
149

downup "hello

Recursive Patterns

downup5 downup4

downup

?
hello
hell
hel
he
h
he
hel
hell
hello

8 Practical Recursion: the Leap of Faith

When people first meet the idea of recursive procedures, they almost always think there
is some sort of magic involved. “How can that possibly work? That procedure uses
itself as a subprocedure! That’s not fair.” To overcome that sense of unfairness, the
combining method works up to a recursive procedure by starting small, so that each step
is completely working before the next step, to solve a larger problem, relies on it. There
is no mystery about allowing to rely on .

The trouble with the combining method is that it’s too much effort to be practical.
Once you believe in recursion, you don’t want to have to write a special procedure for
a size-one problem, then another special procedure for a size-two problem, and so on;
you want to write the general recursive solution right away. I’m calling this the “leap of
faith” method because you write a procedure while taking on faith that you can invoke
the same procedure to handle a smaller subproblem.

Let’s look, once more, at the problem we were trying to solve when writing the
procedure. We wanted the program to behave like this:







already
works

150 Chapter 8 Practical Recursion: the Leap of Faith

downup "hello

print "hello
downup "hell
print "hello

to downup :word
print :word
downup butlast :word
print :word
end

downup

hello

downup "hell

hell
hel
he
h
he
hel
hell

hello

downup
hello downup

hell

downup

print
downup

hello
hello hell

butlast

The secret of recursive programming is the same as a secret of problem solving in general:
see if you can reduce a big problem to a smaller problem. In this case we can look at the
printout from this way:

What I’ve done here is to notice that the printout from applying to a five-letter
word, , includes within itself the printout that would result from applying
to a smaller word, .

This is where the leap of faith comes in. I’m going to pretend that
for the case of four-letter words. We haven’t begun to write the procedure yet, but

never mind that. So it seems that in order to evaluate the instruction

we must carry out these three instructions:

(The two instructions print the first and last lines of the desired result, the ones
that aren’t part of the smaller printout.)

To turn these instructions into a general procedure, we must use a variable in place
of the specific word . We also have to figure out the general relationship that is
exemplified by the transformation from into . This relationship is, of course,
simply . Here is the procedure that results from this process of generalization:







one.per.line "hello

not

Recursive Patterns 151

downup
downup

h hello

one.per.line
"ello

e
l
l
o

to downup :word
print :word
if equalp count :word 1 [stop]
downup butlast :word
print :word
end

?
h
e
l
l
o

As you already know, this procedure won’t quite work. It lacks a stop rule. But once
we have come this far, it’s a relatively simple matter to add the stop rule. All we have to do
is ask ourselves, “What’s the smallest case we want the program to handle?” The answer is
that for a single-letter word the should just print the word once. In other words,
for a single-letter word, should carry out its first instruction and then stop. So
the stop rule goes after that first instruction, and it stops if the input has only one letter:

Voilà!

The trick is to think about the stop rule at first. Just accept, on faith, that the
procedure will somehow manage to work for inputs that are smaller than the one you’re
interested in. Most people find it hard to do that. Since you haven’t written the program
yet, after all, the faith I’m asking you to show is really unjustified. Nevertheless you have
to pretend that someone has already written a version of the desired procedure that
works for smaller inputs.

Let’s take another example from Chapter 7.

There are two different ways in which we can find a smaller pattern within this one.
First we might notice this one:

(first of )

This pattern would lead to the following procedure, for which I haven’t yet invented a
stop rule.



☞





The Leap of Faith

152 Chapter 8 Practical Recursion: the Leap of Faith

one.per.line
"hell

h
e
l
l

o hello

first butfirst last
butlast

one.per.line

say

to one.per.line :word
print first :word
one.per.line butfirst :word
end

to one.per.line :word
one.per.line butlast :word
print last :word
end

if emptyp :word [stop]

to one.per.line :word
print first :word
one.per.line butfirst :word
end

Alternatively we might notice this pattern:

(last of )

In that case we’d have a different version of the procedure. This one, also, doesn’t yet
have a stop rule.

