
Appendices

(+ 2 3) 5

A Running Scheme

shell finder explorer

507

The Program Development Cycle

The precise incantations needed to start Scheme depend on the particular version you’re
using and the model of computer and operating system you have. It’s beyond the scope
of this book to teach you the first steps in using a computer; we assume you’ve already
used other programs, if not Scheme. But in this appendix we suggest a few general ideas
and point out some knotty details.

One thing that beginners often forget is that a computer generally has many different
programs available, and each one has its own capabilities and its own method of operation.
If you think of yourself as interacting with “the computer,” you’re likely to try to use a
command suitable for one program when you’re actually using a different program. In
learning to program in Scheme, you’ll probably use at least three programs: Scheme
itself, the operating system’s (which is callled on the Macintosh and on
Windows), and a text editor. (The text editor may be part of the Scheme package or it
may be an entirely separate program.) The shell allows you to run other programs, such
as a printing utility or an electronic mail reader.

If you say to your text editor, it won’t respond by printing . Instead, it will
insert the seven characters that you typed into the file that you’re editing. If you type the
same thing to Scheme, it will evaluate the expression.

Scheme is an interactive language: You can write a program by typing its definition directly
into the Scheme interpreter. This ability to interact with Scheme is a great advantage
for one-time calculations and for exploratory work, but it’s not the best approach for the
systematic development of a large program.

>

.scmsomething

something

> (+ 2 3)
5

(load " .scm")

integrated

508 Appendix A Running Scheme

There are two issues to consider. First, when writing a large program, you generally
don’t get it perfect the first time. You make both typing errors and program logic errors,
and so you must be able to revise a definition. Typing directly to Scheme, the only way to
make such a revision is to retype the entire definition. Second, Scheme does not provide
a mechanism to save your work in a permanent file.

For these reasons, programs are generally typed into another program, a text editor,
rather than directly at the Scheme prompt. As we’ll explain in the next section, there
are several ways in which an editing program can be with Scheme, so that the
work you do in the editor can be communicated easily to Scheme. But the distinction
between Scheme and the editor is easiest to understand if we start by considering the
worst possible situation, in which the two are not integrated.

Imagine, therefore, that you have two separate programs available on your computer.
One program is a Scheme interpreter. When you start Scheme, you may see some initial
message, and then you see a prompt, which is a signal from Scheme that it’s ready for you
to type something. In this book we’ve used the character “ ” as the prompt. Then, as we
explain in the text, you can type an expression, and Scheme will compute and print the
value:

Your other program is a text editor. This might be a general-purpose word processing
program, with facilities for fancy text formatting, or it might be an editor intended
specifically for computer programs. Many editors “know” about Lisp programs and have
helpful features, such as automatic indentation, selection of complete expressions, and
showing you the matching open parenthesis when you type a close parenthesis.

To write a program, you use the editor. Although you are typing Scheme expressions,
you’re not talking to Scheme itself, and so the expressions are not evaluated as you type
them. Instead, they just appear on the screen like any other text. When you’re ready
to try out your program, you tell the editor to save the text in a file. (The command to
save the program text is the same as it would be for any other text; we assume that you
already know how to use the editor on your computer.) You can give the file any name
you want, although many people like to use names like to make it easy
to recognize files that contain Scheme programs.

Now you switch from the editor to Scheme. To read your program file into Scheme,
you enter the expression

Integrated Editing

Appendix A Running Scheme 509

load

ftp://prep.ai.mit.edu/pub/gnu/

* If you see an error message about “end of file” or “EOF,” it probably means that the file you
are trying to load contains unbalanced parentheses; you have started an expression with a left
parenthesis, and the file ended before Scheme saw a matching right parenthesis.

This tells Scheme to read expressions from the specified file.*

Once Scheme has read the program definitions from your file, you can continue
typing expressions to Scheme in order to test your program. If this testing uncovers an
error, you will want to change some definition. Instead of typing the changed definition
directly into Scheme, which would only make a temporary change in your program, you
switch back to the editor and make the change in your program file. Then switch back
to Scheme, and the corrected file.

This sequence of steps—edit a file, make changes, save the file, switch to Scheme,
load the file, test the program, find an error—is called a “development cycle” because
what comes after “find an error” is editing the file, beginning another round of the same
steps.

The development process can become much more convenient if Scheme and the editor
“know about” each other. For example, instead of having to reload an entire file when
you change one procedure definition, it’s faster if your editor can tell Scheme just the
one new definition. There are three general approaches to this integration: First, the
editor can be in overall charge, with the Scheme interpreter running under control of
the editor. Second, Scheme can be in charge, with the editor running under Scheme’s
supervision. Third, Scheme and the editor can be separate programs, both running
under control of a third program, such as a window system, that allows information to be
transferred between them.

If you’re using a Unix system, you will be able to take a separate editor program and
run Scheme from within that editor. The editor can copy any part of your program into the
running Scheme, as if you had typed it to Scheme yourself. We use Jove, a free, small, fast
version of EMACS. Most people use the more featureful GNU version of EMACS, which is
installed on most Unix systems and available at
and many mirror sites for download.

If you’re using a Macintosh or Windows version of Scheme, it will probably come
with its own text editor and instructions on how to use it. These editors typically provide
standard word-processing features such as cut and paste, search and replace, and saving

•

(load "simply.scm")

Getting Our Programs

510 Appendix A Running Scheme

README

simply.scm
functions.scm functions
ttt.scm
match.scm
spread.scm
database.scm
copyleft

simply.scm

ftp://anarres.cs.berkeley.edu/pub/scheme/

files. Also, they typically have a way to ask Scheme to evaluate an expression directly from
the editor.

If you’re using SCM under DOS, you should read the section “Editing Scheme Code”
in the file that comes with the SCM distribution. It will explain that editing can
be done in different ways depending on the precise software available to you. You can
buy a DOS editor that works like the Unix editors, or you can ask SCM to start a separate
editor program while SCM remains active.

Finally, if you’re running Scheme under Windows or another windowing operating
system (like X or the Macintosh Finder), you can run any editor in another window and
use the cut and paste facility to transfer information between the editor and Scheme.

This book uses some programs that we wrote in Scheme. You’ll want these files available
to you while reading the book:

extended Scheme primitives
the program of Chapters 2 and 21
the tic-tac-toe example from Chapter 10
the pattern matcher example from Chapter 16
the spreadsheet program example from Chapter 24
the beginning of the database project
the GNU General Public License (see Appendix D)

In particular, the file must be loaded into Scheme to allow anything
in the book to work. Some Scheme systems allow you to load such a “startup” file
permanently, so that it’ll be there automatically from then on. In other versions of
Scheme, you must say

at the beginning of every Scheme session.

There are three ways to get these program files:

If you have access to the Internet, the most recent versions of all these files can be
found at

•

•

Appendix A Running Scheme 511

Tuning Our Programs for Your System

> (random 5)

> (error "Your error is" "string")

(define (error-printform x) x)

random

random

simply.scm

simply.scm random

string
"string" simply.scm

error-printform

read

If you know someone who already has these files, you may copy them and distribute
them freely. (The programs are copyrighted but are provided under a license that
allows unlimited redistribution on a nonprofit basis; see Appendix D.)

If you’re stranded on a desert island with nothing but a computer and a copy of this
book, you can type them in yourself; complete listings for all six programs, plus the
GNU Public License, appear in the text of the book.

Almost all of the programs we distribute with this book will work without modification
in the popular versions of Scheme. We’ve included “defensive” procedures that allow
our programs to work even in versions that don’t conform to current Scheme standards
in various ways. However, there are a few details that we couldn’t make uniform in all
versions.

1. Many versions of Scheme include a procedure to generate random
numbers, but the standard does not require it, and so we’ve provided one just in case. If
your Scheme includes a primitive , it’s probably better than the one we provide,
because we have no way to choose a different starting value in each Scheme session.

Before loading into Scheme, do the following experiment:

If you get an error message, do nothing. If you get a random number as the result, edit
and remove the definition of .

2. Do the following experiment:

If the message you get doesn’t include quotation marks around the word , then
do nothing. But if you do see with quotation marks, edit and
change the definition of to

3. Although the Scheme standard says that the procedure should not read the
newline character following an expression that it reads, some old versions of Scheme get
this wrong.

512 Appendix A Running Scheme

> (read-line)

> (butfirst 1024)
"024"

> (+ 3 (butfirst 1024))
27

> (strings-are-numbers #f)

> (strings-are-numbers #t)

simply.scm

return enter
return enter

()
return enter

functions.scm read-line
functions

butfirst 024
24 butfirst

strings-are-numbers

After loading , do the following experiment:

End the line with the or key (whichever is appropriate in your version
of Scheme) as usual, but don’t type a second or yet. If Scheme prints

right away, skip this paragraph; your version of Scheme behaves correctly. If, on the
other hand, nothing happens, type another or . In this case you must
edit and remove the invocation of on the first line of the
body of the procedure.

4. There is a substantial loss of efficiency in treating strings of digits as numbers in
some contexts and as text in other contexts. When we’re treating 1024 as text, we want
to be able to take its , which should be 024. But in Scheme, is the same
as , so instead returns a string:

Yet we want to be able to do arithmetic on this value:

To accomplish this, we redefine all of Scheme’s arithmetic procedures to accept strings
of digits and convert them to numbers. This redefinition slows down all arithmetic, not
just arithmetic on strange numbers, and it’s only rarely important to the programs we
write. Therefore, we’ve provided a way to turn this part of the package off and on again.
If your programs run too slowly, try saying

If you find that some program doesn’t work because it tries to do arithmetic on a digit
string and gets an error message, you can say

to restore the original behavior of our programs. We recommend that you leave
true while exploring the first few chapters, so that the behavior

of the word data type will be consistent. When you get to the large example programs,
you may want to change to false.

Loading Our Programs

load

load

load

load book-load

Appendix A Running Scheme 513

* Suggestion for instructors: when we teach this class, we define a procedure like

so that students can just say

(define (book-load filename)
(load (string-append "/usr/cs3/progs-from-book/" filename)))

(book-load "functions.scm")

UNIX-SCHEME> (load "/usr/people/matt/scheme-stuff/simply.scm")

WINDOWS-SCHEME> (load "c:\\scheme\\simply.scm")

MAC-SCHEME> (load "Hard Disk:Scheme Folder:simply.scm")

Scheme’s procedure doesn’t scan your entire disk looking for the file you want
to load. Instead, it only looks in one particular directory (DOS/Unix) or folder
(Macintosh/Windows). If you want to load our programs, you have to make sure that
Scheme can find them.

The first way to accomplish this is to give the full “path” as part of the argument to
. Here are some examples:*

Under Unix, directories in a path are separated by forward slash characters. Under
Windows and DOS, directories are separated by backward slash characters, which have
a special meaning to Scheme. So you must use double backslashes as in our example
above. On a Macintosh, you separate the parts of a path with colons. (However, most
versions of Scheme for the Macintosh or Windows have a load command in one of the
menus that opens a standard file selection dialog box, so you can use that instead.)

The other possibility is to put the files in the place where your version of Scheme
looks for them. In many versions of Scheme, looks for files in the folder that
contains the Scheme program itself. Put our files in that folder.

On Unix, the default loading directory is whatever directory you’re in at the moment.
If you want to work on different projects in different directories, there’s no way to make it
so that will always find our files. (But see our suggestion about writing .)

n

•

•

•

•

init.scm load
simply.scm

trace

Versions of Scheme

Scheme Standards

http://swissnet.ai.mit.edu/scheme-home.html
http://www.schemers.org
http://www.cs.indiana.edu/scheme-repository

debugger

leave

initialization file

Revised Report on the
Algorithmic Language Scheme.

IEEE Standard for the Scheme Programming Language,

514 Appendix A Running Scheme

There are lots of them, both free and commercial. Three places to look for pointers are

In general, there are four things you should be sure to learn about whatever version
of Scheme you choose:

Most versions of Scheme include a to help you find program errors. If you
call a primitive with an argument not in its domain, for example, Scheme will start the
debugger, which will have features to let you find out where in your program the error
occurred. These debuggers vary greatly among versions of Scheme. The first thing you
should learn is how to the debugger, so you can get back to a Scheme prompt!

Many versions of Scheme will read an if you create one. That is,
when you start Scheme, it will look for a file of a particular name (something like

, but not usually exactly that), and if there is such a file, Scheme will
it automatically. You can copy our file to the proper filename for your
version, and you’ll have our added primitives available every time you start Scheme.

Most versions of Scheme provide a capability, but the format of the trace results
are quite different from one version to another.

If you are using a Macintosh, one thing to watch out for is that some versions of Scheme
expect you to use the ENTER key at the end of an expression, while others expect you
to use the RETURN key.

The Web sites listed above will provide the latest version of the
You can get the document in either Postscript or HTML

format.

IEEE Standard 1178-1990, may
be ordered from IEEE by calling 1-800-678-IEEE or 908-981-1393 or writing IEEE Service
Center, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331, and using order
number SH14209 ($28 for IEEE members, $40 for others). ISBN 1-55937-125-0.

515

B Common Lisp

Why Common Lisp Exists

sort
number-name substitute

The two most popular dialects of Lisp are Scheme and Common Lisp. This appendix,
which assumes that you have finished the rest of this book, describes the most important
differences between Scheme and Common Lisp so that you will be able to use Common
Lisp if you need to. Common Lisp is the most popular language among Artificial
Intelligence researchers, so AI courses often use Common Lisp.

Since the beginning of Lisp, many versions of the language were developed. Each dialect
reflected different ideas about the most important capabilities to include in the language.
This diversity made Lisp an exciting arena for research, but it also meant that a Lisp
program written for one dialect couldn’t be used elsewhere.

In 1984, a group of Lisp developers decided to define a version of Lisp that would
combine the capabilities of all their favorite dialects, so that in the future they would all
use the same language; thus the name “Common” Lisp. Common Lisp was not the first
attempt at a universal Lisp dialect, but it was more successful than earlier efforts. In 1985
a revision of the language was begun under the aegis of ANSI, the American National
Standards Institute. This ANSI sponsorship gave Common Lisp an official status that has
contributed to its growing acceptance.

