (define inport (open-input-file "r5rs-just"))

> (read-string inport)
"Programming languages should be designed not by"

> (read-string inport)
"piling feature on top of feature, but by"

> (close-input-port inport)

(define (print-file-helper port)
(let ((stuff (read-string port)))
(if (eof-object? stuff)

’done
(begin (show stuff)

(print-file-helper port)))))

(define (filemerge file1 file2 outfile)
(let ((p1 (open-input-file file1))

(p2 (open-input-file file2))
(outp (open-output-file outfile)))

(filemerge-helper p1 p2 outp (read-string p1) (read-string p2))
(close-output-port outp)
(close-input-port p1)
(close-input-port p2)
’done))

We can use to rewrite so that it makes an exact copy of
the input file:

(We only had to change the helper procedure.)

Suppose you have two files of people’s names. Each file has been sorted in alphabetical
order. You want to combine them to form a single file, still in order. (If this sounds
unrealistic, it isn’t. Programs that sort very large amounts of information can’t always fit
it all in memory at once, so they read in as much as fits, sort it, and write a file. Then they
read and sort another chunk. At the end of this process, the program is left with several
sorted partial files, and it has to merge those files to get the overall result.)

The algorithm for merging files is exactly the same as the one we used for merging
sentences in the program of Chapter 15. The only difference is that the
items to be sorted come from reading ports instead of from ing a sentence.

398 Part VI Sequential Programming

* Computer programmers really talk this way.

filemerge-helper
print-file-helper file-map-helper
filemerge-helper

file2
file1 file2

file1 read-string
file1

filemerge-helper

read-string

You might think, comparing with such earlier examples as
and , that it would make more sense for

to take just the three ports as arguments and work like this:

Unfortunately, this won’t work. Suppose that the first line of comes before
the first line of . This program correctly writes the first line of to the output
file, as we expect. But what about the first line of ? Since we called
on , we’ve “gobbled”* that line, but we’re not yet ready to write it to the output.

In each invocation of , only one line is written to the output
file, so unless we want to lose information, we’d better read only one line. This means
that we can’t call twice on each recursive call. One of the lines has to be
handed down from one invocation to the next. (That is, it has to be an argument to the

(define (filemerge-helper p1 p2 outp line1 line2)
(cond ((eof-object? line1) (merge-copy line2 p2 outp))

((eof-object? line2) (merge-copy line1 p1 outp))
((before? line1 line2)
(show line1 outp)
(filemerge-helper p1 p2 outp (read-string p1) line2))
(else (show line2 outp)

(filemerge-helper p1 p2 outp line1 (read-string p2)))))

(define (merge-copy line inp outp)
(if (eof-object? line)

#f
(begin (show line outp)

(merge-copy (read-string inp) inp outp))))

(define (filemerge-helper p1 p2 outp) ;; wrong
(let ((line1 (read-string p1))

(line2 (read-string p2)))
(cond ((eof-object? line1) (merge-copy p2 outp))

((eof-object? line2) (merge-copy p1 outp))
((before? line1 line2)
(show line1 outp)
(filemerge-helper p1 p2 outp))
(else (show line2 outp)

(filemerge-helper p1 p2 outp)))))

Writing Files for Scheme to Read

which

structure

Chapter 22 Files 399

filemerge-helper
filemerge-helper

filemerge
filemerge-helper read-string

read
read-line read-string Read

Read-line
Read-string

read-string

file-map

read-string last

lastfirst read-line
read-string Read-line

read

(define (lastfirst name)
(se (word (last name) ",") (bl name)))

((love me do) (please please me))
((do you want to know a secret?) (please please me))
((think for yourself) (rubber soul))
((your mother should know) (magical mystery tour))

love me do please please me

recursive call.) Since we don’t know in advance line to keep, the easiest solution is
to hand down both lines.

Therefore, also takes as arguments the first line of each file
that hasn’t yet been written to the output. When we first call
from , we read the first line of each file to provide the initial values of these
arguments. Then, on each recursive call, calls only
once.

You may be thinking that the three file-reading procedures we’ve shown, ,
, and , have been getting better and better. ignores case

and forces you to have parentheses in your file. fixes those problems, but it
loses spacing information. can read anything and always gets it right.

But there’s a cost to the generality of ; it can read any file, but it loses
information. For example, when we processed a file of people’s names with

, we used this function:

It’s easy to break a name into its components if you have the name in the form of
a sentence, with the words separated already. But if we had read each line with

, of a line would have been the last letter, not the last name.

The example illustrates why you might want to use rather
than : “understands” spaces. Here’s an example in which
the even more structured is appropriate. We have a file of Beatles songs and the
albums on which they appear:

Each line of this file contains two pieces of information: a song title and an album title.
If each line contained only the words of the two titles, as in

400 Part VI Sequential Programming

read-line
"((love" Read

show

day’s

read
’s (quote s)

day’s
read

Write display

> (show ’((love me do) (please please me)) port)

(show ’((and i love her) (a hard "day’s" night)) port)

((AND I LOVE HER) (A HARD day’s NIGHT))

write display
display

write Show show-line
display show-in-write-format

* There are other kinds of data that prints differently from , but we don’t use
them in this book. The general rule is that formats the output for human readers, while

ensures that Scheme can reread the information unambiguously. and
are extensions that we wrote using . We could have written ,
for example, but happened not to need it.

how would we know where the song title stops and the album title starts? The natural
way to represent this grouping information is to use the mechanism Scheme provides for
grouping, namely, list structure.