Either of these procedures can be made to work by adding the appropriate stop rule:

This instruction should be the first in either procedure. Since both versions work, is
there any reason to choose one over the other? Well, there’s no theoretical reason but
there is a practical one. It turns out that and work faster than
and . It also turns out that procedures that are tail recursive (that is, with the
recursion step at the end) can survive more levels of invocation, without running out of
memory, than those that are recursive in other ways. For both of these reasons the first
version of is a better choice than the second. (Try timing both versions
with a very long list as input.)

Rewrite the procedure from page 95 recursively.

If we think of



The Tower of Hanoi

* Well, almost. It needs a base case.

runnable! look

really

The Tower of Hanoi 153

one.per.line

one.per.line

one.per.line
one.per.line "hello one.per.line

"ello

one.per.line

one.per.line1
one.per.line4

whatever4
whatever5

merely as a statement of a true fact about the “shape" of the result printed by
, it’s not very remarkable. The amazing part is that this fragment is

* It doesn’t runnable because it invokes itself as a helper procedure,
and—if you haven’t already been through the combining method—that looks as if it can’t
work. “How can you use when you haven’t written it yet?”

The leap of faith method is the assumption that the procedure we’re in the middle
of writing already works. That is, if we’re thinking about writing a
procedure that can compute , we assume that

will work.

Of course it’s not a leap of faith, in the sense of something accepted as
miraculous but not understood. The assumption is justified by our understanding of the
combining method. For example, we understand that the five-letter is
relying on the four-letter version of the problem, not really on itself, so there’s no circular
reasoning involved. And we know that if we had to, we could write
through “by hand.”

The reason that the technique in this chapter may seem more mysterious than the
combining method is that this time we are thinking about the problem top-down. In
the combining method, we had already written before we even raised the
question of . Now we start by thinking about the larger problem and assume
that we can rely on the smaller one. Again, we’re entitled to that assumption because
we’ve gone through the process from smaller to larger so many times already.

The leap of faith method, once you understand it, is faster than the combining
method for writing new recursive procedures, because you can write the recursive
solution immediately, without bothering with many individual cases. The reason I
showed you the combining method first is that the leap of faith method seems too much
like magic, or like “cheating,” until you’ve seen several believable recursive programs.
The combining method is the way to learn about recursion; the leap of faith method is
the way to write recursive procedures once you’ve learned.

One of the most famous recursive problems is a puzzle called the Tower of Hanoi. You
can find this puzzle in toy stores; look for a set of three posts and five or six disks. You



A B C

5
4
3
2
1

A B C

5
4
3
2
1

A B C

5
4
3
2

1

first move:

A B C

5
4
3

1

second move:

2

downup one.per.line

154 Chapter 8 Practical Recursion: the Leap of Faith

start out with the puzzle arranged like this:

The object of the puzzle is to move all of the disks to the second post, like this:

This looks easy, but there are rules you must follow. You can only move one disk at a
time, and you can’t put a disk on top of a smaller disk. You might start trying to solve the
puzzle this way:

After that, you could move disk number 1 either onto post A, on top of disk 3, or onto
post C, on top of disk 2.

I’m about to describe a solution to the puzzle, so if you want to work on it yourself
first, stop reading now.

In the examples of and , we identified each problem as one
for which a recursive program was appropriate because within the pattern of the overall
solution we found a smaller, similar pattern. The same principle will apply in this case.
We want to end up with all five disks on post B. To do that, at some point we have to move



A B C

5

first part:

4
3
2
1

A B C

5

second part:

4
3
2
1

A B C

third part:

5
4
3
2
1

that,

The Tower of Hanoi 155

to hanoi :number
hanoi :number-1
movedisk :number
hanoi :number-1
end

disk 5 from post A to post B. To do we first have to get the other four disks out of the
way. Specifically, “out of the way” must mean onto post C. So the solution to the problem
can be represented graphically this way, in three parts:

The first part of the solution is to move disks 1 through 4 from post A to post C. The
second part is a single step, moving disk 5 from post A to post B. The third part, like the
first, involves several steps, to move disks 1 through 4 from post C to post B.