Since Common Lisp was designed by combining the capabilities of many earlier
dialects, it’s an enormous language with nearly 1000 primitives, including versions of
several programs in this book. There is a primitive procedure, a procedure like

that spells numbers in English, and a procedure identical
to the one you wrote in an exercise, to name a few.

516 Appendix B Common Lisp

define

defun
defvar

defvar
defvar setq

p

null? null nullp

Defining Procedures and Variables

The Naming Convention for Predicates

(defun square (x)
(* x x))

(define (square x)
(* x x))

common-lisp> (defvar x 6)
6

common-lisp> x
6

If you’re writing your own programs in Common Lisp, you can ignore all the extra
features and just use the capabilities you already know from Scheme. If you’re trying
to read someone else’s Common Lisp program, we expect that you will have to look up
many primitive procedures in a reference manual.

One minor difference between Scheme and Common Lisp is in the way procedures are
defined. In Common Lisp,

means the same as Scheme’s

In Scheme, is used both for procedures and for variables whose values aren’t
procedures. In Common Lisp, procedures are given names by a mechanism separate
from the general variable mechanism; is only for procedures. To define a variable,
use :

In Common Lisp, returns the name of the variable you define. If a variable has
already been defined, will not change its value; for that you must use .

In Common Lisp, names of predicate procedures end in a “ ” (for “predicate”) instead
of a question mark. Unfortunately, this convention isn’t followed strictly. For example,
Common Lisp’s version of the predicate is just “ ,” not “ .”

do

Appendix B Common Lisp 517

No Words or Sentences

True and False

accumulate appearances before? bf bl butfirst butlast count
empty? every first item keep last member? se sentence word
word? map
reduce append

#t #f
nil

Nil
t

nil

common-lisp> (= 2 3)
NIL

common-lisp> (cdr ’(one-word-list))
NIL

common-lisp> ’()
NIL

common-lisp> ’nil
NIL

common-lisp> nil
NIL

common-lisp> t
T

common-lisp> (if (cdr ’(one-word-list)) ’yes ’no)

We’ve mentioned that Scheme doesn’t really have words and sentences built in; neither
does Common Lisp. So none of the following procedures have Common Lisp equiva-
lents: , , , , , , , ,

, , , , , , , , , , and
. (Common Lisp does have lists, though, and list-related procedures such as ,

, , and so on have equivalents.)

Common Lisp doesn’t have the Boolean values and . Instead, it has a single false
value, , which is also the empty list.

is a strange beast in Common Lisp. It isn’t a variable with the empty list as its
value; it’s a special self-evaluating symbol. There is also , a self-evaluating symbol with a
true value.

Like Scheme, Common Lisp treats every non-false (i.e., non-) value as true. But
be careful; in Common Lisp

Files

anything

518 Appendix B Common Lisp

NO nil

cond else
t

close

read read

nil read

(defun sign (n)
(cond ((> n 0) ’positive)

((= n 0) ’zero)
(t ’negative)))

common-lisp> (defvar out-stream (open "outfile" :direction :output))
#<OUTPUT STREAM "outfile">

common-lisp> (close out-stream)
T

common-lisp> (defvar in-stream (open "infile" :direction :input))
#<INPUT STREAM "infile">

common-lisp> (close in-stream)
T

common-lisp> (read stream nil)

(let ((next (read stream nil ’xyzzy)))
(if (equalp next ’xyzzy)

’done
(do-something next)))

has the value , because the empty list is .

In Common Lisp’s , there is no equivalent to ; Common Lisp programmers
instead use as the condition for their last clause, like this:

Common Lisp’s mechanism for dealing with files is trivially different from Scheme’s.
What Scheme calls “ports,” Common Lisp calls “streams.” Also, there is only one
procedure for opening streams; the direction is specified this way:

Note that the procedure closes both input streams and output streams.

To from an input stream, you must invoke with three arguments:

The indicates that reaching the end of the file should not be an error. If does
reach the end of the file, instead of returning a special end-of-file object it returns its
third argument. It’s possible to choose any value as the indicator for reaching the end of
the file:

Scheme Common Lisp

array

Appendix B Common Lisp 519

Arrays

Equivalents to Scheme Primitives

align format
begin progn
boolean?
c...r (c...r nil) nil
children
close-...-port close
close-all-ports
cond else t
datum
define defun defvar
display princ
eof-object?
equal? equalp
even? evenp
filter remove-if-not
for-each mapc
integer? integerp
lambda
list? listp listp
list-ref nth
list->vector
make-node
make-vector

Common Lisp’s primitive has a similar purpose.

Doesn’t exist; see the section in this appendix about true and false values.
The same, but is instead of an error.
You can use our version from Chapter 18.

Doesn’t exist.
The same, except for ; use instead.
You can use our version from Chapter 18.
Either , for procedures, or , otherwise.

See the section on files.

Discussed later in this appendix.
, except that also returns true for improper lists.

, except that the arguments come in reverse order.
See the section about arrays.
You can use our version from Chapter 18.
See the section about arrays.

It’s important to choose an end-of-file indicator that couldn’t otherwise appear as a value
in the file.

In Common Lisp, vectors are just a special case of the multidimensional data type
that you invented in Exercise 23.15. There are quite a few differences between Common
Lisp arrays and Scheme vectors, none very difficult, but too numerous to describe here.
If you need to use arrays, read about them in a Common Lisp book.

Other than the word and sentence procedures, here is a table of the Scheme primitives
from the table on page 553 that have different names, slightly different behavior, or do
not exist at all in Common Lisp. Scheme procedures not in this list (other than the word
and sentence ones) can be used identically in Common Lisp.

list

anything

two

520 Appendix B Common Lisp

A Separate Name Space for Procedures

See the section on files.

Identical except for end of file. See the section on files.
Doesn’t exist. (Common Lisp’s is like our .)

The same, but computes instead of .

Doesn’t exist.
Doesn’t exist but easy to write.
Doesn’t exist.
See the section about arrays.

map mapcar
newline terpri
null? null
number? numberp
odd? oddp
open-...-file
procedure? functionp
quotient truncate
read
read-line read-line read-string
read-string read-line
reduce (f (f a b) c) (f a (f b c))
remainder rem
repeated
show
show-line
vector-
write prin1

(defun three-copies (list)
(list list list list))

common-lisp> (three-copies ’(drive my car))
((DRIVE MY CAR) (DRIVE MY CAR) (DRIVE MY CAR))

All of the differences noted in this table are fairly minor ones, in the sense that the
translation needed to account for these differences requires little more than renaming.
There is one major conceptual difference between the two languages, however, in the
way they treat names of procedures. Common Lisp allows a procedure and a variable to
have the same name. For example, the program

is perfectly legal.

How can Common Lisp tell that one of the s means the primitive procedure,
but the other ones mean the formal parameter? Symbols in the first position in a list
(right after an open parenthesis) are taken to be names of globally defined procedures.

In Chapter 7 we introduced the image of a blackboard with all the global variables
written on it, which all the Scheme little people can see. In Common Lisp, there are
blackboards: one for global variables, just as in Scheme, and another one for procedures.

Lambda

Appendix B Common Lisp 521

defun

map mapcar

sqrt function

Function Function

lambda

* Common Lisp uses the word “function” to mean “procedure,” whether or not the procedure
implements a function.

common-lisp> (sqrt 144)
12

common-lisp> (mapcar sqrt ’(9 16 25 36))
ERROR: The variable SQRT is unbound.

common-lisp> (function sqrt)
#<PROCEDURE>

common-lisp> (mapcar (function sqrt) ’(9 16 25 36))
(3 4 5 6)

common-lisp> ((lambda (x) (* x x)) 4)
16

The procedure blackboard contains the primitive procedures and the procedures you
define with . Names in the first position of an expression are looked up on the
procedure blackboard.

Therefore, the names of procedures are not variables and cannot be used as actual
argument expressions:

(Common Lisp’s equivalent of is named .)

How, then, do you tell Common Lisp that you want to use the procedure named
as data? You must use the special form.*

’s job is to look up names on the procedure blackboard. (actually
has a more general definition, as you’ll see in a few paragraphs.)

In Common Lisp, as in Scheme, procedures can be named or unnamed. Just as
procedure names in Common Lisp are meaningful only in certain contexts, so are

expressions. They make sense at the beginning of an expression:

FunctionMore about

522 Appendix B Common Lisp

function

function

lambda
Function

function

common-lisp> (function (lambda (x) (* x x)))
#<PROCEDURE>

common-lisp> (mapcar (function (lambda (x) (* x x))) ’(3 4 5 6))
(9 16 25 36)

common-lisp> (lambda (x) (* x x))
ERROR: LAMBDA is not a function

common-lisp> (mapcar (lambda (x) (* x x)) ’(3 4 5 6))
ERROR: LAMBDA is not a function

common-lisp> (mapcar #’(lambda (x) (* x x)) ’(3 4 5 6))
(9 16 25 36)

common-lisp> (mapcar #’cdr ’((hey jude) (eleanor rigby) (yes it is)))
((JUDE) (RIGBY) (IT IS))

#’(lambda (x) (* x x))

’#(lambda (x) (* x x))

or as the argument to :

but they’re meaningless on their own:

The official rule is that returns the “functional interpretation” of its argument.
If the argument is a symbol, that means looking up the procedure associated with that
name. If the argument is a expression, it means creating a new procedure.

uses the same rule that’s used to interpret the first element of a procedure
invocation.

Since is a very commonly used special form, it has an abbreviation:

Don’t confuse

with

The first of these is a function that squares its argument; the second is an array containing
three elements.

Appendix B Common Lisp 523

Writing Higher-Order Procedures

function
function quote

map

null
defun

fn lst
#’square ’(1 2 3 4 5)

fn
fn

funcall

(defun map (fn lst) ;; wrong!
(if (null lst)

’()
(cons (fn (car lst))

(map fn (cdr lst)))))

(map #’square ’(1 2 3 4 5))

(if (null ’(1 2 3 4 5))
’()
(cons (fn (car ’(1 2 3 4 5))

(map #’square (cdr ’(1 2 3 4 5))))))

common-lisp> (map #’square ’(1 2 3 4 5))
ERROR: FN is not a procedure.

It’s unfortunate that the abbreviation for contains a single quote mark,
because the job of is nothing like the job of . You’ll just have to get
used to the “hashquote” notation.

Think about this attempted translation of the procedure:

(In Common Lisp, is one of the predicates whose names don’t end in “p.”
Otherwise, this is the same program we showed you in Chapter 19, except for the ,
of course.)

According to our rule about names in the front of a list, this procedure doesn’t work.
Think about what happens when we say

According to the substitution model, the parameters and are replaced in the
body with and . But Common Lisp makes an exception for
the first element of a compound expression. It uses the procedure blackboard instead of
substitution:

Note that one of the appearances of was left unchanged. Since there is no global
procedure named , this program will produce an error:

How, then, do you write higher-order procedures in Common Lisp? The answer is
that you must use :

Funcall

fn
#’square

524 Appendix B Common Lisp

common-lisp> (funcall #’+ 1 2 3)
6

common-lisp> (apply #’+ ’(1 2 3))
6

(defun map (fn lst)
(if (null lst)

’()
(cons (funcall fn (car lst))

(map fn (cdr lst)))))

apply

+ funcall
+ apply Apply

takes one or more arguments. The first is a procedure and the rest are
arguments for that procedure. It applies that procedure to the given arguments.* Since

is no longer at the beginning of a compound expression, the corresponding argument,
, is substituted for it.

* This is a lot like , you may have noticed. Look at the difference:

In the first case, each argument to is a separate argument to . In the second case, a list
of the arguments to is a single argument to . always takes exactly two arguments,
the procedure and the argument list.

525

C Scheme Initialization File

Many of the procedures we talk about in this book aren’t part of standard Scheme; we
wrote them ourselves. Here is a listing of the definitions of those procedures.

;;; simply.scm version 3.13 (8/11/98)

;;; This file uses Scheme features we don’t talk about in _Simply_Scheme_.
;;; Read at your own risk.

(if (equal? ’foo (symbol->string ’foo))
(error "Simply.scm already loaded!!")
#f)

;; Make number->string remove leading "+" if necessary

(if (char=? #\+ (string-ref (number->string 1.0) 0))
(let ((old-ns number->string) (char=? char=?) (string-ref string-ref)

(substring substring) (string-length string-length))
(set! number->string

(lambda args
(let ((result (apply old-ns args)))

(if (char=? #\+ (string-ref result 0))
(substring result 1 (string-length result))
result)))))

’no-problem)

(define number->string
(let ((old-ns number->string) (string? string?))

(lambda args
(if (string? (car args))

(car args)
(apply old-ns args)))))

526 Appendix C Scheme Initialization File

;; Get strings in error messages to print nicely (especially "")

(define whoops
(let ((string? string?) (string-append string-append) (error error)

(cons cons) (map map) (apply apply))
(define (error-printform x)

(if (string? x)
(string-append "\"" x "\"")
x))

(lambda (string . args)
(apply error (cons string (map error-printform args))))))

;; ROUND returns an inexact integer if its argument is inexact,
;; but we think it should always return an exact integer.
;; (It matters because some Schemes print inexact integers as "+1.0".)
;; The (exact 1) test is for PC Scheme, in which nothing is exact.
(if (and (inexact? (round (sqrt 2))) (exact? 1))

(let ((old-round round) (inexact->exact inexact->exact))
(set! round

(lambda (number)
(inexact->exact (old-round number)))))

’no-problem)

;; Remainder and quotient blow up if their argument isn’t an integer.
;; Unfortunately, in SCM, (* 365.25 24 60 60) *isn’t* an integer.

