
They did spreadsheets by hand in the old days.

•

•

•

•

•

•

•

load put

expression

439

25 Implementing the Spreadsheet Program

This is a big program and you can’t keep it all in your head at once. In this chapter, we’ll
discuss different parts of the program separately. For example, while we’re talking about
the screen display procedures, we’ll just take the rest of the program for granted. We’ll
assume that we can ask for the value in a cell, and some other part of the program will
ensure that we can find it out.

Our division of the program includes these parts:

The command processor, which reads user commands and oversees their execution.

The specific commands: cell selection commands, , and .

The formula translator, which turns a formula into an by translating relative
cell positions to specific cells.

The dependency manager, which keeps track of which cells’ expressions depend on
which other cells.

The expression evaluator.

The screen printer.

The cell management procedures, which store and retrieve cell information for the
rest of the program.

The diagram on the next page shows the interconnections among these seven parts
of the program by showing what information they have to provide for each other.

Expression
Evaluator

Cell
Manager

cell expression, value,
and dependencies

se
le

ct
ed

 c
el

l
an

d
sc

re
en

 c
or

ne
r

cell dependencies

Cell Selection
Commands

Screen
Printer

cell value

ce
ll

va
lu

e

Formula
Translator

value of
expression

ex
pr

es
si

on

va
lu

e
of

 e
xp

re
ss

io
n

ty
pe

d
as

 c
om

m
an

d

Dependency
Manager

Command
Processor

new formula and cell new cell or offset

vector-ref
c5

Cells, Cell Names, and Cell IDs

aren’t

440 Part VI Sequential Programming

(The arrows that in the diagram convey as much information as the ones that are.
For example, since there is no arrow from the evaluator to the printer, we know that when
the spreadsheet program redisplays the screen, the values printed are found directly in
the data structure; no new computation of formulas is needed.)

The spreadsheet program does its work by manipulating cells. In this section we introduce
three abstract data types having to do with cells. Before we jump into the spreadsheet
procedures themselves, we must introduce these three types, which are used throughout
the program.

Each cell is a data structure that contains various pieces of information, including
its value and other things that we’ll talk about later. Just as these cells are arranged
in a two-dimensional pattern on the screen, they are kept within the program in a
two-dimensional data structure: a vector of vectors.

The elements of a vector are selected by number, using . Therefore, if
we’re looking for a particular cell, such as , what the program really wants to know is

The Command Processor

Chapter 25 Implementing the Spreadsheet Program 441

c5 c 5
c

c5

id
cell-id?

id

id-row id-col
make-id

cell-name->id

* The vector elements are numbered from zero, but we number rows and columns from one,
subtracting one in the selector that actually extracts information from the array of cells.

(id 3 5)

(define (command-loop)
(print-screen)
(let ((command-or-formula (read)))
(if (equal? command-or-formula ’exit)

"Bye!"
(begin (process-command command-or-formula)

(command-loop)))))

that this cell is in column 3, row 5.* If the program refers to cells by name, then there
will be several occasions for it to split the word into its pieces and , and to convert
the letter into the number 3. These operations are fairly slow. To avoid carrying them
out repeatedly, the spreadsheet program identifies cells internally using a form that’s
invisible to the person using the program, called a “cell ID.”

Therefore, there are three different abstract data types in the program that have to
do with cells: cell names, such as ; cell IDs; and cells themselves. We’ve chosen to
represent cell IDs as three-element lists like this one:

but you won’t see much evidence of that fact within the program because we’ve im-
plemented selectors and constructors for all of these three types. The representation
includes the word because one facility that the program needs is the ability to deter-
mine whether some datum is or is not a cell ID. The predicate looks for a list
whose first element is .

The selectors for cell IDs are and ; both take a cell ID as argument
and return a number. The constructor, , takes a column number (not a letter)
and a row number as arguments.

When the program recognizes a cell name typed by the user, it calls
to translate the name to an ID, and only the ID is stored for later use.

(These application-specific ADTs are similar to the database of known values in the
pattern matcher, as opposed to more general-purpose ADTs like trees and sentences.)

Here’s the core of the command processor:

442 Part VI Sequential Programming

exit
read

Print-screen

process-command
put

process-command (f 3) f

Process-command

command?
process-command

1

Execute-command

((p) (n) (b) (f) (select) (put) (load))

(define (process-command command-or-formula)
(cond ((and (list? command-or-formula)

(command? (car command-or-formula)))
(execute-command command-or-formula))
((command? command-or-formula)
(execute-command (list command-or-formula 1)))
(else (exhibit (ss-eval (pin-down command-or-formula

(selection-cell-id)))))))

This short program runs until the user types , because it invokes itself as its last
step. During each invocation, it prints the current spreadsheet display, uses to read
a command, and carries out whatever actions that command requires. Those actions
probably change something in the spreadsheet data, so the next cycle has to redisplay the
modified data before accepting another command.

is a large chunk of the program and will be discussed in its own
section.

How does work? It looks for the command name (a word such
as) in its list of known commands. The commands are kept in an association list,
like this:

. .

Each of these sublists contains two elements: the name and the procedure that carries
out the command. We’ll see shortly how these procedures are invoked.

Looking for the command name is a little tricky because in the spreadsheet language
a command can be invoked either by typing its name inside parentheses with argu-
ments, as in Scheme, or by typing the name alone, without parentheses, which Scheme
wouldn’t interpret as a request to invoke a procedure. For example, the argument
to might be a list, such as , or just a word, such as . A
third case is that the argument might not be one of these commands at all, but instead
might be a formula, just like one that could be used to determine the value in a cell.

must recognize these three cases:

The predicate tells whether its argument is one of the command names in the
list. As you can see, if a command name is used without parentheses,
pretends that it was given an argument of .

looks up the command name in the list of commands, then
applies the associated procedure to the arguments, if any:

Cell Selection Commands

Chapter 25 Implementing the Spreadsheet Program 443

else process-command

exhibit

read-line read command-loop

read-line read-line

p

* Not every version of Scheme has this behavior. If you find that you have to hit twice
after exhibiting the value of a formula, take out one of the invocations.

(define (execute-command command)
(apply (get-command (car command))

(cdr command)))

(define (exhibit val)
(show val)
(show "Type RETURN to redraw screen")
(read-line)
(read-line))

(define (prev-row delta)
(let ((row (id-row (selection-cell-id))))
(if (< (- row delta) 1)

(error "Already at top.")
(set-selected-row! (- row delta)))))

(define (set-selected-row! new-row)
(select-id! (make-id (id-column (selection-cell-id)) new-row)))

return
read-line

The clause in , which handles the case of a formula typed
instead of a command, invokes several procedures that you haven’t seen yet. We’ll explain
them when we get to the section of the program that manipulates formulas. The only
one that’s used just for command processing is :

This prints a value on the screen, gives the user a chance to read it, and then, when
the user is ready, returns to processing commands. (This will entail redrawing the
spreadsheet display; that’s why we have to wait for the user to hit return.) The reason
that we invoke twice is that the call to from reads the
spreadsheet formula you typed but doesn’t advance to the next line. Therefore, the first

invocation gobbles that empty line; the second call to reads the
(probably empty) line that the user typed in response to the prompting message.*

Several commands have to do with selecting a cell. We’ll show just one typical procedure,
the one that carries out the (previous row) command:

LoadThe Command

444 Part VI Sequential Programming

Prev-row
prev-row
Next-row

Adjust-screen-boundaries

Selection-cell-id
set-selection-cell-id!

screen-corner-cell-id
set-screen-corner-cell-id!

special-cells

command-loop
read

process-command

(define (select-id! id)
(set-selection-cell-id! id)
(adjust-screen-boundaries))

(define (spreadsheet-load filename)
(let ((port (open-input-file filename)))
(sl-helper port)
(close-input-port port)))

(define (sl-helper port)
(let ((command (read port)))
(if (eof-object? command)

’done
(begin (show command)

(process-command command)
(sl-helper port)))))

must ensure that the selected cell is within the legal boundaries. Since
only moves upward, it has to check only that we don’t go beyond row 1.

(will instead check that we don’t go beyond row 30 in the other direction.)

checks for the situation in which the newly selected
cell, although within the bounds of the spreadsheet, is not within the portion currently
visible on the screen. In that case the visible portion is shifted to include the selected cell.
(The procedure is straightforward and uninteresting, so we’re not showing it here. You
can see it in the complete listing of the spreadsheet program at the end of this chapter.)

is a procedure that returns the cell ID of the cell
that’s currently selected. Similarly, sets the cur-
rent selection. There are comparable procedures and

to keep track of which cell should be in the upper
left corner of the screen display. There is a vector named that holds
these two cell IDs; you can see the details in the complete program listing.

Loading commands from files is easy. The procedure, which carries
out commands from the keyboard, repeatedly reads a command with and invokes

to carry it out. To load commands from a file, we want to do exactly
the same thing, except that we read from a file instead of from the keyboard:

PutThe Command

Chapter 25 Implementing the Spreadsheet Program 445

put

Put
put-formula-in-cell

put put-formula-in-cell
put put-all-cells-in-row

put-all-cells-in-col

Put

where

put (car where)

The command takes two arguments, a formula and a place to put it. The second
of these can specify either a single cell or an entire row or column. (If there is
no second argument, then a single cell, namely the selected cell, is implied.)
invokes either once or several times, as needed. If only a
single cell is involved, then calls directly. If a row or
column is specified, then uses the auxiliary procedure
or as an intermediary.

The only tricky part of this is the first line. can be invoked with either one or two
arguments. Therefore, the dot notation is used to allow a variable number of arguments;
the parameter will have as its value not the second argument itself, but a list that
either contains the second argument or is empty. Thus, if there is a second argument,

refers to it as .

(define (put formula . where)
(cond ((null? where)

(put-formula-in-cell formula (selection-cell-id)))
((cell-name? (car where))
(put-formula-in-cell formula (cell-name->id (car where))))
((number? (car where))
(put-all-cells-in-row formula (car where)))
((letter? (car where))
(put-all-cells-in-col formula (letter->number (car where))))
(else (error "Put it where?"))))