If you’ve developed the proper recursive spirit, you’ll now say, “Aha! The first
part and the third part are just like the entire puzzle, only with four disks instead of
five!” I hope that after this example you’ll develop a sort of instinct that will let you
notice patterns like that instantly. You should then be ready to make a rough draft of a
procedure to solve the puzzle:



third

not

156 Chapter 8 Practical Recursion: the Leap of Faith

movedisk

hanoi from
to

Hanoi

hanoi other

movedisk
movedisk

movedisk

hanoi

hanoi 5 "A "B

hanoi 4 "A "C
movedisk 5 "A "B
hanoi 4 "C "B

to hanoi :number :from :to :other
hanoi :number-1 :from :other :to
movedisk :number :from :to
hanoi :number-1 :other :to :from
end

to movedisk :number :from :to
print (sentence [Move disk] :number "from :from "to :to)
end

if equalp :number 1 [movedisk 1 :from :to stop]

Of course, this isn’t at all a finished program. For one thing, it lacks a stop rule.
(As usual, we leave that part for last.) For another, we have to write the subprocedure

that moves a single disk. But a more important point is that we’ve only
provided for changing the disk number we’re moving, not for selecting which posts to
move from and to. You might want to supply with two more inputs, named
and , which would be the names of the posts. So to solve the puzzle we’d say

But that’s not quite adequate. also needs to know the name of the post.
Why? Because in the recursive calls, that third post becomes one of the two “active” ones.
For example, here are the three steps in solving the five-disk puzzle:

You can see that both of the recursive invocations need to use the name of the third post.
Therefore, we’ll give a fourth input, called , that will contain that name.
Here is another not-quite-finished version:

This version still lacks a stop rule, and we still have to write . But we’re
much closer. Notice that does need the name of the third post as an
input. Its job is to take a single step, moving a single disk. The unused post really has
nothing to do with it. Here’s a simple version of :

What about the stop rule in ? The first thing that will come to your mind,
probably, is that the case of moving disk number 1 is special because there are no
preconditions. (No other disk can ever be on top of number 1, which is the smallest.) So
you might want to use this stop rule:



More Complicated Patterns

hanoi 3 "A "B "C

updown "hello

hanoi

movedisk

downup updown

More Complicated Patterns 157

if equalp :number 0 [stop]

?
Move disk 1 from A to B
Move disk 2 from A to C
Move disk 1 from B to C
Move disk 3 from A to B
Move disk 1 from C to A
Move disk 2 from C to B
Move disk 1 from A to B

?
h
he
hel
hell
hello
hell
hel
he
h

Indeed, that will work. (Where would you put it in the procedure?) But it turns out
that a slightly more elegant solution is possible. You can let the procedure for disk 1 go
ahead and invoke itself recursively for disk number 0. Since there is no such disk, the
procedure then has nothing to do. By this reasoning the stop rule should be this:

You may have to trace out the procedure to convince yourself that this really works.
Convincing yourself is worth the effort, though; it turns out that very often you can get
away with allowing an “extra” level of recursive invocation that does nothing. When that’s
possible, it makes for a very clean-looking procedure. (Once again, I’ve left you on your
own in deciding where to insert this stop rule in .)

If your procedure is working correctly, you should get results like this for a small
version of the puzzle:

If you like graphics programming and have been impatient to see a turtle in this
book, you might want to write a graphic version of that would actually display
the moves on the screen.

Suppose that, instead of , we wanted to write , which works like this:



☞









158 Chapter 8 Practical Recursion: the Leap of Faith

downup
downup

updown updown
h

hello

updown

h
he
hel
hell
hello

up "hello

hell
hel
he
h

down "hell

up down

updown

to up :word
if emptyp :word [stop]
up butlast :word
print :word
end

to down :word
if emptyp :word [stop]
print :word
down butlast :word
end

to updown :word
up :word
down butlast :word
end

It’s harder to find a smaller subproblem within this pattern. With , removing
the first and last lines of the printout left a pattern for a shorter word. But the
middle lines of this pattern aren’t an . The middle lines don’t start with
a single letter, like the in the full pattern. Also, the middle lines are clearly made out
of the word , not some shortened version of it. You might want to try to find a
solution yourself before reading further.

There are several approaches to writing . One thing we could do is to divide
the pattern into two parts:

It is relatively easy to invent the procedures and to create the two parts of the
pattern.