(if (inexact? (* .25 4))
(let ((rem remainder) (quo quotient) (inexact->exact inexact->exact)

(integer? integer?))
(set! remainder

(lambda (x y)
(rem (if (integer? x) (inexact->exact x) x)

(if (integer? y) (inexact->exact y) y))))
(set! quotient

(lambda (x y)
(quo (if (integer? x) (inexact->exact x) x)

(if (integer? y) (inexact->exact y) y)))))
’done)

Appendix C Scheme Initialization File 527

;; Random
;; If your version of Scheme has RANDOM, you should take this out.
;; (It gives the same sequence of random numbers every time.)

(define random
(let ((*seed* 1) (quotient quotient) (modulo modulo) (+ +) (- -) (* *) (> >))

(lambda (x)
(let* ((hi (quotient *seed* 127773))

(low (modulo *seed* 127773))
(test (- (* 16807 low) (* 2836 hi))))

(if (> test 0)
(set! *seed* test)
(set! *seed* (+ test 2147483647))))

(modulo *seed* x))))

;;; Logo-style word/sentence implementation

(define word?
(let ((number? number?) (symbol? symbol?) (string? string?))

(lambda (x)
(or (symbol? x) (number? x) (string? x)))))

(define sentence?
(let ((null? null?) (pair? pair?) (word? word?) (car car) (cdr cdr))

(define (list-of-words? l)
(cond ((null? l) #t)

((pair? l)
(and (word? (car l)) (list-of-words? (cdr l))))

(else #f)))
list-of-words?))

(define empty?
(let ((null? null?) (string? string?) (string=? string=?))

(lambda (x)
(or (null? x)

(and (string? x) (string=? x ""))))))

528 Appendix C Scheme Initialization File

(define char-rank
;; 0 Letter in good case or special initial
;; 1 ., + or -
;; 2 Digit
;; 3 Letter in bad case or weird character
(let ((*the-char-ranks* (make-vector 256 3))

(= =) (+ +) (string-ref string-ref) (string-length string-length)
(vector-set! vector-set!) (char->integer char->integer)
(symbol->string symbol->string) (vector-ref vector-ref))

(define (rank-string str rank)
(define (helper i len)

(if (= i len)
’done
(begin (vector-set! *the-char-ranks*

(char->integer (string-ref str i))
rank)

(helper (+ i 1) len))))
(helper 0 (string-length str)))

(rank-string (symbol->string ’abcdefghijklmnopqrstuvwxyz) 0)
(rank-string "!$%&*/:<=>?~_^" 0)
(rank-string "+-." 1)
(rank-string "0123456789" 2)
(lambda (char) ;; value of char-rank

(vector-ref *the-char-ranks* (char->integer char)))))

(define string->word
(let ((= =) (<= <=) (+ +) (- -) (char-rank char-rank) (string-ref string-ref)

(string-length string-length) (string=? string=?) (not not)
(char=? char=?) (string->number string->number)
(string->symbol string->symbol))

(lambda (string)
(define (subsequents? string i length)

(cond ((= i length) #t)
((<= (char-rank (string-ref string i)) 2)
(subsequents? string (+ i 1) length))

(else #f)))
(define (special-id? string)

(or (string=? string "+")
(string=? string "-")
(string=? string "...")))

(define (ok-symbol? string)
(if (string=? string "")

#f
(let ((rank1 (char-rank (string-ref string 0))))
(cond ((= rank1 0) (subsequents? string 1 (string-length string)))

((= rank1 1) (special-id? string))
(else #f)))))

Appendix C Scheme Initialization File 529

(define (nn-helper string i len seen-point?)
(cond ((= i len)

(if seen-point?
(not (char=? (string-ref string (- len 1)) #\0))
#t))

((char=? #\. (string-ref string i))
(cond (seen-point? #f)

((= (+ i 2) len) #t) ; Accepts "23.0"
(else (nn-helper string (+ i 1) len #t))))

((= 2 (char-rank (string-ref string i)))
(nn-helper string (+ i 1) len seen-point?))

(else #f)))
(define (narrow-number? string)

(if (string=? string "")
#f
(let* ((c0 (string-ref string 0))

(start 0)
(len (string-length string))
(cn (string-ref string (- len 1))))

(if (and (char=? c0 #\-) (not (= len 1)))
(begin
(set! start 1)
(set! c0 (string-ref string 1)))

#f)
(cond ((not (= (char-rank cn) 2)) #f) ; Rejects "-" among others

((char=? c0 #\.) #f)
((char=? c0 #\0)
(cond ((= len 1) #t) ; Accepts "0" but not "-0"

((= len 2) #f) ; Rejects "-0" and "03"
((char=? (string-ref string (+ start 1)) #\.)
(nn-helper string (+ start 2) len #t))

(else #f)))
(else (nn-helper string start len #f))))))

;; The body of string->word:
(cond ((narrow-number? string) (string->number string))

((ok-symbol? string) (string->symbol string))
(else string)))))

(define char->word
(let ((= =) (char-rank char-rank) (make-string make-string) (char=? char=?)

(string->symbol string->symbol) (string->number string->number))
(lambda (char)

(let ((rank (char-rank char))
(string (make-string 1 char)))

(cond ((= rank 0) (string->symbol string))
((= rank 2) (string->number string))
((char=? char #\+) ’+)
((char=? char #\-) ’-)
(else string))))))

530 Appendix C Scheme Initialization File

(define word->string
(let ((number? number?) (string? string?) (number->string number->string)

(symbol->string symbol->string))
(lambda (wd)

(cond ((string? wd) wd)
((number? wd) (number->string wd))
(else (symbol->string wd))))))

(define count
(let ((word? word?) (string-length string-length)

(word->string word->string) (length length))
(lambda (stuff)

(if (word? stuff)
(string-length (word->string stuff))
(length stuff)))))

(define word
(let ((string->word string->word) (apply apply) (string-append string-append)

(map map) (word? word?) (word->string word->string) (whoops whoops))
(lambda x

(string->word
(apply string-append

(map (lambda (arg)
(if (word? arg)

(word->string arg)
(whoops "Invalid argument to WORD: " arg)))

x))))))

(define se
(let ((pair? pair?) (null? null?) (word? word?) (car car) (cons cons)

(cdr cdr) (whoops whoops))
(define (paranoid-append a original-a b)

(cond ((null? a) b)
((word? (car a))
(cons (car a) (paranoid-append (cdr a) original-a b)))

(else (whoops "Argument to SENTENCE not a word or sentence"
original-a))))

(define (combine-two a b) ;; Note: b is always a list
(cond ((pair? a) (paranoid-append a a b))

((null? a) b)
((word? a) (cons a b))
(else (whoops "Argument to SENTENCE not a word or sentence:" a))))

;; Helper function so recursive calls don’t show up in TRACE
(define (real-se args)

(if (null? args)
’()
(combine-two (car args) (real-se (cdr args)))))

(lambda args
(real-se args))))

Appendix C Scheme Initialization File 531

(define sentence se)

(define first
(let ((pair? pair?) (char->word char->word) (string-ref string-ref)

(word->string word->string) (car car) (empty? empty?)
(whoops whoops) (word? word?))

(define (word-first wd)
(char->word (string-ref (word->string wd) 0)))

(lambda (x)
(cond ((pair? x) (car x))

((empty? x) (whoops "Invalid argument to FIRST: " x))
((word? x) (word-first x))
(else (whoops "Invalid argument to FIRST: " x))))))

(define last
(let ((pair? pair?) (- -) (word->string word->string) (char->word char->word)

(string-ref string-ref) (string-length string-length) (empty? empty?)
(cdr cdr) (car car) (whoops whoops) (word? word?))

(define (word-last wd)
(let ((s (word->string wd)))

(char->word (string-ref s (- (string-length s) 1)))))
(define (list-last lst)

(if (empty? (cdr lst))
(car lst)
(list-last (cdr lst))))

(lambda (x)
(cond ((pair? x) (list-last x))

((empty? x) (whoops "Invalid argument to LAST: " x))
((word? x) (word-last x))
(else (whoops "Invalid argument to LAST: " x))))))

(define bf
(let ((pair? pair?) (substring substring) (string-length string-length)

(string->word string->word) (word->string word->string) (cdr cdr)
(empty? empty?) (whoops whoops) (word? word?))

(define string-bf
(lambda (s)
(substring s 1 (string-length s))))

(define (word-bf wd)
(string->word (string-bf (word->string wd))))

(lambda (x)
(cond ((pair? x) (cdr x))

((empty? x) (whoops "Invalid argument to BUTFIRST: " x))
((word? x) (word-bf x))
(else (whoops "Invalid argument to BUTFIRST: " x))))))

(define butfirst bf)

532 Appendix C Scheme Initialization File

(define bl
(let ((pair? pair?) (- -) (cdr cdr) (cons cons) (car car) (substring substring)

(string-length string-length) (string->word string->word)
(word->string word->string) (empty? empty?) (whoops whoops) (word? word?))

(define (list-bl list)
(if (null? (cdr list))

’()
(cons (car list) (list-bl (cdr list)))))

(define (string-bl s)
(substring s 0 (- (string-length s) 1)))

(define (word-bl wd)
(string->word (string-bl (word->string wd))))

(lambda (x)
(cond ((pair? x) (list-bl x))

((empty? x) (whoops "Invalid argument to BUTLAST: " x))
((word? x) (word-bl x))
(else (whoops "Invalid argument to BUTLAST: " x))))))

(define butlast bl)

(define item
(let ((> >) (- -) (< <) (integer? integer?) (list-ref list-ref)

(char->word char->word) (string-ref string-ref)
(word->string word->string) (not not) (whoops whoops)
(count count) (word? word?) (list? list?))

(define (word-item n wd)
(char->word (string-ref (word->string wd) (- n 1))))

(lambda (n stuff)
(cond ((not (integer? n))

(whoops "Invalid first argument to ITEM (must be an integer): "
n))

((< n 1)
(whoops "Invalid first argument to ITEM (must be positive): "

n))
((> n (count stuff))
(whoops "No such item: " n stuff))

((word? stuff) (word-item n stuff))
((list? stuff) (list-ref stuff (- n 1)))
(else (whoops "Invalid second argument to ITEM: " stuff))))))

Appendix C Scheme Initialization File 533

(define equal?
;; Note that EQUAL? assumes strings are numbers.
;; (strings-are-numbers #f) doesn’t change this behavior.
(let ((vector-length vector-length) (= =) (vector-ref vector-ref)

(+ +) (string? string?) (symbol? symbol?) (null? null?) (pair? pair?)
(car car) (cdr cdr) (eq? eq?) (string=? string=?)
(symbol->string symbol->string) (number? number?)
(string->word string->word) (vector? vector?) (eqv? eqv?))

(define (vector-equal? v1 v2)
(let ((len1 (vector-length v1))

(len2 (vector-length v2)))
(define (helper i)

(if (= i len1)
#t
(and (equal? (vector-ref v1 i) (vector-ref v2 i))

(helper (+ i 1)))))
(if (= len1 len2)

(helper 0)
#f)))

(lambda (x y)
(cond ((null? x) (null? y))

((null? y) #f)
((pair? x)
(and (pair? y)

(equal? (car x) (car y))
(equal? (cdr x) (cdr y))))

((pair? y) #f)
((symbol? x)
(or (and (symbol? y) (eq? x y))

(and (string? y) (string=? (symbol->string x) y))))
((symbol? y)
(and (string? x) (string=? x (symbol->string y))))

((number? x)
(or (and (number? y) (= x y))

(and (string? y)
(let ((possible-num (string->word y)))

(and (number? possible-num)
(= x possible-num))))))

((number? y)
(and (string? x)

(let ((possible-num (string->word x)))
(and (number? possible-num)

(= possible-num y)))))
((string? x) (and (string? y) (string=? x y)))
((string? y) #f)
((vector? x) (and (vector? y) (vector-equal? x y)))
((vector? y) #f)
(else (eqv? x y))))))

534 Appendix C Scheme Initialization File

(define member?
(let ((> >) (- -) (< <) (null? null?) (symbol? symbol?) (eq? eq?) (car car)

(not not) (symbol->string symbol->string) (string=? string=?)
(cdr cdr) (equal? equal?) (word->string word->string)
(string-length string-length) (whoops whoops) (string-ref string-ref)
(char=? char=?) (list? list?) (number? number?) (empty? empty?)
(word? word?) (string? string?))

(define (symbol-in-list? symbol string lst)
(cond ((null? lst) #f)

((and (symbol? (car lst))
(eq? symbol (car lst))))

((string? (car lst))
(cond ((not string)

(symbol-in-list? symbol (symbol->string symbol) lst))
((string=? string (car lst)) #t)
(else (symbol-in-list? symbol string (cdr lst)))))

(else (symbol-in-list? symbol string (cdr lst)))))
(define (word-in-list? wd lst)

(cond ((null? lst) #f)
((equal? wd (car lst)) #t)
(else (word-in-list? wd (cdr lst)))))

(define (word-in-word? small big)
(let ((one-letter-str (word->string small)))

(if (> (string-length one-letter-str) 1)
(whoops "Invalid arguments to MEMBER?: " small big)
(let ((big-str (word->string big)))
(char-in-string? (string-ref one-letter-str 0)

big-str
(- (string-length big-str) 1))))))

(define (char-in-string? char string i)
(cond ((< i 0) #f)

((char=? char (string-ref string i)) #t)
(else (char-in-string? char string (- i 1)))))

(lambda (x stuff)
(cond ((empty? stuff) #f)

((word? stuff) (word-in-word? x stuff))
((not (list? stuff))
(whoops "Invalid second argument to MEMBER?: " stuff))

((symbol? x) (symbol-in-list? x #f stuff))
((or (number? x) (string? x))
(word-in-list? x stuff))

(else (whoops "Invalid first argument to MEMBER?: " x))))))

Appendix C Scheme Initialization File 535

(define before?
(let ((not not) (word? word?) (whoops whoops) (string<? string<?)