If we use to read the file, we’ll lose the list structure; it will return a
sentence containing words like . , however, will do what we want.

How did we create this file in the first place? We just used one per line of the
file, like this:

But what about the movie soundtracks? We’re going to have to come to terms with
the apostrophe in “A Hard Day’s Night.”

The straightforward solution is to put in a string:

The corresponding line in the file will look like this:

This result is actually even worse than it looks, because when we try to the line
back, the will be expanded into in most versions of Scheme. Using a
string made it possible for us to get an apostrophe into Scheme. If the word were
inside quotation marks in the file, then would understand our intentions.

Why aren’t there double quotes in the file? All of the printing procedures we’ve seen
so far assume that whatever you’re printing is intended to be read by people. Therefore,
they try to minimize distracting notation such as double-quote marks. But, as we’ve
discovered, if you’re writing a file to be read by Scheme, then you do want enough
notation so that Scheme can tell what the original object was.

is a printing procedure just like , except that it includes quote
marks around strings:*

⇒

⇒

⇒

22.1

22.2

Pitfalls

Exercises

Chapter 22 Files 401

close-all-ports

filemerge

concatenate

> (write ’(a hard "day’s" night))
(A HARD "day’s" NIGHT)

> (write ’("And I Love Her" "A Hard Day’s Night") port)

Once we’re using strings, and since we’re not extracting individual words from the
titles, we might as well represent each title as one string:

One pitfall crucial to avoid when using files is that if there is an error in your
program, it might blow up and return you to the Scheme prompt without closing the
open files. If you fix the program and try to run it again, you may get a message like
“file busy” because the operating system of your computer may not allow you to open the
same file on two ports at once. Even worse, if you exit from Scheme without closing all
your ports, on some computers you may find that you have unreadable files thereafter.

To help cope with this problem, we’ve provided a procedure
that can be invoked to close every port that you’ve opened since starting Scheme. This
procedure works only in our modified Scheme, but it can help you out of trouble while
you’re learning.

Be sure you don’t open or close a file within a recursive procedure, if you intend to
do it only once. That’s why most of the programs in this chapter have the structure of a
procedure that opens files, calls a recursive helper, and then closes the files.

As we explained in the example, you can’t read the same line twice. Be
sure your program remembers each line in a variable as long as it’s needed.

Write a procedure that takes two arguments: a list of names of
input files, and one name for an output file. The procedure should copy all of the input
files, in order, into the output file.

Write a procedure to count the number of lines in a file. It should take the
filename as argument and return the number.

lookup

page

22.3

22.4

22.5

22.6

22.7

22.8 join

402 Part VI Sequential Programming

John Lennon
Paul McCartney
Paul McCartney
George Harrison

Paul McCartney
Ringo Starr

John Lennon
Paul McCartney
George Harrison

Paul McCartney
Ringo Starr

Write a procedure to count the number of words in a file. It should take the
filename as argument and return the number.

Write a procedure to count the number of characters in a file, including space
characters. It should take the filename as argument and return the number.

Write a procedure that copies an input file to an output file but eliminates multiple
consecutive copies of the same line. That is, if the input file contains the lines

then the output file should contain

Write a procedure that takes as arguments a filename and a word. The
procedure should print (on the screen, not into another file) only those lines from the
input file that include the chosen word.

Write a procedure that takes a filename as argument and prints the file a
screenful at a time. Assume that a screen can fit 24 lines; your procedure should print
23 lines of the file and then a prompt message, and then wait for the user to enter a
(probably empty) line. It should then print the most recent line from the file again (so
that the user will see some overlap between screenfuls) and 22 more lines, and so on until
the file ends.

A common operation in a database program is to two databases, that is, to
create a new database combining the information from the two given ones. There has
to be some piece of information in common between the two databases. For example,

join

not

Chapter 22 Files 403

((john alec entwistle) 04397 john)
((keith moon) 09382 kmoon)
((peter townshend) 10428 pete)
((roger daltrey) 01025 roger)

(john 87 90 76 68 95)
(kmoon 80 88 95 77 89)
(pete 100 92 80 65 72)
(roger 85 96 83 62 74)

((john alec entwistle) 04397 john 87 90 76 68 95)
((keith moon) 09382 kmoon 80 88 95 77 89)
((peter townshend) 10428 pete 100 92 80 65 72)
((roger daltrey) 01025 roger 85 96 83 62 74)

> (join "class-roster" "grades" 3 1 "combined-file")

suppose we have a class roster database in which each record includes a student’s name,
student ID number, and computer account name, like this:

We also have a grade database in which each student’s grades are stored according to
computer account name:

We want to create a combined database like this:

in which the information from the roster and grade databases has been combined for
each account name.

Write a program that takes five arguments: two input filenames, two numbers
indicating the position of the item within each record that should overlap between the
files, and an output filename. For our example, we’d say

In our example, both files are in alphabetical order of computer account name, the
account name is a word, and the same account name never appears more than once in
each file. In general, you may assume that these conditions hold for the item that the
two files have in common. Your program should assume that every item in one file
also appears in the other. A line should be written in the output file only for the items
that do appear in both files.