Then we can use these as subprocedures of the complete :



More Complicated Patterns 159

updown1 "hello 3

updown1 "hello 5









inout

updown1 "hello 1

h

updown1 "hello 2

he
hel
hell
hello
hell
hel
he

h

updown
hello updown1 updown

truncate

?
hel
hell
hello
hell
hel
?
hello

to truncate :word :size
if equalp count :word :size [print :word stop]
truncate butlast :word :size
end

to updown1 :word :size
truncate :word :size
if equalp count :word :size [stop]
updown1 :word :size+1
truncate :word :size
end

Another approach would be to use numbers to keep track of things, as in the
example of Chapter 7. In this case we can consider the middle lines as a smaller version
of the problem.

In this point of view all the inner, smaller patterns are made from the same word,
. But each invocation of (which is what I’ll call this version of )

will use a second input, a number that tells it how many letters to print in the first and
last lines:

We need a subprocedure, , that prints the beginning of a word, up to a certain
number of letters.











160 Chapter 8 Practical Recursion: the Leap of Faith

truncate
second prsecond

updown updown1

updown

updown updown1

updown1 "h "ello

h

updown1 "he "llo

he
hel
hell
hello
hell
hel
he

h

updown hello
h ello

he
llo

to updown :word
updown1 :word 1
end

to updown1 :now :later
print :now
if emptyp :later [stop]
updown1 (word :now first :later) butfirst :later
print :now
end

to updown :word
updown1 first :word butfirst :word
end

(The helper procedure is the sort of thing that should really be an operation,
for the same reason that was better than on page 76. We’ll come
back to the writing of recursive operations in Chapter 11.)

Finally, we can write a new superprocedure called that uses with
the correct inputs. (If you try all these approaches on the computer, remember that you
can have only one procedure named in your workspace at a time.)

A third approach, which illustrates a very powerful technique, also uses an initializa-
tion procedure and a subprocedure with two inputs. In this version,
though, both inputs to the subprocedure are words: the partial word that we’re printing
right now and the partial word that is not yet to be printed.

In this example, to print an pattern for the word , the two subprocedure
inputs would be (what’s printed on the first line) and (what isn’t printed there).
For the inner pattern with the first and last lines removed, the two inputs would be
and . Here is the program:



☞

☞

slant "salami

A Mini-project: Scrambled Sentences

updown1

updown

first butfirst word

slant

A Mini-project: Scrambled Sentences 161

updown "hello
updown1 "h "ello
updown1 "he "llo
updown1 "hel "lo
updown1 "hell "o
updown1 "hello "

?
s
a
l
a
m
i

This program may be a little tricky to understand. The important part is .
Read it first without paying attention to the stop rule; see if you can understand how it
corresponds to the pattern. A trace of its recursive invocations might help:

The innermost level of recursion has been reached when the second input is the empty
word. Notice how , , and are used in combination to calculate
the inputs.

Write a recursive procedure that takes a word as input and prints it on a
diagonal, one letter per line, like this:

Just as Logo programs can be iterative or recursive, so can English sentences. People are
pretty good at understanding even rather long iterative sentences: “This is the farmer
who kept the cock that waked the priest that married the man that kissed the maiden
that milked the cow that tossed the dog that worried the cat that killed the rat that ate the
malt that lay in the house that Jack built.” But even a short recursive (nested) sentence is
confusing: “This is the rat the cat the dog worried killed.”

Write a procedure that takes as its first input a list of noun-verb pairs representing
actor and action, and as its second input a word representing the object of the last action
in the list. Your procedure will print two sentences describing the events, an iterative one
and a nested one, following this pattern:



print

one.per.line

Procedure Patterns

162 Chapter 8 Practical Recursion: the Leap of Faith

scramble [[girl saw] [boy owned] [dog chased] [cat bit]] "rat?
This is
the girl that saw
the boy that owned
the dog that chased
the cat that bit
the rat

This is
the rat
the cat
the dog
the boy
the girl
saw
owned
chased
bit

to one.per.line :word
if emptyp :word [stop]
print first :word
one.per.line butfirst :word
end

You don’t have to worry about special cases like “that Jack built”; your sentences will
follow this pattern exactly.

Ordinarily the most natural way to program this problem would be as an operation
that outputs the desired sentence, but right now we are concentrating on recursive
commands, so you’ll write a procedure that s each line as shown above.