(word->string word->string))
(lambda (wd1 wd2)

(cond ((not (word? wd1))
(whoops "Invalid first argument to BEFORE? (not a word): " wd1))

((not (word? wd2))
(whoops "Invalid second argument to BEFORE? (not a word): " wd2))

(else (string<? (word->string wd1) (word->string wd2)))))))

;;; Higher Order Functions

(define filter
(let ((null? null?) (car car) (cons cons) (cdr cdr) (not not)

(procedure? procedure?) (whoops whoops) (list? list?))
(lambda (pred l)

;; Helper function so recursive calls don’t show up in TRACE
(define (real-filter l)

(cond ((null? l) ’())
((pred (car l))
(cons (car l) (real-filter (cdr l))))

(else (real-filter (cdr l)))))
(cond ((not (procedure? pred))

(whoops "Invalid first argument to FILTER (not a procedure): "
pred))

((not (list? l))
(whoops "Invalid second argument to FILTER (not a list): " l))

(else (real-filter l))))))

536 Appendix C Scheme Initialization File

(define keep
(let ((+ +) (= =) (pair? pair?) (substring substring)

(char->word char->word) (string-ref string-ref)
(string-set! string-set!) (word->string word->string)
(string-length string-length) (string->word string->word)
(make-string make-string) (procedure? procedure?)
(whoops whoops) (word? word?) (null? null?))

(lambda (pred w-or-s)
(define (keep-string in i out out-len len)

(cond ((= i len) (substring out 0 out-len))
((pred (char->word (string-ref in i)))
(string-set! out out-len (string-ref in i))
(keep-string in (+ i 1) out (+ out-len 1) len))

(else (keep-string in (+ i 1) out out-len len))))
(define (keep-word wd)

(let* ((string (word->string wd))
(len (string-length string)))

(string->word
(keep-string string 0 (make-string len) 0 len))))

(cond ((not (procedure? pred))
(whoops "Invalid first argument to KEEP (not a procedure): "

pred))
((pair? w-or-s) (filter pred w-or-s))
((word? w-or-s) (keep-word w-or-s))
((null? w-or-s) ’())
(else
(whoops "Bad second argument to KEEP (not a word or sentence): "

w-or-s))))))

(define appearances
(let ((count count) (keep keep) (equal? equal?))

(lambda (item aggregate)
(count (keep (lambda (element) (equal? item element)) aggregate)))))

Appendix C Scheme Initialization File 537

(define every
(let ((= =) (+ +) (se se) (char->word char->word) (string-ref string-ref)

(empty? empty?) (first first) (bf bf) (not not) (procedure? procedure?)
(whoops whoops) (word? word?) (word->string word->string)
(string-length string-length))

(lambda (fn stuff)
(define (string-every string i length)

(if (= i length)
’()
(se (fn (char->word (string-ref string i)))

(string-every string (+ i 1) length))))
(define (sent-every sent)

;; This proc. can’t be optimized or else it will break the
;; exercise where we ask them to reimplement sentences as
;; vectors and then see if every still works.
(if (empty? sent)

sent ; Can’t be ’() or exercise breaks.
(se (fn (first sent))

(sent-every (bf sent)))))
(cond ((not (procedure? fn))

(whoops "Invalid first argument to EVERY (not a procedure):"
fn))

((word? stuff)
(let ((string (word->string stuff)))
(string-every string 0 (string-length string))))

(else (sent-every stuff))))))

(define accumulate
(let ((not not) (empty? empty?) (bf bf) (first first) (procedure? procedure?)

(whoops whoops) (member member) (list list))
(lambda (combiner stuff)

(define (real-accumulate stuff)
(if (empty? (bf stuff))

(first stuff)
(combiner (first stuff) (real-accumulate (bf stuff)))))

(cond ((not (procedure? combiner))
(whoops "Invalid first argument to ACCUMULATE (not a procedure):"

combiner))
((not (empty? stuff)) (real-accumulate stuff))
((member combiner (list + * word se)) (combiner))
(else
(whoops "Can’t accumulate empty input with that combiner"))))))

538 Appendix C Scheme Initialization File

(define reduce
(let ((null? null?) (cdr cdr) (car car) (not not) (procedure? procedure?)

(whoops whoops) (member member) (list list))
(lambda (combiner stuff)

(define (real-reduce stuff)
(if (null? (cdr stuff))

(car stuff)
(combiner (car stuff) (real-reduce (cdr stuff)))))

(cond ((not (procedure? combiner))
(whoops "Invalid first argument to REDUCE (not a procedure):"

combiner))
((not (null? stuff)) (real-reduce stuff))
((member combiner (list + * word se append)) (combiner))
(else (whoops "Can’t reduce empty input with that combiner"))))))

(define repeated
(let ((= =) (- -))

(lambda (fn number)
(if (= number 0)

(lambda (x) x)
(lambda (x)

((repeated fn (- number 1)) (fn x)))))))

;; Tree stuff
(define make-node cons)
(define datum car)
(define children cdr)

;; I/O

(define show
(let ((= =) (length length) (display display) (car car) (newline newline)

(not not) (output-port? output-port?) (apply apply) (whoops whoops))
(lambda args

(cond
((= (length args) 1)
(display (car args))
(newline))

((= (length args) 2)
(if (not (output-port? (car (cdr args))))

(whoops "Invalid second argument to SHOW (not an output port): "
(car (cdr args))))

(apply display args)
(newline (car (cdr args))))

(else (whoops "Incorrect number of arguments to procedure SHOW"))))))

Appendix C Scheme Initialization File 539

(define show-line
(let ((>= >=) (length length) (whoops whoops) (null? null?)

(current-output-port current-output-port) (car car) (not not)
(list? list?) (display display) (for-each for-each) (cdr cdr)
(newline newline))

(lambda (line . args)
(if (>= (length args) 2)

(whoops "Too many arguments to show-line")
(let ((port (if (null? args) (current-output-port) (car args))))

(cond ((not (list? line))
(whoops "Invalid argument to SHOW-LINE (not a list):" line))

((null? line) #f)
(else
(display (car line) port)
(for-each (lambda (wd) (display " " port) (display wd port))

(cdr line))))
(newline port))))))

540 Appendix C Scheme Initialization File

(define read-string
(let ((read-char read-char) (eqv? eqv?) (apply apply)

(string-append string-append) (substring substring) (reverse reverse)
(cons cons) (>= >=) (+ +) (string-set! string-set!) (length length)
(whoops whoops) (null? null?) (current-input-port current-input-port)
(car car) (cdr cdr) (eof-object? eof-object?) (list list)
(make-string make-string) (peek-char peek-char))

(define (read-string-helper chars all-length chunk-length port)
(let ((char (read-char port))

(string (car chars)))
(cond ((or (eof-object? char) (eqv? char #\newline))

(apply string-append
(reverse
(cons
(substring (car chars) 0 chunk-length)
(cdr chars)))))

((>= chunk-length 80)
(let ((newstring (make-string 80)))

(string-set! newstring 0 char)
(read-string-helper (cons newstring chars)

(+ all-length 1)
1
port)))

(else
(string-set! string chunk-length char)
(read-string-helper chars

(+ all-length 1)
(+ chunk-length 1)
port)))))

(lambda args
(if (>= (length args) 2)

(whoops "Too many arguments to read-string")
(let ((port (if (null? args) (current-input-port) (car args))))

(if (eof-object? (peek-char port))
(read-char port)
(read-string-helper (list (make-string 80)) 0 0 port)))))))

Appendix C Scheme Initialization File 541

(define read-line
(let ((= =) (list list) (string->word string->word) (substring substring)

(char-whitespace? char-whitespace?) (string-ref string-ref)
(+ +) (string-length string-length) (apply apply)
(read-string read-string))

(lambda args
(define (tokenize string)

(define (helper i start len)
(cond ((= i len)

(if (= i start)
’()
(list (string->word (substring string start i)))))

((char-whitespace? (string-ref string i))
(if (= i start)

(helper (+ i 1) (+ i 1) len)
(cons (string->word (substring string start i))

(helper (+ i 1) (+ i 1) len))))
(else (helper (+ i 1) start len))))

(if (eof-object? string)
string
(helper 0 0 (string-length string))))

(tokenize (apply read-string args)))))

(define *the-open-inports* ’())
(define *the-open-outports* ’())

542 Appendix C Scheme Initialization File

(define align
(let ((< <) (abs abs) (* *) (expt expt) (>= >=) (- -) (+ +) (= =)

(null? null?) (car car) (round round) (number->string number->string)
(string-length string-length) (string-append string-append)
(make-string make-string) (substring substring)
(string-set! string-set!) (number? number?)
(word->string word->string))

(lambda (obj width . rest)
(define (align-number obj width rest)

(let* ((sign (< obj 0))
(num (abs obj))
(prec (if (null? rest) 0 (car rest)))
(big (round (* num (expt 10 prec))))
(cvt0 (number->string big))
(cvt (if (< num 1) (string-append "0" cvt0) cvt0))
(pos-str (if (>= (string-length cvt0) prec)

cvt
(string-append
(make-string (- prec (string-length cvt0)) #\0)
cvt)))

(string (if sign (string-append "-" pos-str) pos-str))
(length (+ (string-length string)

(if (= prec 0) 0 1)))
(left (- length (+ 1 prec)))
(result (if (= prec 0)

string
(string-append
(substring string 0 left)
"."
(substring string left (- length 1))))))

(cond ((= length width) result)
((< length width)
(string-append (make-string (- width length) #\space) result))

(else (let ((new (substring result 0 width)))
(string-set! new (- width 1) #\+)
new)))))

(define (align-word string)
(let ((length (string-length string)))

(cond ((= length width) string)
((< length width)
(string-append string (make-string (- width length) #\space)))

(else (let ((new (substring string 0 width)))
(string-set! new (- width 1) #\+)
new)))))

(if (number? obj)
(align-number obj width rest)
(align-word (word->string obj))))))

Appendix C Scheme Initialization File 543

(define open-output-file
(let ((oof open-output-file) (cons cons))

(lambda (filename)
(let ((port (oof filename)))

(set! *the-open-outports* (cons port *the-open-outports*))
port))))

(define open-input-file
(let ((oif open-input-file) (cons cons))

(lambda (filename)
(let ((port (oif filename)))

(set! *the-open-inports* (cons port *the-open-inports*))
port))))

(define remove!
(let ((null? null?) (cdr cdr) (eq? eq?) (set-cdr! set-cdr!) (car car))

(lambda (thing lst)
(define (r! prev)

(cond ((null? (cdr prev)) lst)
((eq? thing (car (cdr prev)))
(set-cdr! prev (cdr (cdr prev)))
lst)

(else (r! (cdr prev)))))
(cond ((null? lst) lst)

((eq? thing (car lst)) (cdr lst))
(else (r! lst))))))

(define close-input-port
(let ((cip close-input-port) (remove! remove!))

(lambda (port)
(set! *the-open-inports* (remove! port *the-open-inports*))
(cip port))))

(define close-output-port
(let ((cop close-output-port) (remove! remove!))

(lambda (port)
(set! *the-open-outports* (remove! port *the-open-outports*))
(cop port))))

(define close-all-ports
(let ((for-each for-each)

(close-input-port close-input-port)
(close-output-port close-output-port))

(lambda ()
(for-each close-input-port *the-open-inports*)
(for-each close-output-port *the-open-outports*)
’closed)))

544 Appendix C Scheme Initialization File

;; Make arithmetic work on numbers in string form:
(define maybe-num
(let ((string? string?) (string->number string->number))

(lambda (arg)
(if (string? arg)

(let ((num (string->number arg)))
(if num num arg))

arg))))

(define logoize
(let ((apply apply) (map map) (maybe-num maybe-num))

(lambda (fn)
(lambda args

(apply fn (map maybe-num args))))))

;; special case versions of logoize, since (lambda args ...) is expensive
(define logoize-1
(let ((maybe-num maybe-num))

(lambda (fn)
(lambda (x) (fn (maybe-num x))))))

(define logoize-2
(let ((maybe-num maybe-num))

(lambda (fn)
(lambda (x y) (fn (maybe-num x) (maybe-num y))))))

(define strings-are-numbers
(let ((are-they? #f)

(real-* *) (real-+ +) (real-- -) (real-/ /) (real-< <)
(real-<= <=) (real-= =) (real-> >) (real->= >=) (real-abs abs)
(real-acos acos) (real-asin asin) (real-atan atan)
(real-ceiling ceiling) (real-cos cos) (real-even? even?)
(real-exp exp) (real-expt expt) (real-floor floor) (real-align align)
(real-gcd gcd) (real-integer? integer?) (real-item item)
(real-lcm lcm) (real-list-ref list-ref) (real-log log)
(real-make-vector make-vector) (real-max max) (real-min min)
(real-modulo modulo) (real-negative? negative?)
(real-number? number?) (real-odd? odd?) (real-positive? positive?)
(real-quotient quotient) (real-random random) (real-remainder remainder)
(real-repeated repeated) (real-round round) (real-sin sin)
(real-sqrt sqrt) (real-tan tan) (real-truncate truncate)
(real-vector-ref vector-ref) (real-vector-set! vector-set!)
(real-zero? zero?) (maybe-num maybe-num) (number->string number->string)
(cons cons) (car car) (cdr cdr) (eq? eq?) (show show) (logoize logoize)
(logoize-1 logoize-1) (logoize-2 logoize-2) (not not) (whoops whoops))

Appendix C Scheme Initialization File 545

(lambda (yesno)
(cond ((and are-they? (eq? yesno #t))

(show "Strings are already numbers"))
((eq? yesno #t)
(set! are-they? #t)
(set! * (logoize real-*))
(set! + (logoize real-+))
(set! - (logoize real--))
(set! / (logoize real-/))
(set! < (logoize real-<))
(set! <= (logoize real-<=))
(set! = (logoize real-=))
(set! > (logoize real->))
(set! >= (logoize real->=))
(set! abs (logoize-1 real-abs))
(set! acos (logoize-1 real-acos))
(set! asin (logoize-1 real-asin))
(set! atan (logoize real-atan))
(set! ceiling (logoize-1 real-ceiling))
(set! cos (logoize-1 real-cos))
(set! even? (logoize-1 real-even?))
(set! exp (logoize-1 real-exp))
(set! expt (logoize-2 real-expt))
(set! floor (logoize-1 real-floor))
(set! align (logoize align))
(set! gcd (logoize real-gcd))
(set! integer? (logoize-1 real-integer?))
(set! item (lambda (n stuff)

(real-item (maybe-num n) stuff)))
(set! lcm (logoize real-lcm))
(set! list-ref (lambda (lst k)

(real-list-ref lst (maybe-num k))))
(set! log (logoize-1 real-log))
(set! max (logoize real-max))
(set! min (logoize real-min))
(set! modulo (logoize-2 real-modulo))
(set! negative? (logoize-1 real-negative?))
(set! number? (logoize-1 real-number?))
(set! odd? (logoize-1 real-odd?))
(set! positive? (logoize-1 real-positive?))
(set! quotient (logoize-2 real-quotient))
(set! random (logoize real-random))
(set! remainder (logoize-2 real-remainder))
(set! round (logoize-1 real-round))
(set! sin (logoize-1 real-sin))
(set! sqrt (logoize-1 real-sqrt))

546 Appendix C Scheme Initialization File

(set! tan (logoize-1 real-tan))
(set! truncate (logoize-1 real-truncate))
(set! zero? (logoize-1 real-zero?))
(set! vector-ref

(lambda (vec i) (real-vector-ref vec (maybe-num i))))
(set! vector-set!