(define (put-all-cells-in-row formula row)
(put-all-helper formula (lambda (col) (make-id col row)) 1 26))

(define (put-all-cells-in-col formula col)
(put-all-helper formula (lambda (row) (make-id col row)) 1 30))

(define (put-all-helper formula id-maker this max)
(if (> this max)

’done
(begin (try-putting formula (id-maker this))

(put-all-helper formula id-maker (+ 1 this) max))))

(define (try-putting formula id)
(if (or (null? (cell-value id)) (null? formula))

(put-formula-in-cell formula id)
’do-nothing))

function

446 Part VI Sequential Programming

(make-id this-col row)

(make-id col this-row)

(put-all-helper formula (lambda (col) (make-id col 4)) 1 26)

* We originally wrote two separate helper procedures for the two cases, like this:

but the procedures were so similar that we decided to generalize the pattern.

Put-all-cells-in-row put-all-cells-in-col put-all-helper
Put-all-helper

lambda
put-all-helper

put-all-cells-in-row 4
row

lambda
put-all-helper

Put-all-helper put-formula-in-cell

(define (put-all-cells-in-row formula row)
(row-helper formula 1 26 row))

(define (row-helper formula this-col max-col row)
(if (> this-col max-col)

’done
(begin (try-putting formula)

(row-helper formula (+ this-col 1) max-col row))))

(define (put-all-cells-in-col formula col)
(column-helper formula 1 30 col))

(define (column-helper formula this-row max-row col)
(if (> this-row max-row)

’done
(begin (try-putting formula)

(column-helper formula (+ this-row 1) max-row col))))

and invoke ,
which repeatedly puts the formula into a cell.* is a typical sequential
recursion: Do something for this element, and recur for the remaining elements. The
difference is that “this element” means a cell ID that combines one constant index with
one index that varies with each recursive call. How are those two indices combined?
What differs between filling a row and filling a column is the used to compute
each cell ID.

The substitution model explains how the expressions used as arguments to
implement this idea. Suppose we are putting a formula into every cell

in row 4. Then will be invoked with the value substituted
for the parameter . After this substitution, the body is

The expression creates a procedure that takes a column number as argument and
returns a cell ID for the cell in row 4 and that column. This is just what
needs. It invokes the procedure with the varying column number as its argument to get
the proper cell ID.

doesn’t directly invoke . The reason
is that if a particular cell already has a value, then the new formula isn’t used for that

The Formula Translator

Chapter 25 Implementing the Spreadsheet Program 447

(define (put-formula-in-cell formula id)
(put-expr (pin-down formula id) id))

(put (* (cell b) (cell c)) d)

Try-putting
try-putting if

pin-down put-expr

put d
put-formula-in-cell d4

d4
b4 c4 d5

d d4
b4 c4

put
pin-down

put-expr Pin-down

put-expr

particular cell, unless the formula is empty. That is, you can erase an entire row or
column at once, but a non-empty formula affects only cells that were empty before this
command. decides whether or not to put the formula into each possible
cell. (In , the third argument to could be anything; we’re interested
only in what happens if the condition is true.)

All that’s left is, finally, to put the formula into a cell:

The two new procedures seen here, and , are both large sections
of the program and are described in the next two sections of this chapter.

Suppose the user has said

The procedure puts this formula into each cell of column by repeatedly calling
; as an example, let’s concentrate on cell .

The purpose of the formula is that later we’re going to use it to compute a value
for . For that purpose, we will need to multiply two particular numbers together: the
ones in cells and . Although the same formula applies to cell , the particular
numbers multiplied together will be found in different places. So instead of storing the
same general formula in every cell, what we’d really like to store in is something
that refers specifically to and .

We’ll use the term “expression” for a formula whose cell references have been
replaced by specific cell IDs. We started with the idea that we wanted to put a formula
into a cell; we’ve refined that idea so that we now want to put an expression into the
cell. This goal has two parts: We must translate the formula (as given to us by the user
in the command) to an expression, and we must store that expression in the cell
data structure. These two subtasks are handled by , discussed in this section,
and by , discussed in the next section. is entirely functional; the
only modification to the spreadsheet program’s state in this process is carried out by

.

general specific

448 Part VI Sequential Programming

pin-down

Pin-down

put
pin-down

Pin-down <3

Put-formula-in-cell

pin-down

pin-down

c3

* In fact, also invokes when the user types a formula in place
of a command. In that situation, the result doesn’t go into a cell but is immediately evaluated and
printed.

(pin-down ’(* (cell b) (cell c)) ’d4)

(* (id 2 4) (id 3 4))

(put (+ (* (cell b) (cell c)) (- (cell 2< 3>) 6)) f)

(define (pin-down formula id)
(cond ((cell-name? formula) (cell-name->id formula))

((word? formula) formula)
((null? formula) ’())
((equal? (car formula) ’cell)
(pin-down-cell (cdr formula) id))
(else (bound-check

(map (lambda (subformula) (pin-down subformula id))
formula)))))

process-command pin-down

We’ll refer to the process of translating a formula to an expression as “pinning down”
the formula; the procedure carries out this process. It’s called “pinning
down” because we start with a formula and end up with a expression.

takes two arguments: The first is, of course, a formula; the second is the ID of
the cell that will be used as the reference point for relative cell positions. In the context
of the command, the reference point is the cell into which we’ll put the expression.
But doesn’t think about putting anything anywhere; its job is to translate a
formula (containing relative cell locations) into an expression (containing only absolute
cell IDs).* needs a reference point as a way to understand the notation ,
which means “three cells before the reference point.”

Let’s go back to the specific example. will invoke

and will return the expression

The overall structure of this problem is tree recursive. That’s because a formula can
be arbitrarily complicated, with sublists of sublists, just like a Scheme expression:

Here’s :

The base cases of the tree recursion are specific cell names, such as ; other words, such

Chapter 25 Implementing the Spreadsheet Program 449

(put (+ (cell 2< 3<) 1) d)

(define (bound-check form)
(if (member ’out-of-bounds form)

’out-of-bounds
form))

pin-down

cell

map pin-down

b d
d7 b4 d2

-1
d1 d2 d3 Pin-down

out-of-bounds

pin-down-cell
out-of-bounds

pin-down bound-check

(cell) pin-down-cell

pin-down-cell cell

cell
cell pin-down

cond

cell

as numbers and procedure names, which are unaffected by ; null formulas,
which indicate that the user is erasing the contents of a cell; and sublists that start with
the word . The first three of these are trivial; the fourth, which we will describe
shortly, is the important case. If a formula is not one of these four base cases, then it’s
a compound expression. In that case, we have to pin down all of the subexpressions
individually. (We basically over the formula. That’s what makes this
process tree recursive.)

One complication is that the pinned-down formula might refer to nonexistent cells.
For example, saying

refers to cells in column (two to the left of) three rows above the current row.
That works for a cell such as , referring to cell , but not for , which has no row
that’s three above it. (There is no row .) So our program must refrain from pinning
down this formula for cells , , and . will instead return the word

to signal this situation.

The case of a nonexistent cell is discovered by at the base of a tree
recursion. The signal must be returned not only by the base case but
by the initial invocation of . That’s why is used to ensure that
if any part of a formula is out of bounds, the entire formula will also be considered out
of bounds:

When a formula contains a . . . sublist, the procedure is
invoked to translate that notation into a cell ID.

The arguments to are a list of the “arguments” of the sublist
and the reference point’s cell ID. (The word “arguments” is in quotation marks because
the word doesn’t represent a Scheme procedure, even though the parenthesized
notation looks like an invocation. In a way, the special treatment of by
is analogous to the treatment of special forms, such as , by the Scheme evaluator.)

There can be one or two of these “arguments” to . A single argument is either
a number, indicating a row, or a letter, indicating a column. Two arguments specify both
a column and a row, in that order:

The Dependency Manager

450 Part VI Sequential Programming

pin-down-col pin-down-row
<3

put put-expr

In the two-argument case, the job of and is to
understand notations like for relative rows and columns:

The remaining part of the command is , which actually stores the
translated expression in the cell data structure. You might imagine that putting an
expression into a cell would require nothing more than invoking a mutator, like this:

(define (pin-down-cell args reference-id)
(cond ((null? args)

(error "Bad cell specification: (cell)"))
((null? (cdr args))
(cond ((number? (car args)) ; they chose a row

(make-id (id-column reference-id) (car args)))
((letter? (car args)) ; they chose a column
(make-id (letter->number (car args))

(id-row reference-id)))
(else (error "Bad cell specification:"

(cons ’cell args)))))
(else
(let ((col (pin-down-col (car args) (id-column reference-id)))

(row (pin-down-row (cadr args) (id-row reference-id))))
(if (and (>= col 1) (<= col 26) (>= row 1) (<= row 30))

(make-id col row)
’out-of-bounds)))))

(define (pin-down-col new old)
(cond ((equal? new ’*) old)

((equal? (first new) ’>) (+ old (bf new)))
((equal? (first new) ’<) (- old (bf new)))
((letter? new) (letter->number new))
(else (error "What column?"))))

(define (pin-down-row new old)
(cond ((number? new) new)

((equal? new ’*) old)
((equal? (first new) ’>) (+ old (bf new)))
((equal? (first new) ’<) (- old (bf new)))
(else (error "What row?"))))

(define (put-expr expr cell) ;; wrong
(set-cell-expr! cell expr))

a3 b2 c4
c4

c4

b5

c4

a1

cell-value
set-cell-value!

parents children

Chapter 25 Implementing the Spreadsheet Program 451

(put (+ a3 b2) c4)

(put (+ a3 c4) b5)

#(12
(+ (id 1 3) (id 2 2))
((id 1 3) (id 2 2))
((id 2 5)))

(put 6 a1)

#(6 6 () ())

The trouble is that adding an expression to a cell might have many consequences beyond
the mutation itself. For example, suppose we say

If cells and already have values, we can’t just put the formula into ; we must also
compute its value and put that value into .

Also, once has a value, that could trigger the computation of some other cell’s
value. If we’ve previously said

then we’re now able to compute a value for because both of the cells that it depends
on have values.