Certain patterns come up over and over in programming problems. It’s worth your while
to learn to recognize some of them. For example, let’s look again at :

This is an example of a very common pattern:



☞

praise

result

Procedure Patterns 163

procedure

do.something.to
procedure

praise [[ultra chocolate] [chocolate cinnamon raisin] ginger]

lovepoem "Mary

A procedure pattern is different from the patterns we examined earlier in
this chapter. Before we were looking at what we wanted a not-yet-written procedure to
accomplish; now we are looking at already-written procedures to find patterns in their
instructions. A particular procedure might look like this pattern with the blanks filled in.
Here’s an example:

Do you see how fits the pattern?

Continuing our investigation of literary forms, write a procedure to compose love
poems, like this:

The core of this project is a database of deathless lines, in the form of a list of lists:

to :input
if emptyp :input [stop]

first :input
butfirst :input

end

to praise :flavors
if emptyp :flavors [stop]
print sentence [I love] first :flavors
praise butfirst :flavors
end

?
I love ultra chocolate
I love chocolate cinnamon raisin
I love ginger

?
M is for marvelous, that’s what you are.
A is for awesome, the best by far.
R is for rosy, just like your cheek.
Y is for youthful, with zest at its peak.
Put them together, they spell Mary,
The greatest girl in the world.

make "lines [[A is for albatross, around my neck.]
[B is for baloney, your opinions are dreck.]
[C is for corpulent, ...] ...]



select

countdown

164 Chapter 8 Practical Recursion: the Leap of Faith

procedure

do.something
procedure

manyprint 4 [Lots of echo in this cavern.]

and a recursive procedure that takes a letter and a list of lines as inputs and finds
the appropriate line to print by comparing the letter to the beginning of each line in the
list.

Another common pattern is a recursive procedure that counts something numeri-
cally, like :

And here is the pattern:

A procedure built on this pattern is likely to have additional inputs so that it can do
something other than just manipulate the number itself. For example:

to countdown :number
if equalp :number 0 [stop]
print :number
countdown :number-1
end

to :number
if equalp :number 0 [stop]

:number-1
end

to manyprint :number :text
if equalp :number 0 [stop]
print :text
manyprint :number-1 :text
end

?
Lots of echo in this cavern.
Lots of echo in this cavern.
Lots of echo in this cavern.
Lots of echo in this cavern.

to multiply :letters :number
if equalp :number 0 [stop]
print :letters
multiply (word :letters first :letters) :number-1
end



multiply "f 5

one.per.line

Tricky Stop Rules

two

two

Tricky Stop Rules 165

?
f
ff
fff
ffff
fffff

to two.per.line :stuff
print list (first :stuff) (first butfirst :stuff)
two.per.line butfirst butfirst :stuff
end

if emptyp :stuff [stop]

to two.per.line :stuff
if emptyp :stuff [stop]
if emptyp butfirst :stuff [show first :stuff stop]
print list (first :stuff) (first butfirst :stuff)
two.per.line butfirst butfirst :stuff
end

One way to become a skillful programmer is to study other people’s programs
carefully. As you read the programs in this book and others, keep an eye open for
examples of patterns that you think might come in handy later on.

Suppose that instead of we’d like a procedure to print the members of
a list per line. (This is plausible if we have a list of many short items, for example.
We’d probably want to control the spacing on each line so that the items would form two
columns, but let’s not worry about that yet.)

The recursive part of this program is fairly straightforward:

The only thing out of the ordinary is that the recursive step uses a subproblem that’s
smaller by two members, instead of the usual one.

But it’s easy to fall into a trap about the stop rule. It’s not good enough to say

because in this procedure it matters whether the length of the input is odd or even.
These two possibilities give rise to stop rules. For an even-length list, we stop if the
input is empty. But for an odd-length list, we must treat the case of a one-member list
specially also.



☞

butfirst

show print
show print

166 Chapter 8 Practical Recursion: the Leap of Faith

It’s important to get the two stop rules in the right order; we must be sure the input isn’t
empty before we try to take its .

Why does this procedure include one instruction and one instruction?
Why aren’t they either both or both ?