(lambda (vec i val)
(real-vector-set! vec (maybe-num i) val)))

(set! make-vector
(lambda (num . args)

(apply real-make-vector (cons (maybe-num num)
args))))

(set! list-ref
(lambda (lst i) (real-list-ref lst (maybe-num i))))

(set! repeated
(lambda (fn n) (real-repeated fn (maybe-num n)))))

((and (not are-they?) (not yesno))
(show "Strings are already not numbers"))

((not yesno)
(set! are-they? #f) (set! * real-*) (set! + real-+)
(set! - real--) (set! / real-/) (set! < real-<)
(set! <= real-<=) (set! = real-=) (set! > real->)
(set! >= real->=) (set! abs real-abs) (set! acos real-acos)
(set! asin real-asin) (set! atan real-atan)
(set! ceiling real-ceiling) (set! cos real-cos)
(set! even? real-even?)
(set! exp real-exp) (set! expt real-expt)
(set! floor real-floor) (set! align real-align)
(set! gcd real-gcd) (set! integer? real-integer?)
(set! item real-item)
(set! lcm real-lcm) (set! list-ref real-list-ref)
(set! log real-log) (set! max real-max) (set! min real-min)
(set! modulo real-modulo) (set! odd? real-odd?)
(set! quotient real-quotient) (set! random real-random)
(set! remainder real-remainder) (set! round real-round)
(set! sin real-sin) (set! sqrt real-sqrt) (set! tan real-tan)
(set! truncate real-truncate) (set! zero? real-zero?)
(set! positive? real-positive?) (set! negative? real-negative?)
(set! number? real-number?) (set! vector-ref real-vector-ref)
(set! vector-set! real-vector-set!)
(set! make-vector real-make-vector)
(set! list-ref real-list-ref) (set! item real-item)
(set! repeated real-repeated))

(else (whoops "Strings-are-numbers: give a #t or a #f")))
are-they?)))

;; By default, strings are numbers:
(strings-are-numbers #t)

547

D GNU General Public License

The following software license, written by the Free Software Foundation, applies to the
Scheme programs in this book. We chose to use this license in order to encourage the
free sharing of software—our own and, we hope, yours.

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation,
Inc.
675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim
copies of this license document, but changing it is
not allowed.

Preamble

The licenses for most software are designed to
take away your freedom to share and change it. By
contrast, the GNU General Public License is intended
to guarantee your freedom to share and change free
software—to make sure the software is free for all its
users. This General Public License applies to most
of the Free Software Foundation’s software and to
any other program whose authors commit to using
it. (Some other Free Software Foundation software is
covered by the GNU Library General Public License
instead.) You can apply it to your programs, too.

When we speak of free software, we are referring
to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom
to distribute copies of free software (and charge for
this service if you wish), that you receive source code
or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and
that you know you can do these things.

To protect your rights, we need to make restric-
tions that forbid anyone to deny you these rights or
to ask you to surrender the rights. These restric-

tions translate to certain responsibilities for you if
you distribute copies of the software, or if you modify
it.

For example, if you distribute copies of such a
program, whether gratis or for a fee, you must give
the recipients all the rights that you have. You must
make sure that they, too, receive or can get the source
code. And you must show them these terms so they
know their rights.

We protect your rights with two steps: (1) copy-
right the software, and (2) offer you this license which
gives you legal permission to copy, distribute and/or
modify the software.

Also, for each author’s protection and ours, we
want to make certain that everyone understands that
there is no warranty for this free software. If the
software is modified by someone else and passed on,
we want its recipients to know that what they have
is not the original, so that any problems introduced
by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened con-
stantly by software patents. We wish to avoid the
danger that redistributors of a free program will in-
dividually obtain patent licenses, in effect making
the program proprietary. To prevent this, we have
made it clear that any patent must be licensed for
everyone’s free use or not licensed at all.

The precise terms and conditions for copying,
distribution and modification follow.

GNU GENERAL PUBLIC LICENSE

548 Appendix D GNU General Public License

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other
work which contains a notice placed by the copy-
right holder saying it may be distributed under the
terms of this General Public License. The “Pro-
gram”, below, refers to any such program or work,
and a “work based on the Program” means either the
Program or any derivative work under copyright law:
that is to say, a work containing the Program or a
portion of it, either verbatim or with modifications
and/or translated into another language. (Here-
inafter, translation is included without limitation in
the term “modification”.) Each licensee is addressed
as “you”.

Activities other than copying, distribution and
modification are not covered by this License; they are
outside its scope. The act of running the Program
is not restricted, and the output from the Program is
covered only if its contents constitute a work based on
the Program (independent of having been made by
running the Program). Whether that is true depends
on what the Program does.

1. You may copy and distribute verbatim copies
of the Program’s source code as you receive it, in
any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep
intact all the notices that refer to this License and
to the absence of any warranty; and give any other
recipients of the Program a copy of this License along
with the Program.

You may charge a fee for the physical act of
transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

2. You may modify your copy or copies of the
Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such
modifications or work under the terms of Section
1 above, provided that you also meet all of these
conditions:

a) You must cause the modified files to carry
prominent notices stating that you changed the
files and the date of any change.

b) You must cause any work that you dis-
tribute or publish, that in whole or in part con-
tains or is derived from the Program or any part
thereof, to be licensed as a whole at no charge to
all third parties under the terms of this License.

c) If the modified program normally reads
commands interactively when run, you must cause
it, when started running for such interactive use
in the most ordinary way, to print or display an an-

nouncement including an appropriate copyright
notice and a notice that there is no warranty (or
else, saying that you provide a warranty) and that
users may redistribute the program under these
conditions, and telling the user how to view a copy
of this License. (Exception: if the Program itself
is interactive but does not normally print such an
announcement, your work based on the Program
is not required to print an announcement.)

These requirements apply to the modified work
as a whole. If identifiable sections of that work are
not derived from the Program, and can be reason-
ably considered independent and separate works in
themselves, then this License, and its terms, do not
apply to those sections when you distribute them as
separate works. But when you distribute the same
sections as part of a whole which is a work based on
the Program, the distribution of the whole must be
on the terms of this License, whose permissions for
other licensees extend to the entire whole, and thus
to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim
rights or contest your rights to work written entirely
by you; rather, the intent is to exercise the right
to control the distribution of derivative or collective
works based on the Program.

In addition, mere aggregation of another work
not based on the Program with the Program (or with
a work based on the Program) on a volume of a
storage or distribution medium does not bring the
other work under the scope of this License.

3. You may copy and distribute the Program (or
a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2
above provided that you also do one of the following:

a) Accompany it with the complete corre-
sponding machine-readable source code, which
must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for
software interchange; or,

b) Accompany it with a written offer, valid for
at least three years, to give any third party, for a
charge no more than your cost of physically per-
forming source distribution, a complete machine-
readable copy of the corresponding source code,
to be distributed under the terms of Sections 1
and 2 above on a medium customarily used for
software interchange; or,

c) Accompany it with the information you re-
ceived as to the offer to distribute corresponding
source code. (This alternative is allowed only for
noncommercial distribution and only if you re-
ceived the program in object code or executable
form with such an offer, in accord with Subsection
b above.)

Appendix D GNU General Public License 549

The source code for a work means the preferred
form of the work for making modifications to it. For
an executable work, complete source code means all
the source code for all modules it contains, plus any
associated interface definition files, plus the scripts
used to control compilation and installation of the
executable. However, as a special exception, the
source code distributed need not include anything
that is normally distributed (in either source or bi-
nary form) with the major components (compiler,
kernel, and so on) of the operating system on which
the executable runs, unless that component itself
accompanies the executable.

If distribution of executable or object code is
made by offering access to copy from a designated
place, then offering equivalent access to copy the
source code from the same place counts as distribu-
tion of the source code, even though third parties
are not compelled to copy the source along with the
object code.

4. You may not copy, modify, sublicense, or
distribute the Program except as expressly provided
under this License. Any attempt otherwise to copy,
modify, sublicense or distribute the Program is void,
and will automatically terminate your rights under
this License. However, parties who have received
copies, or rights, from you under this License will not
have their licenses terminated so long as such parties
remain in full compliance.

5. You are not required to accept this License,
since you have not signed it. However, nothing else
grants you permission to modify or distribute the
Program or its derivative works. These actions are
prohibited by law if you do not accept this License.
Therefore, by modifying or distributing the Program
(or any work based on the Program), you indicate
your acceptance of this License to do so, and all
its terms and conditions for copying, distributing or
modifying the Program or works based on it.

6. Each time you redistribute the Program (or
any work based on the Program), the recipient auto-
matically receives a license from the original licensor
to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any
further restrictions on the recipients’ exercise of the
rights granted herein. You are not responsible for
enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or
allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are
imposed on you (whether by court order, agreement
or otherwise) that contradict the conditions of this
License, they do not excuse you from the conditions
of this License. If you cannot distribute so as to
satisfy simultaneously your obligations under this Li-

cense and any other pertinent obligations, then as a
consequence you may not distribute the Program at
all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those
who receive copies directly or indirectly through you,
then the only way you could satisfy both it and this
License would be to refrain entirely from distribution
of the Program.

If any portion of this section is held invalid or
unenforceable under any particular circumstance,
the balance of the section is intended to apply and
the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you
to infringe any patents or other property right claims
or to contest validity of any such claims; this section
has the sole purpose of protecting the integrity of
the free software distribution system, which is imple-
mented by public license practices. Many people
have made generous contributions to the wide range
of software distributed through that system in re-
liance on consistent application of that system; it is
up to the author/donor to decide if he or she is will-
ing to distribute software through any other system
and a licensee cannot impose that choice.

This section is intended to make thoroughly
clear what is believed to be a consequence of the rest
of this License.

8. If the distribution and/or use of the Program
is restricted in certain countries either by patents
or by copyrighted interfaces, the original copyright
holder who places the Program under this License
may add an explicit geographical distribution limita-
tion excluding those countries, so that distribution
is permitted only in or among countries not thus
excluded. In such case, this License incorporates the
limitation as if written in the body of this License.

9. The Free Software Foundation may publish
revised and/or new versions of the General Public
License from time to time. Such new versions will be
similar in spirit to the present version, but may differ
in detail to address new problems or concerns.

Each version is given a distinguishing version
number. If the Program specifies a version number
of this License which applies to it and “any later
version”, you have the option of following the terms
and conditions either of that version or of any later
version published by the Free Software Foundation.
If the Program does not specify a version number
of this License, you may choose any version ever
published by the Free Software Foundation.

10. If you wish to incorporate parts of the
Program into other free programs whose distribution
conditions are different, write to the author to ask
for permission. For software which is copyrighted

550 Appendix D GNU General Public License

<one line to give the program’s name
and a brief idea of what it does.>

Copyright (C) 19yy <name of author>

This program is free software; you can
redistribute it and/or modify it under the terms
of the GNU General Public License as published
by the Free Software Foundation; either version
2 of the License, or (at your option) any later
version.

This program is distributed in the hope that it
will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for
more details.

You should have received a copy of the GNU
General Public License along with this program;
if not, write to the Free Software Foundation,
Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Gnomovision version 69,
Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for
details type ‘show w’. This is free software, and
you are welcome to redistribute it under certain
conditions; type ‘show c’ for details.

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program ‘Gnomovision’ (which makes
passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions
for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our
free software and of promoting the sharing and reuse
of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED
FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMIT-
TED BY APPLICABLE LAW. EXCEPT WHEN OTH-
ERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM “AS IS” WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, IN-
CLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE. THE EN-
TIRE RISK AS TO THE QUALITY AND PER-
FORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE,
YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY
APPLICABLE LAW OR AGREED TO IN WRIT-
ING WILL ANY COPYRIGHT HOLDER, OR ANY
OTHER PARTY WHO MAY MODIFY AND/OR RE-
DISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, IN-
CLUDING ANY GENERAL, SPECIAL, INCIDENTAL
OR CONSEQUENTIAL DAMAGES ARISING OUT
OF THE USE OR INABILITY TO USE THE PRO-
GRAM (INCLUDING BUT NOT LIMITED TO LOSS
OF DATA OR DATA BEING RENDERED INACCU-
RATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO
OPERATE WITH ANY OTHER PROGRAMS), EVEN
IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it
to be of the greatest possible use to the public, the
best way to achieve this is to make it free software
which everyone can redistribute and change under
these terms.

To do so, attach the following notices to the
program. It is safest to attach them to the start
of each source file to most effectively convey the
exclusion of warranty; and each file should have at
least the “copyright” line and a pointer to where the

full notice is found.

Also add information on how to contact you by
electronic and paper mail.

If the program is interactive, make it output a
short notice like this when it starts in an interactive
mode:

The hypothetical commands ‘show w’ and ‘show
c’ should show the appropriate parts of the General
Public License. Of course, the commands you use
may be called something other than ‘show w’ and
‘show c’; they could even be mouse-clicks or menu
items—whatever suits your program.