All this implies that what’s inside a cell is more than just an expression, or even an
expression and a value. Each cell needs to know which other cells it depends on for its
value, and also which other cells depend on it.

Our program represents each cell as a four-element vector. Each cell includes a
value, an expression, a list of (the cells that it depends on), and a list of
(the cells that depend on it). The latter two lists contain cell IDs. So our example cell
might look like this:

In a simpler case, suppose we put a value into a cell that nothing depends on, by saying,
for example,

Then cell would contain

(Remember that a value is just a very simple formula.)

There are selectors and so on that take a cell ID as argument, and
mutators and so on that take a cell ID and a new value as arguments.

•

•

•

•

()
(b2)

make-cell

a2

old isn’t

452 Part VI Sequential Programming

cell expression value parents children

a1 20 20 () (a2)
b1 5 5 () (a2 b2)
c1 8 8 () ()
a2 (+ a1 b1) 25 (a1 b1) (b2)
b2 (+ a2 b1) 30 (a2 b1) ()

(put (+ b1 c1) a2)

cell expression value parents children

a1 20 20 ()
b1 5 5 ()
c1 8 8 () ()
a2 (+ a1 b1) 25 (a1 b1) (b2)
b2 (+ a2 b1) 30 (a2 b1) ()

There’s also the constructor , but it’s called only at the beginning of the
program, when the 780 cells in the spreadsheet are created at once.

When a cell is given a new expression, several things change:

The new expression becomes the cell’s expression, of course.

The cells mentioned in the expression become the parents of this cell.

This cell becomes a child of the cells mentioned in the expression.

If all the parents have values, the value of this cell is computed.

Some of these changes are simple, but others are complicated. For example, it’s not
enough to tell the cell’s new parents that the cell is now their child (the third task). First
we have to tell the cell’s parents that this cell their child any more. That has to
be done before we forget the cell’s old parents.

Here is an example. (In the following tables, we represent the data structures as if
cells were represented by their names, even though really their IDs are used. We’ve done
this to make the example more readable.) Suppose that we have five cells set up like this:

If we now enter the spreadsheet command

the program must first remove from the children of its old parents (changes are
shown in boldface):

Then the program can change the expression and compute a new list of parents:

a2 a2

a2

(+ b1 c1) (b1 c1)

(a2 b2)
(a2)

13

18

Chapter 25 Implementing the Spreadsheet Program 453

Next it can tell the new parents to add as a child, and can compute ’s new value:

Changing ’s value affects the values of all of its children, and also its grandchildren
and so on (except that in this example there are no grandchildren):

Now that we’ve considered an example, here is the main procedure that oversees all
these tasks:

cell expression value parents children

a1 20 20 () ()
b1 5 5 () (b2)
c1 8 8 () ()
a2 25 (b2)
b2 (+ a2 b1) 30 (a2 b1) ()

cell expression value parents children

1 20 20 () ()
b1 5 5 ()
c1 8 8 ()
a2 (+ b1 c1) (b1 c1) (b2)
b2 (+ a2 b1) 30 (a2 b1) ()

cell expression value parents children

a1 20 20 () ()
b1 5 5 () (a2 b2)
c1 8 8 () (a2)
a2 (+ b1 c1) 13 (b1 c1) (b2)
b2 (+ a2 b1) (a2 b1) ()

(define (put-expr expr-or-out-of-bounds id)
(let ((expr (if (equal? expr-or-out-of-bounds ’out-of-bounds)

’()
expr-or-out-of-bounds)))

(for-each (lambda (old-parent)
(set-cell-children!
old-parent
(remove id (cell-children old-parent))))

(cell-parents id))
(set-cell-expr! id expr)
(set-cell-parents! id (remdup (extract-ids expr)))
(for-each (lambda (new-parent)

(set-cell-children!
new-parent
(cons id (cell-children new-parent))))

(cell-parents id))
(figure id)))

454 Part VI Sequential Programming

put-expr pin-down
out-of-bounds

let

extract-ids
expr

remdup expr

extract-ids

remdup

let

cond

car cdr
append extract-ids

put-expr

(+ (id 4 2) (* (id 1 3) (id 1 3)))

((id 4 2) (id 1 3) (id 1 3))

((id 4 2) (id 1 3))

(define (extract-ids expr)
(cond ((id? expr) (list expr))

((word? expr) ’())
((null? expr) ’())
(else (append (extract-ids (car expr))

(extract-ids (cdr expr))))))

Remember that ’s first argument is the return value from , so it
might be the word instead of an expression. In this case, we store an
empty list as the expression, indicating that there is no active expression for this cell.

Within the body of the there are five Scheme expressions, each of which carries
out one of the tasks we’ve listed. The first expression tells the cell’s former parents that
the cell is no longer their child. The second expression stores the expression in the cell.

The third Scheme expression invokes to find all the cell ids used
in , removes any duplicates, and establishes those identified cells as the argument
cell’s parents. (You wrote in Exercise 14.3.) For example, if the is

then will return the list

and of that will be

The fourth expression in the tells each of the new parents to consider the
argument cell as its child. The fifth expression may or may not compute a new value for
this cell. (As we’ll see in a moment, that process is a little complicated.)

Two of these steps require closer examination. Here is the procedure used in the
third step:

This is a tree recursion. The first three clauses are base cases; cell IDs are included
in the returned list, while other words are ignored. For compound expressions, we use
the trick of making recursive calls on the and of the list. We combine the results
with because must return a flat list of cell IDs, not a cheap tree.

The fifth step in is complicated because, as we saw in the example,
changing the value of one cell may require us to recompute the value of other cells:

The Expression Evaluator

Chapter 25 Implementing the Spreadsheet Program 455

Figure

figure
figure

figure

Setvalue

figure

ss-eval

Figure ss-eval
process-command ss-eval

ss-eval
process-command

ss ss-eval

(define (figure id)
(cond ((null? (cell-expr id)) (setvalue id ’()))

((all-evaluated? (cell-parents id))
(setvalue id (ss-eval (cell-expr id))))
(else (setvalue id ’()))))

(define (all-evaluated? ids)
(cond ((null? ids) #t)

((not (number? (cell-value (car ids)))) #f)
(else (all-evaluated? (cdr ids)))))

(define (setvalue id value)
(let ((old (cell-value id)))
(set-cell-value! id value)
(if (not (equal? old value))

(for-each figure (cell-children id))
’do-nothing)))

is invoked for the cell whose expression we’ve just changed. If there is no
expression (that is, if we’ve changed it to an empty expression or to an out-of-bounds
one), then will remove any old value that might be left over from a previous
expression. If there is an expression, then will compute and save a new value,
but only if all of this cell’s parents have numeric values. If any parent doesn’t have a
value, or if its value is a non-numeric label, then has to remove the value from
this cell.

actually puts the new value in the cell. It first looks up the old value.
If the new and old values are different, then all of the children of this cell must be
re- d. This, too, is a tree recursion because there might be several children, and
each of them might have several children.

We haven’t yet explained how actually computes the value from the
expression. That’s the subject of the next major part of the program.

invokes to convert a cell’s expression into its value. Also, we’ve seen
earlier that uses to evaluate an expression that the user
types in response to a spreadsheet prompt. (That is, is invoked if what the user
types isn’t one of the special commands recognized by itself.)

The in stands for “spreadsheet”; it distinguishes this procedure from

•

•

•

•

•

•

456 Part VI Sequential Programming

eval
ss-eval eval
ss-eval

if define

ss-eval cond

* You can think of the notation in generalized formulas as a kind of special form, but
has turned those into specific cell IDs before the formula is eligible for evaluation as an

expression.

(define (ss-eval expr)
(cond ((number? expr) expr)

((quoted? expr) (quoted-value expr))
((id? expr) (cell-value expr))
((invocation? expr)
(apply (get-function (car expr))

(map ss-eval (cdr expr))))
(else (error "Invalid expression:" expr))))

cell
pin-down

, a primitive procedure that evaluates Scheme expressions. As it turns out,
’s algorithm is similar in many ways to that of Scheme’s , although
is much simpler in other ways. The experience you already have with Scheme’s

expression evaluation will help you understand the spreadsheet’s.

Scheme’s evaluator takes an expression and computes the corresponding value. The
expressions look quite different from the values, but there are well-defined rules (the
ones we studied in Chapter 3) to translate expressions to values. In the spreadsheet
language, as in Scheme, an expression can be one of three things:

a constant expression (a number or quoted word), whose value is itself.

a variable (a cell ID, in the case of the spreadsheet language).

a procedure invocation enclosed in parentheses.

The spreadsheet language is simpler than Scheme for three main reasons.

There are no special forms such as or .*

The only variables, the cell IDs, are global; in Scheme, much of the complexity of
evaluation has to do with variables that are local to procedures (i.e., formal parameters).

The only procedures are primitives, so there is no need to evaluate procedure bodies.

The structure of is a whose clauses handle the three types of
expressions. Constants and variables are easy; invocations require recursively evaluating
the arguments before the procedure can be invoked.

The Screen Printer

Chapter 25 Implementing the Spreadsheet Program 457

ss-eval
’abc (quote abc)

ss-eval

apply

Get-function

ss-eval

(define (quoted? expr)
(or (string? expr)

(and (list? expr) (equal? (car expr) ’quote))))

(define (quoted-value expr)
(if (string? expr)

expr
(cadr expr)))

The value of a number is itself; the value of a quoted word is the word without
the quotation mark. (Actually, by the time sees a quoted word, Scheme has
translated the notation into and that’s what we deal with here. Also,
double-quoted strings look different to the program from single-quoted words.)

The third clause checks for a cell ID; the value of such an expression is the value
stored in the corresponding cell.

If an expression is none of those things, it had better be a function invocation, that
is, a list. In that case, has to do three things: It looks up the function name
in a table (as we did earlier for spreadsheet commands); it recursively evaluates all the
argument subexpressions; and then it can invoke to apply the procedure to the
argument values.

looks up a function name in the name-to-function association list
and returns the corresponding Scheme procedure. Thus, only the functions included in
the list can be used in spreadsheet formulas.

The entire expression evaluator, including and its helper procedures, is
functional. Like the formula translator, it doesn’t change the state of the spreadsheet.

The procedures that print the spreadsheet on the screen are straightforward but full of
details. Much of the work here goes into those details.

As we mentioned earlier, a better spreadsheet program wouldn’t redraw the entire
screen for each command but would change only the parts of the screen that were
affected by the previous command. However, Scheme does not include a standard way to
control the positioning of text on the screen, so we’re stuck with this approach.

458 Part VI Sequential Programming

Screen-corner-cell-id
selection-cell-id

Show-column-labels
Show-rows

screen-corner

display-expression display

Display-expression pin-down
display-expression

display-expression
display-expression

Show-rows

(define (print-screen)
(newline)
(newline)
(newline)
(show-column-labels (id-column (screen-corner-cell-id)))
(show-rows 20

(id-column (screen-corner-cell-id))
(id-row (screen-corner-cell-id)))

(display-cell-name (selection-cell-id))
(show (cell-value (selection-cell-id)))
(display-expression (cell-expr (selection-cell-id)))
(newline)
(display "?? "))

(+ (id 2 5) (id 6 3))

(+ b5 f3)

returns the ID of the cell that should be shown in the top
left corner of the display; returns the ID of the selected cell.

prints the first row of the display, the one with the column
letters. is a sequential recursion that prints the actual rows of the spreadsheet,
starting with the row number of the cell and continuing for 20 rows.
(There are 30 rows in the entire spreadsheet, but they don’t all fit on the screen at once.)
The rest of the procedure displays the value and expression of the selected cell at the
bottom of the screen and prompts for the next command.

Why isn’t just ? Remember that the spreadsheet
stores expressions in a form like

but the user wants to see

is yet another tree recursion over expressions. Just as
translates cell names into cell IDs, translates IDs back into
names. (But prints as it goes along, instead of reconstructing
and returning a list.) The definition of , along with the
remaining details of printing, can be seen in the full program listing at the end of this
chapter.

Just to give the flavor of those details, here is the part that displays the rectangular
array of cell values. is a sequential recursion in which each invocation prints

show-row

show-row

show-row
show-row print-screen

Chapter 25 Implementing the Spreadsheet Program 459

an entire row. It does so by invoking , another sequential recursion, in which
each invocation prints a single cell value.

Why didn’t we write in the following way?

That would have worked fine and would have been a little clearer. In fact, we did write
this way originally. But it’s a little time-consuming to construct an ID, and
is called 120 times whenever is used. Since printing the

screen was annoyingly slow, we sped things up as much as we could, even at the cost of
this kludge.

(define (show-rows to-go col row)
(cond ((= to-go 0) ’done)

(else
(display (align row 2 0))
(display " ")
(show-row 6 col row)
(newline)
(show-rows (- to-go 1) col (+ row 1)))))

(define (show-row to-go col row)
(cond ((= to-go 0) ’done)

(else
(display (if (selected-indices? col row) ">" " "))
(display-value (cell-value-from-indices col row))
(display (if (selected-indices? col row) "<" " "))
(show-row (- to-go 1) (+ 1 col) row))))

(define (selected-indices? col row)
(and (= col (id-column (selection-cell-id)))

(= row (id-row (selection-cell-id)))))

(define (show-row to-go col row) ;; alternate version
(cond ((= to-go 0) ’done)

(else
(let ((id (make-id col row)))
(display (if (equal? id (selection-cell-id)) ">" " "))
(display-value (cell-value id))
(display (if (equal? id (selection-cell-id)) "<" " "))
(show-row (- to-go 1) (+ 1 col) row)))))

The Cell Manager

those

460 Part VI Sequential Programming

the-spreadsheet-array

cell-structure

Global-array-lookup

vector-ref

cell-structure

(define (cell-structure id)
(global-array-lookup (id-column id)

(id-row id)))

(define (global-array-lookup col row)
(if (and (<= row 30) (<= col 26))

(vector-ref (vector-ref *the-spreadsheet-array* (- row 1))
(- col 1))

(error "Out of bounds")))

(define (cell-value id)
(vector-ref (cell-structure id) 0))

(define (set-cell-value! id val)
(vector-set! (cell-structure id) 0 val))

(define (cell-expr id)
(vector-ref (cell-structure id) 1))

The program keeps information about the current status of the spreadsheet cells in a
vector called . It contains all of the 780 cells that make
up the spreadsheet (30 rows of 26 columns). It’s not a vector of length 780; rather, it’s
a vector of length 30, each of whose elements is itself a vector of length 26. In other
words, each element of the spreadsheet array is a vector representing one row of the
spreadsheet. (Each element of vectors is one cell, which, as you recall, is represented
as a vector of length four. So the spreadsheet array is a vector of vectors of vectors!)

The selectors for the parts of a cell take the cell’s ID as argument and return one of
the four elements of the cell vector. Each must therefore be implemented as two steps:
We must find the cell vector, given its ID; and we must then select an element from the
cell vector. The first step is handled by the selector that takes a cell
ID as argument:

makes sure the desired cell exists. It also compensates for the
fact that Scheme vectors begin with element number zero, while our spreadsheet begins
with row and column number one. Two invocations of are needed, one to
select an entire row and the next to select a cell within that row.

Selectors and mutators for the parts of a cell are written using :

init-array

Chapter 25 Implementing the Spreadsheet Program 461

The constructor is

The spreadsheet program begins by invoking to set up this large array.
(Also, it sets the initial values of the selected cell and the screen corner.)

(define (set-cell-expr! id val)
(vector-set! (cell-structure id) 1 val))

(define (cell-parents id)
(vector-ref (cell-structure id) 2))

(define (set-cell-parents! id val)
(vector-set! (cell-structure id) 2 val))

(define (cell-children id)
(vector-ref (cell-structure id) 3))

(define (set-cell-children! id val)
(vector-set! (cell-structure id) 3 val))

(define (make-cell)
(vector ’() ’() ’() ’()))

(define (spreadsheet)
(init-array)
(set-selection-cell-id! (make-id 1 1))
(set-screen-corner-cell-id! (make-id 1 1))
(command-loop))

(define *the-spreadsheet-array* (make-vector 30))

(define (init-array)
(fill-array-with-rows 29))

(define (fill-array-with-rows n)
(if (< n 0)

’done
(begin (vector-set! *the-spreadsheet-array* n (make-vector 26))

(fill-row-with-cells
(vector-ref *the-spreadsheet-array* n) 25)
(fill-array-with-rows (- n 1)))))

letter->number

Complete Program Listing

462 Part VI Sequential Programming

That’s the end of the project, apart from some straightforward procedures such as
that you can look up in the complete listing if you’re interested.

(define (fill-row-with-cells vec n)
(if (< n 0)

’done
(begin (vector-set! vec n (make-cell))

(fill-row-with-cells vec (- n 1)))))

(define (spreadsheet)
(init-array)
(set-selection-cell-id! (make-id 1 1))
(set-screen-corner-cell-id! (make-id 1 1))
(command-loop))

(define (command-loop)
(print-screen)
(let ((command-or-formula (read)))
(if (equal? command-or-formula ’exit)

"Bye!"
(begin (process-command command-or-formula)

(command-loop)))))

(define (process-command command-or-formula)
(cond ((and (list? command-or-formula)

(command? (car command-or-formula)))
(execute-command command-or-formula))
((command? command-or-formula)
(execute-command (list command-or-formula 1)))
(else (exhibit (ss-eval (pin-down command-or-formula

(selection-cell-id)))))))

(define (execute-command command)
(apply (get-command (car command))

(cdr command)))

(define (exhibit val)
(show val)
(show "Type RETURN to redraw screen")
(read-line)
(read-line))

Chapter 25 Implementing the Spreadsheet Program 463

;;; Commands

;; Cell selection commands: F, B, N, P, and SELECT

(define (prev-row delta)
(let ((row (id-row (selection-cell-id))))
(if (< (- row delta) 1)

(error "Already at top.")
(set-selected-row! (- row delta)))))

(define (next-row delta)
(let ((row (id-row (selection-cell-id))))
(if (> (+ row delta) 30)

(error "Already at bottom.")
(set-selected-row! (+ row delta)))))

(define (prev-col delta)
(let ((col (id-column (selection-cell-id))))
(if (< (- col delta) 1)

(error "Already at left.")
(set-selected-column! (- col delta)))))

(define (next-col delta)
(let ((col (id-column (selection-cell-id))))
(if (> (+ col delta) 26)

(error "Already at right.")
(set-selected-column! (+ col delta)))))

(define (set-selected-row! new-row)
(select-id! (make-id (id-column (selection-cell-id)) new-row)))

(define (set-selected-column! new-column)
(select-id! (make-id new-column (id-row (selection-cell-id)))))

(define (select-id! id)
(set-selection-cell-id! id)
(adjust-screen-boundaries))

(define (select cell-name)
(select-id! (cell-name->id cell-name)))

464 Part VI Sequential Programming

(define (adjust-screen-boundaries)
(let ((row (id-row (selection-cell-id)))

(col (id-column (selection-cell-id))))
(if (< row (id-row (screen-corner-cell-id)))

(set-corner-row! row)
’do-nothing)

(if (>= row (+ (id-row (screen-corner-cell-id)) 20))
(set-corner-row! (- row 19))
’do-nothing)

(if (< col (id-column (screen-corner-cell-id)))
(set-corner-column! col)
’do-nothing)

(if (>= col (+ (id-column (screen-corner-cell-id)) 6))
(set-corner-column! (- col 5))
’do-nothing)))

(define (set-corner-row! new-row)
(set-screen-corner-cell-id!
(make-id (id-column (screen-corner-cell-id)) new-row)))

(define (set-corner-column! new-column)
(set-screen-corner-cell-id!
(make-id new-column (id-row (screen-corner-cell-id)))))

;; LOAD

(define (spreadsheet-load filename)
(let ((port (open-input-file filename)))
(sl-helper port)
(close-input-port port)))

(define (sl-helper port)
(let ((command (read port)))
(if (eof-object? command)

’done
(begin (show command)

(process-command command)
(sl-helper port)))))

Chapter 25 Implementing the Spreadsheet Program 465

;; PUT

(define (put formula . where)
(cond ((null? where)

(put-formula-in-cell formula (selection-cell-id)))
((cell-name? (car where))
(put-formula-in-cell formula (cell-name->id (car where))))
((number? (car where))
(put-all-cells-in-row formula (car where)))
((letter? (car where))
(put-all-cells-in-col formula (letter->number (car where))))
(else (error "Put it where?"))))