You should also get your employer (if you work
as a programmer) or your school, if any, to sign a
“copyright disclaimer” for the program, if necessary.
Here is a sample; alter the names:

This General Public License does not permit
incorporating your program into proprietary pro-
grams. If your program is a subroutine library, you
may consider it more useful to permit linking pro-
prietary applications with the library. If this is what
you want to do, use the GNU Library General Public
License instead of this License.



TM

Credits

Through the Looking-Glass, and What Alice
Found There,

Printgallery,

551

Many of the examples in this book revolve around titles of songs, especially Beatles songs.
Since titles aren’t covered by copyright, we didn’t need official permission for this, but
nevertheless we want to acknowledge the debt we owe to the great musicians who’ve
added so much pleasure to our lives. The use of their names here does not mean that
they’ve endorsed our work; rather, we mean to show our respect for them.

The cover and the illustrations on pages 4, 10, 34 (top), 102, 90, 91, 216, and 280 were
drawn by Polly Jordan.

The illustration on page 16 was drawn using Mathematica .

The illustrations on pages 28, 70, 342, 386, and 438 appear courtesy of the Bettmann
Archive.

The illustration on page 40 appears courtesy of the Computer Museum, Boston. Photo-
graph by Ben G.

The quotations on pages 44 and 70 are from
by Lewis Carroll (Macmillan, 1871).

The Far Side cartoons on page 56 are reprinted by permission of Chronicle Features, San
Francisco, CA. All rights reserved.

The photograph on page 126 appears courtesy of UCLA, Department of Philosophy.

The photograph on page 146 appears courtesy of the Computer Museum, Boston.

The photograph on page 88 appears courtesy of UPI/Bettmann.

The illustration on page 172 is by M. C. Escher. 1956 M. C. Escher
Foundation–Baarn–Holland.







Drawing Hands,

Fractals
Everywhere,

Pattern Recognition,

Flowering Apple Tree,

The Wizard of Oz,

552 Credits

The quotation on page 173 (top) is from “I Know an Old Lady,” a traditional song of
which a recent version is copyright 1952, 1954 by Rose Bonne (words) and Alan Mills
(music).

The illustration on page 188 is by M. C. Escher. 1948 M. C. Escher
Foundation–Baarn–Holland.

The illustration on page 234 is reprinted with permission from Michael Barnsley,
Academic Press, 1988, page 319.

The illustration on page 248 is reprinted from page 234 of M. Bongard,
Spartan Books, 1970.

The illustration on page 304 is by Piet Mondrian, 1912. Courtesy of
Collection Haags Gemeentemuseum, The Hague.

The illustration on page 326 is a photograph by Ben G.

The illustration on page 366 is from 1939. Courtesy of Turner Home
Entertainment.

553

Alphabetical Table of Scheme Primitives

’ (quote)
*
+
-
/
<
<=
= equal?
>
>=
abs
accumulate
align
and #f
appearances
append
apply
assoc
before?
begin
bf butfirst
bl butlast
boolean? #t #f
butfirst
butlast
c...r car cdr
car

This table does not represent the complete Scheme language. It includes the nonstandard
Scheme primitives that we use in this book, and it omits many standard ones that are not
needed here.

. . .Abbreviation for .
Multiply numbers.
Add numbers.
Subtract numbers.
Divide numbers.
Is the first argument less than the second?
Is the first argument less than or equal to the second?
Are two numbers equal? (Like but works only for numbers).
Is the first argument greater than the second?
Is the first argument greater than or equal to the second?
Return the absolute value of the argument.
Apply a combining function to all elements (see p. 108).
Return a string spaced to a given width (see p. 358).
(Special form) Are all of the arguments true values (i.e., not)?
Return the number of times the first argument is in the second.
Return a list containing the elements of the argument lists.
Apply a function to the arguments in a list.
Return association list entry matching key.
Does the first argument come alphabetically before the second?
(Special form) Carry out a sequence of instructions (see p. 348).
Abbreviation for .
Abbreviation for .
Return true if the argument is or .
Return all but the first letter of a word, or word of a sentence.
Return all but the last letter of a word, or word of a sentence.
Combinations of and (see p. 286).
Return the first element of a list.

n n

554 Alphabetical Table of Scheme Primitives

cdr
ceiling
children
close-all-ports
close-input-port
close-output-port
cond
cons
cos
count
datum
define
display
empty? "" ()
eof-object?
equal?
error
even?
every
expt
filter
first
floor
for-each
if
integer?
item
keep
lambda
last
length
let
list
list->vector
list-ref
list?
load
log
make-node
make-vector
map
max
member #f
member?
min

Return all but the first element of a list.
Round a number up to the nearest integer.
Return a list of the children of a tree node.
Close all open input and output ports.
Close an input port.
Close an output port.
(Special form) Choose among several alternatives (see p. 78).
Prepend an element to a list.
Return the cosine of a number (from trigonometry).
Return the number of letters in a word or number of words in a sentence.
Return the datum of a tree node.
(Special form) Create a global name (for a procedure or other value).
Print the argument without starting a new line.
Is the argument empty, i.e., the empty word or the empty sentence ?
Is the argument an end-of-file object?
Are the two arguments the same thing?
Print an error message and return to the Scheme prompt.
Is the argument an even integer?
Apply a function to each element of a word or sentence (see p. 104).
Raise the first argument to the power of the second.
Select a subset of a list (see p. 289).
Return first letter of a word, or first word of a sentence.
Round a number down to the nearest integer.
Perform a computation for each element of a list.
(Special form) Choose between two alternatives (see p. 71).
Is the argument an integer?
Return the th letter of a word, or th word of a sentence.
Select a subset of a word or sentence (see p. 107).
(Special form) Create a new procedure (see Chapter 9).
Return last letter of a word, or last word of a sentence.
Return the number of elements in a list.
(Special form) Give temporary names to values (see p. 95).
Return a list containing the arguments.
Return a vector with the same elements as the list.
Select an element from a list (counting from zero).
Is the argument a list?
Read a program file into Scheme.
Return the logarithm of a number.
Create a new node of a tree.
Create a new vector of the given length.
Apply a function to each element of a list (see p. 289).
Return the largest of the arguments.
Return subset of a list starting with selected element, or .
Is the first argument an element of the second? (see p. 73).
Return the smallest of the arguments.

≥

⋅ ⋅ ⋅

0

(((())))f f f x

Alphabetical Table of Scheme Primitives 555

newline
not #t #f #f
null?
number?
odd?
open-input-file
open-output-file
or #f
procedure?
quote
quotient
random
read
read-line
read-string
reduce
remainder
repeated
round
se sentence
sentence
sentence?
show
show-line
sin
sqrt
square (define (square x) (* x x))
trace
untrace trace
vector
vector->list
vector-length
vector-ref
vector-set!
vector?
vowel? (define (vowel? x) (member? x ’(a e i o u)))
word
word?
write

Go to a new line of printing.
Return if argument is ; return otherwise.
Is the argument the empty list?
Is the argument a number?
Is the argument an odd integer?
Open a file for reading, return a port.
Open a file for writing, return a port.
(Special form) Are any of the arguments true values (i.e., not)?
Is the argument a procedure?
(Special form) Return the argument, unevaluated (see p. 57).
Divide numbers, but round down to integer.
Return a random number and smaller than the argument.
Read an expression from the keyboard (or a file).
Read a line from the keyboard (or a file), returning a sentence.
Read a line from the keyboard (or a file), returning a string.
Apply a combining function to all elements of list (see p. 290).
Return the remainder from dividing the first number by the second.
Return the function described by (see p. 113).
Round a number to the nearest integer.
Abbreviation for .
Join the arguments together into a big sentence.
Is the argument a sentence?
Print the argument and start a new line.
Show the argument sentence without surrounding parentheses.
Return the sine of a number (from trigonometry).
Return the square root of a number.
Not a primitive!
Report on all future invocations of a procedure.
Undo the effect of .
Create a vector with the arguments as elements.
Return a list with the same elements as the vector.
Return the number of elements in a vector.
Return an element of a vector (counting from zero).
Replace an element in a vector.
Is the argument a vector?
Not a primitive!
Joins words into one big word.
Is the argument a word? (Note: numbers are words.)
Print the argument in machine-readable form (see p. 400).

Glossary

(+ 2 (* 3 5)) (* 3 5)
+

(+ 2 (* 3 5)) 15

abstract data type.

association list.

type

selectors constructors mutators.

557

ADT:

a-list:

abstract data type:

abstraction:

actual argument expression:

actual argument value:

aggregate:

See

Synonym for

A that isn’t provided automatically by Scheme, but that the
programmer invents. In order to create an abstract data type, a programmer must define

and for that type, and possibly also

An approach to complex problems in which the solution is built in
layers. The structures needed to solve the problem (algorithms and data structures) are
implemented using lower-level capabilities and given names that can then be used as if
they were primitive facilities.

An expression that produces an actual argument value.
In , the subexpression is an actual argument expression, since
it provides an argument for the invocation of .

A value used as an argument to a procedure. For example, in
the expression , the number is an actual argument value.

An object that consists of a number of other objects. For example, a
sentence is an aggregate whose elements are words. Lists and vectors are also aggregates.
A word can be thought of, for some purposes, as an aggregate whose elements are
one-letter words.

(define (square x)
(* x x))

+
3 4

(square 13) 13
square

(* x x) square

#t #f

invoke

name
value.

tree node children. leaf node.

not

invoke.

spreadsheet.

558 Glossary

algorithm:

apply:

argument:

association list:

atomic expression:

backtracking:

base case:

body:

Boolean:

branch node:

bug:

call:

cell:

A method for solving a problem. A computer program is the expression of
an algorithm in a particular programming language; the same algorithm might also be
expressed in a different language.

To a procedure with arguments. For example, “Apply the procedure to
the arguments and .”

A datum provided to a procedure. For example, in , is
the argument to .

A list in which each element contains a and a corresponding
The list is used to look up a value, given a name.

An expression that isn’t composed of smaller pieces.

A programming technique in which the program tries one possible
solution to a problem, but tries a different solution if the first isn’t successful.

In a recursive procedure, the part that solves the smallest possible version
of the problem without needing a recursive invocation.

An expression, part of the definition of a procedure, that is evaluated when that
procedure is invoked. For example, in

the expression is the body of the procedure.

The value , meaning “true,” or , meaning “false.”

A with The opposite of a

An error in a program. This word did originate with Grace Hopper finding
an actual insect inside a malfunctioning computer; she may have done so, but the
terminology predates computers by centuries.

Synonym for

One location in a

(+ 2 (* 3 5)) *
+

word

vector-set!

count

nodes tree. siblings parent.

atomic
expression.

primitive

selector mutator abstract data type.

abstract data types.

Glossary 559

children:

composition of functions:

compound expression:

compound procedure:

constructor:

data abstraction:

data structure:

database program:

datum:

debugging:

destructive:

domain:

The directly under this one, in a (See also and)

Using the value returned by a function as an argument to
another. In the expression , the value returned by the function is used
as an argument to the function.

An expression that contains subexpressions. Opposite of

A procedure that a programmer defines. This is the opposite
of a procedure.

A procedure that returns a new object of a certain type. For example, the
procedure is a constructor that takes words as arguments and returns a new word.

See also , , and

The invention of

A mechanism through which several pieces of information are combined
into one larger unit. The most appropriate mechanism will depend on the ways in which
the small pieces are used in the program, for example, sequentially or in arbitrary order.

A program that maintains an organized collection of data, with
facilities to modify or delete old entries, add new entries, and select certain entries for
display.

The piece of information stored in each node of a tree.

The process by which a programmer finds and corrects mistakes in a
program. No interesting program works the first time; debugging is a skill to develop,
not something to be ashamed of.

A destructive procedure is one that modifies its arguments. Since the only
data type in this book that can be modified is the vector, all destructive procedures call

.

The set of all legal arguments to a function. For example, the domain of the
function is the set of all sentences and all words.

•
•
•
•

()

""

345 x

(+ 3 4)

x
square

(define (square x)
(* x x))

atomic expression,
compound expression

record.

trees.

name

560 Glossary

effect:

empty sentence:

empty word:

end-of-file object:

expression:

field:

first-class data:

forest:

formal parameter:

Something a procedure does other than return a value. For example, a
procedure might create a file on disk, or print something to the screen, or change the
contents of a vector.

The sentence , which has no words in it.

The word , which has no letters in it.

What the file-reading procedures return if asked to read a file with
no more unread data.

The representation in Scheme notation of a request to perform a
computation. An expression is either an such as or , or a

consisting of one or more subexpressions enclosed in parentheses,
such as .

A single component of a database For example, “title” is a field in our
example database of albums.

Data with the following four properties:

It can be the argument to a procedure.
It can be the return value from a procedure.
It can be given a name.
It can be part of a data aggregate.

In Scheme, words, lists, sentences, trees, vectors, ports, end-of-file objects, Booleans, and
procedures are all first-class.

A list of

In a procedure definition, the name given to refer to an argu-
ment. In

is the formal parameter. (Note that this is not the same thing as an actual argument!
When we invoke later, the argument will be a number, such as 5. The parameter
is the for that number, not the number itself.)

define

+ + 3
4

return value
argument values. algorithms

sequential programming.

local variable.

helper
procedure

special form.

Glossary 561

function:

functional programming:

global variable:

helper procedure:

higher-order procedure:

index:

initialization procedure:

interactive:

invoke:

keyword:

kludge:

A transformation of information that associates a with some
number of There may be many different that compute the
same function; the function itself is the relationship between argument values and return
value, no matter how it may be implemented.

A style of programming in which programs are expressed as
compositions of functions, emphasizing their arguments and return values. Compare to

A variable created with , which has meaning everywhere in the
program. The opposite of a

A procedure that exists to help another procedure do its work.
Normally, a user does not invoke a helper procedure directly. Instead, the user invokes
a top-level procedure, which invokes the helper procedure to assist it in coming up with
the answer.

A procedure whose domain or range includes other proce-
dures.