(define (put-all-cells-in-row formula row)
(put-all-helper formula (lambda (col) (make-id col row)) 1 26))

(define (put-all-cells-in-col formula col)
(put-all-helper formula (lambda (row) (make-id col row)) 1 30))

(define (put-all-helper formula id-maker this max)
(if (> this max)

’done
(begin (try-putting formula (id-maker this))

(put-all-helper formula id-maker (+ 1 this) max))))

(define (try-putting formula id)
(if (or (null? (cell-value id)) (null? formula))

(put-formula-in-cell formula id)
’do-nothing))

(define (put-formula-in-cell formula id)
(put-expr (pin-down formula id) id))

;;; The Association List of Commands

(define (command? name)
(assoc name *the-commands*))

(define (get-command name)
(let ((result (assoc name *the-commands*)))
(if (not result)

#f
(cadr result))))

466 Part VI Sequential Programming

(define *the-commands*
(list (list ’p prev-row)

(list ’n next-row)
(list ’b prev-col)
(list ’f next-col)
(list ’select select)
(list ’put put)
(list ’load spreadsheet-load)))

;;; Pinning Down Formulas Into Expressions

(define (pin-down formula id)
(cond ((cell-name? formula) (cell-name->id formula))

((word? formula) formula)
((null? formula) ’())
((equal? (car formula) ’cell)
(pin-down-cell (cdr formula) id))
(else (bound-check

(map (lambda (subformula) (pin-down subformula id))
formula)))))

(define (bound-check form)
(if (member ’out-of-bounds form)

’out-of-bounds
form))

(define (pin-down-cell args reference-id)
(cond ((null? args)

(error "Bad cell specification: (cell)"))
((null? (cdr args))
(cond ((number? (car args)) ; they chose a row

(make-id (id-column reference-id) (car args)))
((letter? (car args)) ; they chose a column
(make-id (letter->number (car args))

(id-row reference-id)))
(else (error "Bad cell specification:"

(cons ’cell args)))))
(else
(let ((col (pin-down-col (car args) (id-column reference-id)))

(row (pin-down-row (cadr args) (id-row reference-id))))
(if (and (>= col 1) (<= col 26) (>= row 1) (<= row 30))

(make-id col row)
’out-of-bounds)))))

Chapter 25 Implementing the Spreadsheet Program 467

(define (pin-down-col new old)
(cond ((equal? new ’*) old)

((equal? (first new) ’>) (+ old (bf new)))
((equal? (first new) ’<) (- old (bf new)))
((letter? new) (letter->number new))
(else (error "What column?"))))

(define (pin-down-row new old)
(cond ((number? new) new)

((equal? new ’*) old)
((equal? (first new) ’>) (+ old (bf new)))
((equal? (first new) ’<) (- old (bf new)))
(else (error "What row?"))))

;;; Dependency Management

(define (put-expr expr-or-out-of-bounds id)
(let ((expr (if (equal? expr-or-out-of-bounds ’out-of-bounds)

’()
expr-or-out-of-bounds)))

(for-each (lambda (old-parent)
(set-cell-children!
old-parent
(remove id (cell-children old-parent))))

(cell-parents id))
(set-cell-expr! id expr)
(set-cell-parents! id (remdup (extract-ids expr)))
(for-each (lambda (new-parent)

(set-cell-children!
new-parent
(cons id (cell-children new-parent))))

(cell-parents id))
(figure id)))

(define (extract-ids expr)
(cond ((id? expr) (list expr))

((word? expr) ’())
((null? expr) ’())
(else (append (extract-ids (car expr))

(extract-ids (cdr expr))))))

(define (figure id)
(cond ((null? (cell-expr id)) (setvalue id ’()))

((all-evaluated? (cell-parents id))
(setvalue id (ss-eval (cell-expr id))))
(else (setvalue id ’()))))

468 Part VI Sequential Programming

(define (all-evaluated? ids)
(cond ((null? ids) #t)

((not (number? (cell-value (car ids)))) #f)
(else (all-evaluated? (cdr ids)))))

(define (setvalue id value)
(let ((old (cell-value id)))
(set-cell-value! id value)
(if (not (equal? old value))

(for-each figure (cell-children id))
’do-nothing)))

;;; Evaluating Expressions

(define (ss-eval expr)
(cond ((number? expr) expr)

((quoted? expr) (quoted-value expr))
((id? expr) (cell-value expr))
((invocation? expr)
(apply (get-function (car expr))

(map ss-eval (cdr expr))))
(else (error "Invalid expression:" expr))))

(define (quoted? expr)
(or (string? expr)

(and (list? expr) (equal? (car expr) ’quote))))

(define (quoted-value expr)
(if (string? expr)

expr
(cadr expr)))

(define (invocation? expr)
(list? expr))

(define (get-function name)
(let ((result (assoc name *the-functions*)))
(if (not result)

(error "No such function: " name)
(cadr result))))

Chapter 25 Implementing the Spreadsheet Program 469

(define *the-functions*
(list (list ’* *)

(list ’+ +)
(list ’- -)
(list ’/ /)
(list ’abs abs)
(list ’acos acos)
(list ’asin asin)
(list ’atan atan)
(list ’ceiling ceiling)
(list ’cos cos)
(list ’count count)
(list ’exp exp)
(list ’expt expt)
(list ’floor floor)
(list ’gcd gcd)
(list ’lcm lcm)
(list ’log log)
(list ’max max)
(list ’min min)
(list ’modulo modulo)
(list ’quotient quotient)
(list ’remainder remainder)
(list ’round round)
(list ’sin sin)
(list ’sqrt sqrt)
(list ’tan tan)
(list ’truncate truncate)))

;;; Printing the Screen

(define (print-screen)
(newline)
(newline)
(newline)
(show-column-labels (id-column (screen-corner-cell-id)))
(show-rows 20

(id-column (screen-corner-cell-id))
(id-row (screen-corner-cell-id)))

(display-cell-name (selection-cell-id))
(display ": ")
(show (cell-value (selection-cell-id)))
(display-expression (cell-expr (selection-cell-id)))
(newline)
(display "?? "))

(define (display-cell-name id)
(display (number->letter (id-column id)))
(display (id-row id)))

470 Part VI Sequential Programming

(define (show-column-labels col-number)
(display " ")
(show-label 6 col-number)
(newline))

(define (show-label to-go this-col-number)
(cond ((= to-go 0) ’())

(else
(display " -----")
(display (number->letter this-col-number))
(display "----")
(show-label (- to-go 1) (+ 1 this-col-number)))))

(define (show-rows to-go col row)
(cond ((= to-go 0) ’done)

(else
(display (align row 2 0))
(display " ")
(show-row 6 col row)
(newline)
(show-rows (- to-go 1) col (+ row 1)))))

(define (show-row to-go col row)
(cond ((= to-go 0) ’done)

(else
(display (if (selected-indices? col row) ">" " "))
(display-value (cell-value-from-indices col row))
(display (if (selected-indices? col row) "<" " "))
(show-row (- to-go 1) (+ 1 col) row))))

(define (selected-indices? col row)
(and (= col (id-column (selection-cell-id)))

(= row (id-row (selection-cell-id)))))

(define (display-value val)
(display (align (if (null? val) "" val) 10 2)))

(define (display-expression expr)
(cond ((null? expr) (display ’()))

((quoted? expr) (display (quoted-value expr)))
((word? expr) (display expr))
((id? expr)
(display-cell-name expr))
(else (display-invocation expr))))

Chapter 25 Implementing the Spreadsheet Program 471

(define (display-invocation expr)
(display "(")
(display-expression (car expr))
(for-each (lambda (subexpr)

(display " ")
(display-expression subexpr))

(cdr expr))
(display ")"))

;;; Abstract Data Types

;; Special cells: the selected cell and the screen corner

(define *special-cells* (make-vector 2))

(define (selection-cell-id)
(vector-ref *special-cells* 0))

(define (set-selection-cell-id! new-id)
(vector-set! *special-cells* 0 new-id))

(define (screen-corner-cell-id)
(vector-ref *special-cells* 1))

(define (set-screen-corner-cell-id! new-id)
(vector-set! *special-cells* 1 new-id))

;; Cell names

(define (cell-name? expr)
(and (word? expr)

(letter? (first expr))
(number? (bf expr))))

(define (cell-name-column cell-name)
(letter->number (first cell-name)))

(define (cell-name-row cell-name)
(bf cell-name))

472 Part VI Sequential Programming

(define (cell-name->id cell-name)
(make-id (cell-name-column cell-name)

(cell-name-row cell-name)))

;; Cell IDs

(define (make-id col row)
(list ’id col row))

(define (id-column id)
(cadr id))

(define (id-row id)
(caddr id))

(define (id? x)
(and (list? x)

(not (null? x))
(equal? ’id (car x))))

;; Cells

(define (make-cell)
(vector ’() ’() ’() ’()))

(define (cell-value id)
(vector-ref (cell-structure id) 0))

(define (cell-value-from-indices col row)
(vector-ref (cell-structure-from-indices col row) 0))

(define (cell-expr id)
(vector-ref (cell-structure id) 1))

(define (cell-parents id)
(vector-ref (cell-structure id) 2))

(define (cell-children id)
(vector-ref (cell-structure id) 3))

(define (set-cell-value! id val)
(vector-set! (cell-structure id) 0 val))

(define (set-cell-expr! id val)
(vector-set! (cell-structure id) 1 val))

(define (set-cell-parents! id val)
(vector-set! (cell-structure id) 2 val))

Chapter 25 Implementing the Spreadsheet Program 473

(define (set-cell-children! id val)
(vector-set! (cell-structure id) 3 val))

(define (cell-structure id)
(global-array-lookup (id-column id)

(id-row id)))

(define (cell-structure-from-indices col row)
(global-array-lookup col row))

(define *the-spreadsheet-array* (make-vector 30))

(define (global-array-lookup col row)
(if (and (<= row 30) (<= col 26))

(vector-ref (vector-ref *the-spreadsheet-array* (- row 1))
(- col 1))

(error "Out of bounds")))

(define (init-array)
(fill-array-with-rows 29))

(define (fill-array-with-rows n)
(if (< n 0)

’done
(begin (vector-set! *the-spreadsheet-array* n (make-vector 26))

(fill-row-with-cells
(vector-ref *the-spreadsheet-array* n) 25)
(fill-array-with-rows (- n 1)))))

(define (fill-row-with-cells vec n)
(if (< n 0)

’done
(begin (vector-set! vec n (make-cell))

(fill-row-with-cells vec (- n 1)))))

;;; Utility Functions

(define alphabet
’#(a b c d e f g h i j k l m n o p q r s t u v w x y z))

(define (letter? something)
(and (word? something)

(= 1 (count something))
(vector-member something alphabet)))

(define (number->letter num)
(vector-ref alphabet (- num 1)))

Exercises

25.1

25.2

25.3

25.4

474 Part VI Sequential Programming

total-cols total-rows

total-rows

z

get-function get-command

(define (letter->number letter)
(+ (vector-member letter alphabet) 1))

(define (vector-member thing vector)
(vector-member-helper thing vector 0))

(define (vector-member-helper thing vector index)
(cond ((= index (vector-length vector)) #f)

((equal? thing (vector-ref vector index)) index)
(else (vector-member-helper thing vector (+ 1 index)))))

(define (remdup lst)
(cond ((null? lst) ’())

((member (car lst) (cdr lst))
(remdup (cdr lst)))
(else (cons (car lst) (remdup (cdr lst))))))

(define (remove bad-item lst)
(filter (lambda (item) (not (equal? item bad-item)))

lst))

The “magic numbers” 26 and 30 (and some numbers derived from them) appear
many times in the text of this program. It’s easy to imagine wanting more rows or
columns.

Create global variables and with values 26 and 30 respectively.
Then modify the spreadsheet program to refer to these variables rather than to the
numbers 26 and 30 directly. When you’re done, redefine to be 40 and see
if it works.

Suggest a way to notate columns beyond . What procedures would have to change
to accommodate this?

Modify the program so that the spreadsheet array is kept as a single vector of 780
elements, instead of a vector of 30 vectors of 26 vectors. What procedures do you have to
change to make this work? (It shouldn’t be very many.)

The procedures and are almost identical in struc-
ture; both look for an argument in an association list. They differ, however, in their
handling of the situation in which the argument is not present in the list. Why?

25.5

25.6

25.7

25.8

25.9

25.10

25.11

> (make-id 4 2)
#(4 2)

14 cells modified

Chapter 25 Implementing the Spreadsheet Program 475

id

put

put

put

print-screen

undo
undo

put undo
put load

exit

accumulate

The reason we had to include the word in each cell ID was so we would be able
to distinguish a list representing a cell ID from a list of some other kind in an expression.
Another way to distinguish cell IDs would be to represent them as vectors, since vectors
do not otherwise appear within expressions. Change the implementation of cell IDs from
three-element lists to two-element vectors:

Make sure the rest of the program still works.

The command can be used to label a cell by using a quoted word as the
“formula.” How does that work? For example, how is such a formula translated into an
expression? How is that expression evaluated? What if the labeled cell has children?

Add commands to move the “window” of cells displayed on the screen without
changing the selected cell. (There are a lot of possible user interfaces for this feature;
pick anything reasonable.)

Modify the command so that after doing its work it prints

(but, of course, using the actual number of cells modified instead of 14). This number
may not be the entire length of a row or column because doesn’t change an existing
formula in a cell when you ask it to set an entire row or column.

Modify the program so that each column remembers the number of digits that
should be displayed after the decimal point (currently always 2). Add a command to set
this value for a specified column. And, of course, modify to use this
information.

Add an command, which causes the effect of the previous command to
be nullified. That is, if the previous command was a cell selection command, will
return to the previously selected cell. If the previous command was a , will
re- the previous expressions in every affected cell. You don’t need to undo or

commands. To do this, you’ll need to modify the way the other commands work.

Add an procedure that can be used as a function in formulas.
Instead of specifying a sequence of cells explicitly, in a formula like

25.12

pin-down accumulate

476 Part VI Sequential Programming

(put (+ c2 c3 c4 c5 c6 c7) c10)

(put (accumulate + c2 c7) c10)

(put (accumulate * a3 c5) d7)
(put (* a3 b3 c3 a4 b4 c4 a5 b5 c5) d7)

we want to be able to say

In general, the two cell names should be taken as corners of a rectangle, all of whose cells
should be included, so these two commands are equivalent:

Modify to convert the form into the corresponding spelled-out
form.

Add variable-width columns to the spreadsheet. There should be a command to
set the print width of a column. This may mean that the spreadsheet can display more or
fewer than six columns.

Project: A Database Program

A Sample Session with Our Database

database

records
fields.

database program

477

Name: Address: City: Potstickers:

Cal’s 1866 Euclid Berkeley nondescript
Hunan 924 Sansome San Francisco none
Mary Chung’s 464 Massachusetts Avenue Cambridge great
Shin Shin 1715 Solano Avenue Berkeley awesome
TC Garden 2507 Hearst Avenue Berkeley doughy
Yet Wah 2140 Clement San Francisco fantastic

A is a large file with lots of related data in it. For example, you might have a
database of your local Chinese restaurants, listing their names, their addresses, and how
good their potstickers are, like this:

There are six in this database, one for each restaurant. Each record contains
four pieces of information; we say that the database has four

A is a program that can create, store, modify, and examine databases.
At the very least, a database program must let you create new databases, enter records,
and save the database to a file. More sophisticated operations involve sorting the records
in a database by a particular field, printing out the contents of the database, counting the
number of records that satisfy a certain condition, taking statistics such as averages, and
so on.

There are many commercial database programs available; our version will have some
of the flavor of more sophisticated programs while leaving out a lot of the details.

Most database programs come with their own programming language built in. Our

"albums"

478 Part VI Sequential Programming

* The double-quote marks are necessary because will be used as a filename when we
save the database to a file.

** We don’t need a field because Matt likes all the albums in this database.

database program will use Scheme itself as the language; you will be able to perform
database commands by invoking Scheme procedures at the Scheme prompt. Here is a
sample session with our program:

First we loaded the database program, then we created a new database called *
with four fields.** Let’s enter some data:

(We used strings for the album titles but sentences for the artists, partly because one of
the titles has an apostrophe in it, but mainly just to demonstrate that fields can contain
any data type.)

> (load "database.scm")
#F
> (new-db "albums" ’(artist title year brian-likes?))
CREATED

> (insert)
Value for ARTIST--> (the beatles)
Value for TITLE--> "A Hard Day’s Night"
Value for YEAR--> 1964
Value for BRIAN-LIKES?--> #t
Insert another? yes
Value for ARTIST--> (the zombies)
Value for TITLE--> "Odessey and Oracle"
Value for YEAR--> 1967
Value for BRIAN-LIKES?--> #t
Insert another? y
Value for ARTIST--> (frank zappa)
Value for TITLE--> "Hot Rats"
Value for YEAR--> 1970
Value for BRIAN-LIKES?--> #f
Insert another? y
Value for ARTIST--> (the beatles)
Value for TITLE--> "Rubber Soul"
Value for YEAR--> 1965
Value for BRIAN-LIKES?--> #t
Insert another? no
INSERTED

albums

matt-likes?

Project: A Database Program 479

> (list-db)
RECORD 1
ARTIST: (THE BEATLES)
TITLE: Rubber Soul
YEAR: 1965
BRIAN-LIKES?: #T

RECORD 2
ARTIST: (FRANK ZAPPA)
TITLE: Hot Rats
YEAR: 1970
BRIAN-LIKES?: #F

RECORD 3
ARTIST: (THE ZOMBIES)
TITLE: Odessey and Oracle
YEAR: 1967
BRIAN-LIKES?: #T

RECORD 4
ARTIST: (THE BEATLES)
TITLE: A Hard Day’s Night
YEAR: 1964
BRIAN-LIKES?: #T

LISTED
> (count-db)
4

At this point we start demonstrating features that aren’t actually in the version of the
program that we’ve provided. You will implement these features in this project. We’re
showing them now as if the project were finished to convey the overall flavor of how the
program should work.

We can print out the information in a database, and count the number of records:*

* Readers who are old enough to remember the days before compact discs may be disturbed by
the ambiguity of the word “record,” which could mean either a database record or a phonograph
record. Luckily, in our example it doesn’t matter, because each database record represents a
phonograph record. But we intend the word “record” to mean a database record; we’ll say “album”
if we mean the musical kind.

480 Part VI Sequential Programming

We can insert new records into the database later on:

We can sort the records of the database, basing the sorting order on a particular
field:

> (insert)
Value for ARTIST--> (the bill frisell band)
Value for TITLE--> "Where in the World?"
Value for YEAR--> 1991
Value for BRIAN-LIKES?--> #f
Insert another? no
INSERTED

> (sort-on ’year)
YEAR

> (list-db)
RECORD 1
ARTIST: (THE BEATLES)
TITLE: A Hard Day’s Night
YEAR: 1964
BRIAN-LIKES?: #T

RECORD 2
ARTIST: (THE BEATLES)
TITLE: Rubber Soul
YEAR: 1965
BRIAN-LIKES?: #T

RECORD 3
ARTIST: (THE ZOMBIES)
TITLE: Odessey and Oracle
YEAR: 1967
BRIAN-LIKES?: #T

RECORD 4
ARTIST: (FRANK ZAPPA)
TITLE: Hot Rats
YEAR: 1970
BRIAN-LIKES?: #F

edit-record
#f

Project: A Database Program 481

How Databases Are Stored Internally

We can change the information in a record:

(The procedure takes a record number as its argument. In this case, we
wanted the first record. Also, the way you stop editing a record is by entering as the
field name.)

Finally, we can save a database to a file and retrieve it later:

Our program will store a database as a vector of three elements: the file name associated
with the database, a list of the names of the fields of the database, and a list of records in
the database.