A number used to select one of the elements of a vector.

A procedure that doesn’t do any work except to invoke a
with appropriate argument values.

An interactive program or programming language does its work in response
to messages typed by the user at a keyboard (or perhaps indicated with a pointing device
like a mouse). Each message from the user causes the program to respond in some way.
By contrast, a non-interactive program works with input data that have been prepared in
advance.

To ask a procedure to do its work and come up with a return value. For
example, “Invoke the procedure,” or “Invoke the procedure with the arguments
and .”

The name of a

A method that gets the job done but isn’t very elegant. Usually the result is a
program that can’t be extended the next time a new feature is needed.

let

vector-set!

leaf node:

leap of faith:

list:

local variable:

mutable:

mutator:

mutual recursion:

node:

parent:

pattern matcher:

plumbing diagram:

port:

portable:

tree node children. branch node.

global
variable.

selector, constructor, abstract data type.

tree. datum children.

tree. children siblings.

562 Glossary

A with no The opposite of a

A method for understanding recursion in which you say to yourself, “I’m
going to assume that the recursive call always returns the right answer,” and then use the
answer from the recursive call to produce the answer to the entire problem.

A data aggregate containing elements that may be of any type.

A variable that associates a formal parameter name with an actual
argument value. It’s “local” because the variable exists only within one procedure
invocation. (This includes variables created by .) This is the opposite of a

A data structure is mutable if its contents can change.

A procedure that changes the value of a data object. In this book, the
only mutable data objects we use are vectors, so every mutator is implemented using

. See also and

The program structure in which one procedure invokes another,
and the second invokes the first.

An element of a A node has a and zero or more

The node above this one, in a (See also and)

A program that takes a pattern and a piece of data as inputs and says
whether or not that piece of data is one that the pattern describes. We present a pattern
matcher in Chapter 16.

A pictorial representation of the composition of functions, with
the return value from one procedure connected to an argument intake of another.

An object that Scheme uses to keep track of a file that is currently open for
reading or writing.

A portable program is one that can be run in more than one version of
Scheme or on more than one computer.

equal?

>

count

(a b . x) x

Boolean

compound

reads
evaluates

prints

fields.

recursion.

base case.

Glossary 563

potsticker:

predicate:

primitive procedure:

procedure:

prompt:

random access:

range:

read-eval-print loop:

record:

recursion:

recursive case:

rest parameter:

A Chinese dumpling stuffed with meat and vegetables, first steamed and
then pan-fried, or sometimes first pan-fried and then simmered in water added to the
pan.

A procedure that always returns a value. By convention, Scheme
predicates have names like “ ” that end in a question mark.

A procedure that is already defined when a Scheme session
begins. By contrast, a procedure is one that the programmer defines in
Scheme.

The expression of an algorithm in Scheme notation.

A character or characters that an interactive program prints to tell the user
that it’s ready for the user to type something. In many versions of Scheme, the prompt is
a character.

A data structure allows random access if the time required to locate an
element of the structure is independent of its position within the structure.

The set of all possible return values from a function. For example, the range of
the function is the set of non-negative integers.

The overall structure of a Scheme interpreter. It an
expression from the keyboard, the expression by invoking procedures, etc., and

the resulting value. The same process repeats forever.

One complete entry in a database. For example, one album in our database of
albums. A record contains several

Solving a big problem by reducing it to smaller problems of the same kind.
If something is defined recursively, then it’s defined in terms of itself. See

In a recursive procedure, the part that requires a recursive invocation.
The opposite of the

A parameter that represents a variable number of arguments. In the
formal parameter list , is a rest parameter.

first

#f
#t

member

and begin cond define if lambda let or
quote

node tree.

constructor,
mutator, abstract data type.

effects.

functional programming.

nodes tree children
parent.

effect.

keyword

564 Glossary

result replacement:

robust:

root node:

selector:

self-evaluating:

semipredicate:

sequencing:

sequential programming:

siblings:

side effect:

special form:

A technique people can use to figure out the value of a complicated
Scheme expression by rewriting the expression repeatedly, each time replacing some small
subexpression with a simpler expression that has the same value, until all that’s left is a
single quoted or self-evaluating value.

Able to function despite user errors. Robust programs check for likely errors
and recover from them gracefully.

The at the very top of a

A procedure that takes an object as its argument and returns some part of
that object. For example, the selector takes a word or sentence as argument and
returns the first letter of the word or first word of the sentence. See also

and

An expression is self-evaluating if, when evaluated, it has as its value
the expression itself. Numbers, Booleans, and strings are the only self-evaluating objects
we use in this book.

A procedure that answers a yes-no question by returning for “no,”
but instead of returning for “yes,” it returns some additional piece of information. The
primitive procedure is a good example of a semipredicate. (“Semipredicate”
isn’t a common term; we made it up for this book.)

Evaluating two or more expressions one after the other, for the sake of
their

A style of programming in which programs say, “First do this,
then do that, then do that other thing.” (Compare to)

Two of a that are the children of the same node. (See also
and)

See

A Scheme expression that begins with a and is evaluated using
a special rule. In particular, some of the subexpressions might not be evaluated. The
keywords used in this book are , , , , , , , , and

. (The keyword itself is also sometimes called a special form.)

"A Hard Day’s Night"
"000123"

(+ (* 2 3) 4) + (* 2 3) 4

(c d)
(a b (c d) e)

word

sublists.

compound expression.

global local.

Glossary 565

spreadsheet program:

state:

string:

structured list:

subexpression:

sublist:

substitution model:

subtree:

symbol:

symbolic computing:

tree:

tree recursion:

type:

variable:

vector:

A program that maintains a two-dimensional display of data can
compute some elements automatically, based on the values of other elements.

A program’s memory of what has happened in the past.

A delimited by double-quote marks, such as or
.

A list with

An element of a For example, the expression
has three subexpressions: , , and .

An element of a list that is itself a smaller list. For example, is a sublist
of the list .

The way we’ve explained how Scheme evaluates function invoca-
tions. According to the substitution model, when a compound procedure is invoked,
Scheme goes through the body of that procedure and replaces every copy of a formal
parameter with the corresponding actual argument value. Then Scheme evaluates the
resulting expression.

A tree that is part of a larger tree.

A word that isn’t a number or a string.

Computing that is about words, sentences, and ideas instead of
just numbers.

A two-dimensional data structure used to represent hierarchical information.

A form of recursion in which a procedure calls itself recursively more
than one time in each level of the recursion.

A category of data. For example, words, sentences, Booleans, and procedures
are types. Some types overlap: All numbers are also words, for example.

A connection between a name and a value. Variables can be or

A primitive data structure that is mutable and allows random access.

word:

566 Glossary

A sequence of characters, including letters, digits, or punctuation. Numbers are
a special case of words.

A

B

567

Index of Defined Procedures

-
-
-
-
- - -
-

-
-
-

-

-

-
- -
-
-

-
-
- -

- -
-
-
- -

-

74
332

8, 9, 110, 223
269

221
(exercise) 490

353
109, 222

127
127

455
353
(exercise) 169

109
(exercise) 122

(exercise) 84
115

(exercise) 140
(exercise) 140

(exercise) 139

(exercise) 205
328

370
362
364

354
(exercise) 484

46

135
(exercise) 124, 204

117
(exercise) 301

166
164

164
165

(exercise) 420
344

449

abs
accumulate
acronym
add
addup
add field
add move
add numbers
add three
add three to each
all evaluated?
already won?
already won?
always one
amazify
american-time
any numbers?
aplize
apl sqrt
appearances

arabic
area
arg count
ask for name
ask question
ask user
ask
average

backwards
base grade
beatle number
before in list?
best free square
best move
best square
best square helper
bill
bottles
bound check

This index contains example procedures whose definitions are in the text and procedures
that you are asked to write as exercises. (The exercises are marked as such in the index.)
Other sources of information are the general index, which contains technical terms
and primitive procedures (for which there is no Scheme definition); the glossary, which
defines many technical terms; and the Alphabetical Table of Scheme Primitives on
page 553.

C

D

E

568 Index of Defined Procedures

-

-
-
-
-
-
-
-
-

-
-
-

- -

-
-

- -

-
-
- - -
-
-
-
-
-

-
-
-
-
- -
- -
- -
-
-
-

-

-

-

-

-
-

-

-
- -

-

-

(exercise) 302
(exercise) 144

288
288

74

411
(exercise) 142

461
460

461
460

460
395

315
12

(exercise) 122
158

134, 327
134

309
(exercise) 486

13
441
(exercise) 138

(exercise) 139
323

(exercise) 401
(exercise) 364

228
(exercise) 187

110
(exercise) 187

(exercise) 230
(exercise) 485

310
310

(exercise) 324
(exercise) 143

(exercise) 124, 185
(exercise) 483

(exercise) 483

315
(exercise) 482

(exercise) 482
(exercise) 484

(exercise) 483
(exercise) 482

(exercise) 482
(exercise) 483
297

335
297, 334

(exercise) 324
(exercise) 87
(exercise) 205

(exercise) 137
(exercise) 230

219
75

105, 114
220

201
174, 178, 195

236
354

(exercise) 485
346

107
(exercise) 122

(exercise) 68
(exercise) 84

195
(exercise) 122

329
224

224, 228
(exercise) 123, 204

443
443
181

161

branch
bridge val
butfirst
butlast
buzz

card list
card val
cell children
cell expr
cell parents
cell structure
cell value
char count
children
choices
choose beatles
choose win
circle area
circumference
cities
clear current db!
combinations
command loop
common words
compose
compute
concatenate
converse
copies
copies
count
countdown
count adjacent duplicates

count db
count leaves
count leaves in forest
count nodes
count suit
count ums
current db
current fields

datum
db fields
db filename
db insert
db records
db set fields!
db set filename!
db set records!
deep appearances
deep map
deep pigl
depth
describe-time
describe time
describe
differences
disjoint pairs
divisible?
double
doubles
down
downup

earliest word
echo
edit record
effect
ends e?
ends vowel?
ends
european-time
evens
even count?
every
every nth
every nth helper
exaggerate
execute command
exhibit
explode
extract digit

F

G

H

I

J

K

L

Index of Defined Procedures 569

-
-

-
-
- -
- - -
- - -

-

-
- -
-
-
-
-

-
-

-

-

-
-
-
- -
-
-
-

- -

- -
-

-
-

- -

- -

-
-

-
-
-
-

- -
- -
- -

-

454
395

14, 194
213

455
397

398
392

392
461

462
331

154
288

166
160

(exercise) 139
104

225
(exercise) 67

(exercise) 302
130

132
237, 238

367

(exercise) 489
(exercise) 98

377
368

378
(exercise) 484

(exercise) 484
390

269
(exercise) 486

460
(exercise) 124, 204

71
(exercise) 87

(exercise) 144
(exercise) 138

(exercise) 138
222

328
(exercise) 142

108
50, 91

292
(exercise) 85

408
(exercise) 187

461
(exercise) 68

(exercise) 484
77

371
313

312, 313
115

164
159

157

(exercise) 403
395

136
136
(exercise) 68

409
288

393

extract ids
extra spaces

factorial
fib
figure
filemerge
filemerge helper
file map
file map helper
fill array with rows
fill row with cells
filter
find triples
first
first choice
first if any
first last
first letters
first number
first two
flatten
flip
fourth power
from binary
functions loop

generic before?
gertrude
get arg
get args
get fn
get record loop
get record
get song
get value
get
global array lookup
gpa
greet
greet

hand dist points
hang letter
hang
has vowel?
hexagon area
high card points
hyphenate
hypotenuse

increasing?
indef-article
initialize lap vector
initials
init array
insert and
insert
integer quotient
in domain?
in forest?
in tree?
item
i can advance?
i can fork?
i can win?

join
justify

keeper
keep h
knight

lap
last
lastfirst

M

N

O

P

570 Index of Defined Procedures

-
-

- -
-
-

-
-

- -

-

- -
- -

-
-
-
-

-
- - -

-
- -

-
-

-
-

-
-

-
-
-
-
-

-
- -

- - -

-

- -

-

-
-
-

-
- -

-
- -

-

-
-
-
- -

(exercise) 420
309

310
(exercise) 138

(exercise) 123, 229
181, 218

(exercise) 137
414

(exercise) 485
268

(exercise) 485
314

314
352
(exercise) 230

267
269, 286
(exercise) 402

347
347

129
(exercise) 482

412
314

330
266

267
267

(exercise) 301
355

371
239

238
398

(exercise) 495
(exercise) 231

(exercise) 69
358

(exercise) 300
156

160

373
373
360

(exercise) 483
(exercise) 483

(exercise) 204
(exercise) 233

375
76

(exercise) 229
239
156

158
281
(exercise) 420

239

396
(exercise) 402

322
(exercise) 325

(exercise) 244
(exercise) 124, 186

134
10, 181

448
450

160
352

352
75, 105
(exercise) 87

(exercise) 245
285

12, 240
443

390
397

leader
leaf
leaf?
letterwords
letter count
letter pairs
let it be
list >vector
list db
lm helper
load db
locate
locate in forest
location
location
longest match
lookup
lookup
lots of effect
lots of value

make adder
make db
make deck
make node
map
match
match special
match using known values
max2
maybe display
member types ok?
merge
mergesort
merge copy
merge db
merge
middle names
music critic
mystery
my pair?
my single?

named every
named keep
name table
new db
no db?
numbers
number name
number of arguments
num divisible by 4?

odds
one half
opponent
opponent can win?
order
order
other half

pad
page
parse
parse scheme
phone spell
phone unspell
pi
pigl
pin down
pin down cell
pivots
play ttt
play ttt helper
plural
plural
poker value
praise
prepend every
prev row
print file
print file helper

Q

R

S

Index of Defined Procedures 571

-
-
-
-
-

-

- - - -
- - - -
- -
-
- - -

-

-
-
-

- -

-
-

-
-

-
-
- -
-
-
-

-
-
-

-
-
-
- - -

- -
- -
- -
- -
- -
- -
-
- -
-
-

-
-

-
-

-
-
- -
-

-
-

-

-
-

355
355

458
442

393
(exercise) 231

(exercise) 324
445

445
445

445
453

447

(exercise) 69
457

457

332
9, 108
(exercise) 205

(exercise) 229

(exercise) 230
236
(exercise) 229

(exercise) 205
161

79
96

11

222
(exercise) 140

129
(exercise) 485

370
221

60

(exercise) 139
(exercise) 493

444
(exercise) 138

(exercise) 301
227

252
221

106
455

461
461

461
460
(exercise) 483

443
350

361
368

351
412

(exercise) 84
390
269

236
(exercise) 86

162
(exercise) 490

(exercise) 487
396

(exercise) 204
116
327

134
134

461
41, 131

327
456

352
241

153
154

(exercise) 139
(exercise) 243

print position
print row
print screen
process command
process grades
progressive squares?
prune
put
put all cells in col
put all cells in row
put all helper
put expr
put formula in cell

query
quoted?
quoted value

real accumulate
real word?
real words
remdup
remove adjacent duplicates

remove once
remove once
remove
repeated numbers
roman value
roots
rotate

safe pigl
safe sqrt
same arg twice
save db
scheme procedure
scrunch words
second

second
select by
select id!
sentence version
sentence
sent before?
sent equal?
sent max
sent of first two
setvalue
set cell children!
set cell expr!
set cell parents!
set cell value!
set current db!
set selected row!
show addition
show and return
show answer
show list
shuffle!
sign
skip songs
skip value
sort
sort2
sort digits
sort on
sort
spaces
spell-number
spell digit
sphere area
sphere surface area
sphere volume
spreadsheet
square
square area
ss eval
stupid ttt
subsets
substitute letter
substitute triple
substitute
substring?