RECORD 5
ARTIST: (THE BILL FRISELL BAND)
TITLE: Where in the World?
YEAR: 1991
BRIAN-LIKES?: #F

LISTED

> (edit-record 1)
ARTIST: (THE BEATLES)
TITLE: A Hard Day’s Night
YEAR: 1964
BRIAN-LIKES?: #T

Edit which field? title
New value for TITLE--> "A Hard Day’s Night (original soundtrack)"
ARTIST: (THE BEATLES)
TITLE: A Hard Day’s Night (original soundtrack)
YEAR: 1964
BRIAN-LIKES?: #T

Edit which field? #f
EDITED

> (save-db)
SAVED

> (load-db "albums")
LOADED

edit

cons

albums

482 Part VI Sequential Programming

#("albums"
(ARTIST TITLE YEAR BRIAN-LIKES?)
(#((THE BEATLES) "A Hard Day’s Night (original soundtrack)" 1964 #T)
#((THE BEATLES) "Rubber Soul" 1965 #T)
#((THE ZOMBIES) "Odessey and Oracle" 1967 #T)
#((FRANK ZAPPA) "Hot Rats" 1970 #F)
#((THE BILL FRISELL BAND) "Where in the World?" 1991 #F)))

;;; The database ADT: a filename, list of fields and list of records

(define (make-db filename fields records)
(vector filename fields records))

(define (db-filename db)
(vector-ref db 0))

(define (db-set-filename! db filename)
(vector-set! db 0 filename))

(define (db-fields db)
(vector-ref db 1))

(define (db-set-fields! db fields)
(vector-set! db 1 fields))

Each record of the database is itself a vector, containing values for the various fields.
(So the length of a record vector depends on the number of fields in the database.)

Why is each record a vector, but the collection of records a list? Records have to be
vectors because they are mutable; the command lets you change the value of a field
for a record. But there is no command to replace an entire record with a new one, so the
list of records doesn’t have to be mutable.

An advantage of storing the records in a list instead of a vector is that it’s easy to
insert new records. If you’ve got a new record and a list of the old records, you simply

the new record onto the old ones, and that’s the new list. You need to mutate the
vector that represents the entire database to contain this new list instead of the old one,
but you don’t need to mutate the list itself.

Here’s the database we created, as it looks to Scheme:

We’ll treat databases as an abstract data type; here is how we implement it:

#f

new-db

Project: A Database Program 483

The Current Database

Implementing the Database Program Commands

(define (db-records db)
(vector-ref db 2))

(define (db-set-records! db records)
(vector-set! db 2 records))

(define current-state (vector #f))

(define (no-db?)
(not (vector-ref current-state 0)))

(define (current-db)
(if (no-db?)

(error "No current database!")
(vector-ref current-state 0)))

(define (set-current-db! db)
(vector-set! current-state 0 db))

(define (current-fields)
(db-fields (current-db)))

(define (new-db filename fields)
(set-current-db! (make-db filename fields ’()))
’created)

The database program works on one database at a time. Every command implicitly refers
to the current database. Since the program might switch to a new database, it has to keep
the current database in a vector that it can mutate if necessary. For now, the current
database is the only state information that the program keeps, so it’s stored in a vector
of length one. If there is no current database (for example, when you start the database
program), the value is stored in this vector:

Once we have the basic structure of the database program, the work consists of inventing
the various database operations. Here is the procedure:

insert

Additions to the Program

484 Part VI Sequential Programming

(Remember that when you first create a database there are no records in it.)

Here’s the procedure:

The database program we’ve shown so far has the structure of a more sophisticated
program, but it’s missing almost every feature you’d want it to have. Some of the
following additions are ones that we’ve demonstrated, but for which we haven’t provided
an implementation; others are introduced here for the first time.

(define (insert)
(let ((new-record (get-record)))
(db-insert new-record (current-db)))

(if (ask "Insert another? ")
(insert)
’inserted))

(define (db-insert record db)
(db-set-records! db (cons record (db-records db))))

(define (get-record)
(get-record-loop 0

(make-vector (length (current-fields)))
(current-fields)))

(define (get-record-loop which-field record fields)
(if (null? fields)

record
(begin (display "Value for ")

(display (car fields))
(display "--> ")
(vector-set! record which-field (read))
(get-record-loop (+ which-field 1) record (cdr fields)))))

(define (ask question)
(display question)
(let ((answer (read)))
(cond ((equal? (first answer) ’y) #t)

((equal? (first answer) ’n) #f)
(else (show "Please type Y or N.")

(ask question)))))

and

Project: A Database Program 485

Count-db

List-db

Edit-record

Save-db Load-db

count-db

list-db

edit-record,

save-db load-db. Save-db

Load-db

save-db

write display show

In all of these additions, think about possible error conditions and how to handle
them. Try to find a balance between failing even on errors that are very likely to occur
and having an entirely safe program that has more error checking than actual content.

Implement the procedure. It should take no arguments, and it should return
the number of records in the current database.

Implement the procedure. It should take no arguments, and it should print
the current database in the format shown earlier.

Implement which takes a number between one and the number of
records in the current database as its argument. It should allow the user to interactively
edit the given record of the current database, as shown earlier.

Write and should take no arguments and should save the
current database into a file with the name that was given when the database was created.
Make sure to save the field names as well as the information in the records.

should take one argument, the filename of the database you want to load.
It should replace the current database with the one in the specified file. (Needless to say,
it should expect files to be in the format that creates.)

In order to save information to a file in a form that Scheme will be able to read
back later, you will need to use the procedure instead of or , as
discussed in Chapter 22.

Clear-current-db!

Get

486 Part VI Sequential Programming

#(SPROCKET 15 23 17 2)

> (get ’title ’#((the zombies) "Odessey and Oracle" 1967 #t))
"Odessey and Oracle"

new-db load-db New-db
load-db

clear-current-db!
clear-current-db!

save-db

new-db load-db clear-current-db!

price

get

Get
blank-record

blank-record
record-set!

The and procedures change the current database. creates a
new, blank database, while reads in an old database from a file. In both cases,
the program just throws out the current database. If you forgot to save it, you could lose
a lot of work.

Write a procedure that clears the current database. If there
is no current database, should do nothing. Otherwise, it should
ask the user whether to save the database, and if so it should call .

Modify and to invoke .

Many of the kinds of things that you would want to do to a database involve looking up
the information in a record by the field name. For example, the user might want to list
only the artists and titles of the album database, or sort it by year, or list only the albums
that Brian likes.

But this isn’t totally straightforward, since a record doesn’t contain any information
about names of fields. It doesn’t make sense to ask what value the field has in the
record

without knowing the names of the fields of the current database and their order.

Write a procedure that takes two arguments, a field name and a record, and
returns the given field of the given record. It should work by looking up the field name
in the list of field names of the current database.

can be thought of as a selector for the record data type. To continue
the implementation of a record ADT, write a constructor that takes no
arguments and returns a record with no values in its fields. (Why doesn’t
need any arguments?) Finally, write the mutator that takes three
arguments: a field name, a record, and a new value for the corresponding field.

Sort

sort

#t #f

Project: A Database Program 487

Modify the rest of the database program to use this ADT instead of directly manipu-
lating the records as vectors.

Write a command that takes a predicate as its argument and sorts the database
according to that predicate. The predicate should take two records as arguments and
return if the first record belongs before the second one, or otherwise. Here’s an
example:

> (sort (lambda (r1 r2) (before? (get ’title r1) (get ’title r2))))
SORTED

> (list-db)
RECORD 1
ARTIST: (THE BEATLES)
TITLE: A Hard Day’s Night (original soundtrack)
YEAR: 1964
BRIAN-LIKES?: #T

RECORD 2
ARTIST: (FRANK ZAPPA)
TITLE: Hot Rats
YEAR: 1970
BRIAN-LIKES?: #F

RECORD 3
ARTIST: (THE ZOMBIES)
TITLE: Odessey and Oracle
YEAR: 1967
BRIAN-LIKES?: #T

RECORD 4
ARTIST: (THE BEATLES)
TITLE: Rubber Soul
YEAR: 1965
BRIAN-LIKES?: #T

RECORD 5
ARTIST: (THE BILL FRISELL BAND)
TITLE: Where in the World?
YEAR: 1991
BRIAN-LIKES?: #F

488 Part VI Sequential Programming

Note: Don’t invent a sorting algorithm for this problem. You can just use one of the
sorting procedures from Chapter 15 and modify it slightly to sort a list of records instead
of a sentence of words.

LISTED

> (sort (lambda (r1 r2) (< (get ’year r1) (get ’year r2))))
SORTED

> (list-db)
RECORD 1
ARTIST: (THE BEATLES)
TITLE: A Hard Day’s Night (original soundtrack)
YEAR: 1964
BRIAN-LIKES?: #T

RECORD 2
ARTIST: (THE BEATLES)
TITLE: Rubber Soul
YEAR: 1965
BRIAN-LIKES?: #T

RECORD 3
ARTIST: (THE ZOMBIES)
TITLE: Odessey and Oracle
YEAR: 1967
BRIAN-LIKES?: #T

RECORD 4
ARTIST: (FRANK ZAPPA)
TITLE: Hot Rats
YEAR: 1970
BRIAN-LIKES?: #F

RECORD 5
ARTIST: (THE BILL FRISELL BAND)
TITLE: Where in the World?
YEAR: 1991
BRIAN-LIKES?: #F

LISTED

Sort-on-by

Generic-before?

Project: A Database Program 489

sort
sort-on-by

sort

sort

generic-before? #t

generic-before? <
generic-before? before?

artist
sent-before?

generic-before?

(sort-on-by ’title before?)

(sort-on-by ’year <)

> (generic-before? ’(magical mystery tour) ’(yellow submarine))
#T
> (generic-before? ’(is that you?) ’(before we were born))
#F
> (generic-before? ’(bass desires) ’(bass desires second sight))
#T

Although is a very general-purpose tool, the way that you have to specify how to sort
the database is cumbersome. Write a procedure that takes two arguments,
the name of a field and a predicate. It should invoke with an appropriate predicate
to achieve the desired sort. For example, you could say

and

instead of the two examples we showed earlier.

The next improvement is to eliminate the need to specify a predicate explicitly. Write a
procedure that takes two arguments of any types and returns if
the first comes before the second. The meaning of “before” depends on the types of the
arguments:

If the arguments are numbers, should use . If the arguments
are words that aren’t numbers, then should use to make
the comparison.

What if the arguments are lists? For example, suppose you want to sort on the
field in the albums example. The way to compare two lists is element by

element, just as in the procedure in Chapter 14.

But should also work for structured lists:

Sort-on

Add-field

490 Part VI Sequential Programming

sort-on
generic-before?

add-field
Add-field

> (generic-before? ’(norwegian wood (this bird has flown))
’(norwegian wood (tastes so good)))

#F

> (generic-before? ’(in line) ’rambler)
#T

> (generic-before? ’(news for lulu) ’cobra)
#F

> (add-field ’category ’rock)
ADDED

> (edit-record 5)
CATEGORY: ROCK
ARTIST: (THE BILL FRISELL BAND)
TITLE: Where in the World?
YEAR: 1991
BRIAN-LIKES?: #F

What if the two arguments are of different types? If you’re comparing a number and
a non-numeric word, compare them alphabetically. If you’re comparing a word to a list,
treat the word as a one-word list, like this:

Now write , which takes the name of a field as its argument and sorts the current
database on that field, using as the comparison predicate.

Sometimes you discover that you don’t have enough fields in your database. Write a
procedure that takes two arguments: the name of a new field and an initial
value for that field. should modify the current database to include the new
field. Any existing records in the database should be given the indicated initial value for
the field. Here’s an example:

Project: A Database Program 491

Edit which field? category
New value for CATEGORY--> jazz
CATEGORY: JAZZ
ARTIST: (THE BILL FRISELL BAND)
TITLE: Where in the World?
YEAR: 1991
BRIAN-LIKES?: #F

Edit which field? #f
EDITED

> (list-db)
RECORD 1
CATEGORY: ROCK
ARTIST: (THE BEATLES)
TITLE: A Hard Day’s Night (original soundtrack)
YEAR: 1964
BRIAN-LIKES?: #T

RECORD 2
CATEGORY: ROCK
ARTIST: (THE BEATLES)
TITLE: Rubber Soul
YEAR: 1965
BRIAN-LIKES?: #T

RECORD 3
CATEGORY: ROCK
ARTIST: (THE ZOMBIES)
TITLE: Odessey and Oracle
YEAR: 1967
BRIAN-LIKES?: #T

RECORD 4
CATEGORY: ROCK
ARTIST: (FRANK ZAPPA)
TITLE: Hot Rats
YEAR: 1970
BRIAN-LIKES?: #F

492 Part VI Sequential Programming

add-field
#f

blank-record
get

adjoin-field
Adjoin-field
cons

RECORD 5
CATEGORY: JAZZ
ARTIST: (THE BILL FRISELL BAND)
TITLE: Where in the World?
YEAR: 1991
BRIAN-LIKES?: #F

LISTED

#((THE BEATLES) "Rubber Soul" 1965 #T)

#(ROCK (THE BEATLES) "Rubber Soul" 1965 #T)

If you like, you can write so that it will accept either one or two
arguments. If given only one argument, it should use as the default field value.

Note: We said earlier that each record is a vector but the collection of records is a
list because we generally want to mutate fields in a record, but not add new ones, whereas
we generally want to add new records, but not replace existing ones completely. This
problem is an exception; we’re asking you to add an element to a vector. To do this,
you’ll have to create a new, longer vector for each record. Your program will probably
run slowly as a result. This is okay because adding fields to an existing database is very
unusual. Commercial database programs are also slow at this; now you know why.

You can’t solve this problem in a way that respects the current version of the record
ADT. Think about trying to turn the record

into the record

It seems simple enough: Make a new record of the correct size, and fill in all the
values of the old fields from the old record. But does this happen before or after you
change the list of current fields in the database? If before, you can’t call
to create a new record of the correct size. If after, you can’t call to extract the field
values of the old record, because the field names have changed.

There are (at least) three solutions to this dilemma. One is to abandon the record
ADT, since it’s turning out to be more trouble than it’s worth. Using the underlying
vector tools, it would be easy to transform old-field records into new-field records.

The second solution is to create another constructor for records, .
would take a record and a new field value, and would be analogous to

.

Select-by

easy

select

Project: A Database Program 493

get record-set! blank-record

get record-set! blank-record

Add-field

current-state

count-selected
list-selected count-db list-db

select-by

(define (get fieldname record)
(get-with-these-fields fieldname record (current-fields)))

> (select-by (lambda (record) (get ’brian-likes? record)))
SELECTED

> (count-db)
5

The last solution is the most complicated, but perhaps the most elegant. The reason
our ADT doesn’t work is that , , and don’t just get
information from their arguments; they also examine the current fields of the database.
You could write a new ADT implementation in which each procedure took a list of
fields as an extra argument. Then , , and could be
implemented in this style:

could use the underlying ADT, and the rest of the program could continue
to use the existing version.

We’ve put a lot of effort into figuring out how to design this small part of the overall
project. Earlier we showed you examples in which using an ADT made it to modify a
program; those were realistic, but it’s also realistic that sometimes making an ADT work
can add to the effort.

Sometimes you only want to look at certain records in your database. For example,
suppose you just want to list the albums that Brian likes, or just the ones from before
1971. Also, you might want to save a portion of the database to a file, so that you could
have, for example, a database of nothing but Beatles albums. In general, you need a way
to certain records of the database.

To do this, change the vector to have another element: a selection
predicate. This predicate takes a record as its argument and returns whether or not
to include this record in the restricted database. Also write and

, which are just like and but include only those
records that satisfy the predicate. The initial predicate should include all records.

The procedure should take a predicate and put it into the right place.
Here’s an example:

Save-selection

494 Part VI Sequential Programming

* Even if you wanted to save the predicate, there’s no way to write a procedure into a file.

count-selected list-selected
current-selected-records

Save-db

save-selection save-db

> (count-selected)
3

> (select-by (lambda (record) (equal? (get ’category record) ’jazz)))
SELECTED

> (list-selected)
RECORD 5
CATEGORY: JAZZ
ARTIST: (THE BILL FRISELL BAND)
TITLE: Where in the World?
YEAR: 1991
BRIAN-LIKES?: #F

LISTED

> (select-by (lambda (record) #t))
SELECTED

> (count-selected)
5

You can’t just throw away the records that aren’t selected. You have to keep them in
memory somehow, but make them invisible to and .
The way to do that is to create another selector, , that
returns a list of the selected records of the current database.

The selection predicate isn’t part of a database; it’s just a piece of state that’s part of
the user interface. So you don’t have to save the predicate when you save the database to
a file.* should save the entire database.

Write a procedure that’s similar to but saves only the
currently selected records. It should take a file name as its argument.

Merge-db

Project: A Database Program 495

merge-db

merge-db

"bands"

"albums"

Artist: Members:
(rush) (geddy alex neil)
(the beatles) (john paul george ringo)
(the bill frisell band) (bill hank kermit joey)
(the zombies) (rod chris colin hugh paul)

> (sort-on ’artist)
ARTIST

> (merge-db "bands" ’artist)
MERGED

> (list-db)
RECORD 1
CATEGORY: ROCK
ARTIST: (FRANK ZAPPA)
TITLE: Hot Rats
YEAR: 1970
BRIAN-LIKES?: #F
MEMBERS: #F

RECORD 2
CATEGORY: ROCK
ARTIST: (THE BEATLES)
TITLE: A Hard Day’s Night (original soundtrack)
YEAR: 1964
BRIAN-LIKES?: #T
MEMBERS: (JOHN PAUL GEORGE RINGO)

One of the most powerful operations on a database is to merge it with another database.
Write a procedure that takes two arguments: the file name of another database
and the name of a field that the given database has in common with the current database.
Both databases (the current one and the one specified) must already be sorted by the
given field.

The effect of the command is to add fields from the specified database
to the records of the current database. For example, suppose you had a database called

with the following information:

You should be able to do the following (assuming is the current database):

"bands" members
#f

join

496 Part VI Sequential Programming

Since there was no entry for Frank Zappa in the database, the field
was given the default value . If there are two or more records in the specified database
with the same value for the given field, just take the information from the first one.

(By the way, this problem has a lot in common with the procedure from
Exercise 22.8.)

This is a complicated problem, so we’re giving a hint:

RECORD 3
CATEGORY: ROCK
ARTIST: (THE BEATLES)
TITLE: Rubber Soul
YEAR: 1965
BRIAN-LIKES?: #T
MEMBERS: (JOHN PAUL GEORGE RINGO)

RECORD 4
CATEGORY: JAZZ
ARTIST: (THE BILL FRISELL BAND)
TITLE: Where in the World?
YEAR: 1991
BRIAN-LIKES?: #F
MEMBERS: (BILL HANK KERMIT JOEY)

RECORD 5
CATEGORY: ROCK
ARTIST: (THE ZOMBIES)
TITLE: Odessey and Oracle
YEAR: 1967
BRIAN-LIKES?: #T
MEMBERS: (ROD CHRIS COLIN HUGH PAUL)

LISTED

(define (merge-db other-name common-field)
(let ((other-db (read-db-from-disk other-name))

(original-fields (current-fields)))
(set-current-fields! (merge-fields original-fields

(db-fields other-db)))
(set-current-records! (merge-db-helper original-fields

(current-records)
(db-fields other-db)
(db-records other-db)
common-field))))

Extra Work for Hotshots

get-with-these-fields

Project: A Database Program 497

This procedure shows one possible overall structure for the program. You can fill
in the structure by writing the necessary subprocedures. (If you prefer to start with
a different overall design, that’s fine too.) Our earlier suggestion about writing a

procedure is relevant here also.

Compare your program to a real database program and see if you can add some of its
features. For example, many database programs have primitive facilities for averaging the
value of a field over certain records. Another feature you might want to try to implement
is two-dimensional printing, in which each column is a field and each row is a record.