T

U

V

W

572 Index of Defined Procedures

-
- -
-
-

- -

-
-
-

-

- -
- - -
- - -
-

-
-
- -
-

-

-
-

- -
-

-
-
-
-
-

substrings
subword
subword
suit counts
suit dist points
sum square
sum vector
superlative
syllables

teen?
third person singular
third
thismany
three firsts
tie game?
tie game?
transform beatles
translate
truefalse
true for all?
true for all pairs?
true for any pair?
try putting
ttt
ttt choose
two firsts
two first sent
two first

two numbers?
type-of
type check
type predicate

unabbrev
unscramble
up
utensil

valid-date?
valid fn name?
valid infix?
value
vector append
vector fill!
vector map!
vector map
vector swap!
verse
vowel?

who
words

(exercise) 243
355
(exercise) 124

(exercise) 143
(exercise) 143

(exercise) 99
(exercise) 419

(exercise) 98
(exercise) 232

(exercise) 85
(exercise) 83

(exercise) 67
(exercise) 86

103
353
(exercise) 169

(exercise) 122
286, 292
80

(exercise) 124
(exercise) 337

(exercise) 337
445

148, 155
163
103

(exercise) 68
(exercise) 68

371
(exercise) 85

(exercise) 140
370

(exercise) 139
(exercise) 244

(exercise) 229
(exercise) 84

(exercise) 86
375

(exercise) 303
346

(exercise) 419
(exercise) 419

(exercise) 419
(exercise) 419

412
345, 350

107

(exercise) 137
(exercise) 123

A

B

573

General Index

#f
#t
’
*
+
-
/
<
<=
=
>
>=

abs

accumulate

align
and

append
apply

assoc

This index contains technical terms and primitive procedures. Other sources of informa-
tion are the index of defined procedures, which contains procedures whose definitions
are in the text and procedures that you are asked to write as exercises; the glossary,
which defines many technical terms; and the Alphabetical Table of Scheme Primitives on
page 553.

71
71

58
553
553
74, 553
553
73

73
73
73

73

Abelson, Harold xxi, xxxi, 209, 501
74

abstract data type 270, 287, 315, 441
abstraction 5, 47, 134, 270, 434, 501

108, 110, 331
actual argument 45
actual argument expression 45
actual argument value 45

ADT 270, 287, 315, 441
algorithm 13, 238

358
75, 76

apostrophe 58
283

293
argument 6, 32
argument, actual 45
arguments, variable number of 292
arithmetic function 18
array 406, 421
artificial intelligence xviii

291
association list 291
atomic expression 29

backtracking 256, 270
base case 178
base cases, simplifying 197
Baskerville, John iv

C

D

E
- -
- -
- -

574 General Index

before?
begin
bf

bl

boolean?

butfirst
butlast

c
c...r
cadr
car

cdr
ceiling

children

close all ports
close input port
close output port

cond

cons

cos
count

datum

define

display

else

Beatles xxxii, 551
73

348
61

binary number 237
61

body 42
Bonne, Rose 552
Boole, George 21
Boolean 21, 71

73
boring exercise xxiii
bottom-up 142
branch node 305
bridge points 141

60
60

347
286

287
282

Carroll, Lewis 45, 551
case, base 178
case, recursive 178

282
554

cell 425
chalkboard model 93, 94
child (in spreadsheet program) 451
children 306

308
Chinese food xxxii
Clancy, Michael xxxi
clause, cond 79
Clinger, William 394

401
388

388
comments 32
complexity, control of 5
composition of functions 26, 47
compound expression 29

compound procedure 8
computing, symbolic xviii, 14

78, 157
cond clause 79
condition 79

283
consequent 79
constant, named 89
constructor 61, 282, 283, 307
control of complexity 5
conversational program 343

554
109

data abstraction violation 316
data file 387
data structure 149
data type, abstract 270, 287, 315, 441
database 265, 477
datum 306

308
Dave Dee, Dozy, Beaky, Mick, and Tich

xxxii
debugger 7
debugging xxiii
Dee, Dave xxxii

41, 130
definition, global 131
diagram, plumbing 34
Dijkstra, Edsger xvii

350, 387
Dodgson, Charles 551
domain 20
double-quote marks 58, 61
Dubinsky, Ed xxxii, xxxi

effect, side 345
Ehling, Terry xxxi

80
EMACS 429, 436
empty sentence 61, 72

-

-

F

G

H

I

General Index 575

empty?

eof object?
equal?
error

eval

even?
every

exit

expt

file-map
filter
first

floor

for each

functions

if

73
end-of-file object 390
engineering, software xx

391
72

554
error messages 7

456
evaluation, order of 31

554
104, 110

exclusive, mutually 80
exercise, boring xxiii
exercise, real xxiii

7
expression 29
expression, actual argument 45
expression, atomic 29
expression, compound 29
expression, self-evaluating 30, 61, 62

554
extensibility 435
extensions to Scheme xxiv, 59, 525

factorial 14, 192
false 71
Fibonacci numbers 213
field 477
file, data 387

391
289, 331

60
first-class 63, 113

554
food, Chinese xxxii
forest 308
fork 159
form, special 42, 58, 76, 78, 95, 128, 348
formal parameter 45
forms, special 214
formula 426, 431
Fortran 335

351

Free Software Foundation 547
Freud, Sigmund 505
Friedman, Daniel P. xxi, xxxi, 406
Frisell, Bill xxxii
function 17
function as argument 104
function as data 21
function as object 23
function as process 23
function composition 26, 47
function machine 33, 106
function vs. procedure 43, 104
function, arithmetic 18
function, higher-order 23, 106, 289, 327
function, unnamed 133
functional programming 17, 27, 89, 348

367

generalization 46, 327, 392, 434
global variable 131

Harvey, Brian 209
Harvey, Tessa xxxi
helper procedure 224
Hennessy, John L. xxxii
higher-order function 23, 106, 289, 327
Hofstadter, Douglas R. xxxii
Hypercard 435

ice cream xxxii
identity element 119, 221, 332

71, 76
IFSMACSE xxxii
imperative programming 417
indentation 35
indentation in a program 11
Indianapolis 405
infix notation 317
initialization procedure 224

J

K

L

M

N

O

-
-

-
-

- -

576 General Index

integer?

item

keep
keep

lambda

last

length

let

list

list?
list >vector
list ref

load

log

make node
make vector

map

max

member
member?

min

newline

not
null?

number?

odd?
open input file

554
intelligence, artificial xviii
interactive programming 343
interface, user 360

114

join 402
justify 394

Katz, Yehuda xxxi
107, 110
pattern 220

keyboard 343
keyword 42
kludge 157, 162, 165, 333
Knuth, Donald iv

127
lambda calculus 128

60
Latin, Pig 10, 179
leaf node 305

291
Leron, Uri xxxii

95
lines of a program 10
Lisp xix
list 281

283
list, association 291
list, structured 282, 335

290
411

291
little people 30, 49, 90, 207

554
local variable 93

554
Logo xxxi

machine, function 33, 106
307

406
Manilow, Barry 57

289
mapping 289
Marx, Karl 505
matcher, pattern 249
matrix 421

554
McCarthy, John xix

290
73, 82

mergesort 238
metaphor 434
Mills, Alan 552

554
model, chalkboard 93
moon, phase of the 212
mutator 407
mutual recursion 310
mutually exclusive 80

named constant 89
naming a value 89, 130

350, 387
node 305
node, branch 305
node, leaf 305
node, root 305

75
283

number, binary 237
73

numbers, Fibonacci 213

object, end-of-file 390
555

388

P

Q

R

- -

cond
let

-

General Index 577

open output file
or

keep

procedure?

quote
quotient

random

read

read-string
read line

reduce

remainder
repeated

round

388
76

order of evaluation 31

parameter, formal 45
parameter, rest 293
parent 306
parent (in spreadsheet program) 451
parentheses 36
parentheses, for procedure invocation 6,

32, 119
parentheses, for clauses 79
parentheses, for variables 96
Pascal xxi
pattern matcher 249
pattern, recursive 217
pattern: 220
Patterson, David A. xxxii
Payne, Jonathan iv
phase of the moon 212
Pig Latin 10, 179
Pisano, Leonardo 213
pivot 159
placeholder 250
plumbing diagram 34
points, bridge 141
port 387
portable 428
position 148
predicate 72
prefix notation 317
primitive procedure 8
printed twice, return value 211
printing 343, 362
Prior, Robert xxxi
procedure 6
procedure as argument 104
procedure vs. function 43, 104
procedure, compound 8
procedure, helper 224
procedure, higher-order 327
procedure, initialization 224
procedure, primitive 8

555
program, conversational 343
programming, functional 17, 27, 89, 348
programming, imperative 417
programming, interactive 343
programming, structured xx
programming, symbolic xviii, 14
prompt 6

quadratic formula 94
quotation marks, double 58

57
555

410, 555
range 20

354, 387
read-eval-print loop 29, 343, 367

396
356, 387

real exercise xxiii
record 477
recursion 174, 577
recursion, mutual 310
recursion, tree 312
recursive case 178
recursive pattern 217

290, 332
Rees, Jonathan 394

555
113

replacement, result 33
representation 150
rest parameter 293
result replacement 33
return 17
robust 334
Rogers, Annika xxxi
root node 305

555

-

-
-
-

S

T

U

V

W

578 General Index

Structure and Interpretation of Computer
Programs

se

sentence

sentence?

show
show line

sin

sqrt

trace

untrace

vector
vector-fill!
vector-length
vector?
vector >list
vector ref
vector set!

word

Scheme xix, xviii, 394
Scheme, extensions to xxiv, 59, 525
screen 343

62
selector 59, 282, 308
self-evaluating expression 30, 61, 62
semicolon 32
semipredicate 77, 291
sentence 21

61
sentence, empty 61, 72

74
sequencing 347

344, 387, 388
358, 387

shuffle 410
sibling 306
side effect 345
simplifying base cases 197

555
software engineering xx
sorting 235, 238
special form 42, 58, 76, 78, 95, 128, 348
special forms 214
spreadsheet 425
Springer, George xxi

555
state 405
strategy 148
string 36, 58, 61, 154, 350

xxi, 501
structure, data 149
structured list 282, 335
structured programming xx
subexpression 29
sublist 282
subsets 239
substitution 48, 94
substitution model 94
substitution model and global variables

131
subtree 307

Sussman, Gerald Jay xxi, xxxi, 209, 501
Sussman, Julie xxi, xxxi, 209, 501
symbol 58
symbolic programming xviii, 14

template 217
top-down 142

210
tree 305
tree recursion 312
triple 150
true 71
type 19
type, abstract 270, 287, 315, 441

unnamed function 133
211

user interface 360

value, actual argument 45
variable 89
variable number of arguments 292
variable, global 131
variable, local 93
vector 406

413
419

413
413

411
407

407

Wirth, Niklaus xxi
word 19

61
word, empty 61

Zword?

write

General Index 579

74
Wright, Matthew 209

400 Zabel, David xxxii

Table of Scheme Primitives by Category

*
*

*
*

*
*

*
*
*

*

*
*

*
*

*

*

*
*

*

Not part of
standard Scheme

, , ,
, , , ,

*
*

*

*

*
*

*

*
*

*
*

*

Use this table if you’ve forgotten the name of a primitive. Then look in the index to find
more about how to use the primitive.

Words and Sentences

Lists

Trees

Arithmetic

True and False

Variables

Vectors

Procedures

Higher Order
Procedures

Control

Input/Output

Files and Ports

appearances
before?
butfirst (bf)
butlast (bl)
count
empty?
equal?
first
item
last
member?
quote
sentence (se)
sentence?
word
word?

append
assoc
car
cdr
c...r
cons
filter
for-each
length
list
list?
list-ref
map
member
null?
reduce

children
datum
make-node

*

+ - * /
< <= = > >=
abs
ceiling
cos
even?
expt
floor
integer?
log
max
min
number?
odd?
quotient
random
remainder
round
sin
sqrt

and
boolean?
cond
if
not
or

define
let

list->vector
make-vector
vector
vector?
vector-length
vector->list
vector-ref
vector-set!

apply
lambda
procedure?

-

accumulate
every
filter
for-each
keep
map
reduce
repeated

begin
error
load
trace
untrace

align
display
newline
read
read-line
read-string
show
show-line
write

close-all-ports
close-input-port
close-output-port
eof-object?
open-input-file
open-output-file

