
believe in

167

9 How Recursion Works

Little People and Recursion

downup

print count stop

print
equalp

to downup :word
print :word
if equalp count :word 1 [stop]
downup butlast :word
print :word
end

The lasttwo chapterswereabout how to write recursiveprocedures. This chapter isabout
how to recursive procedures, and about understanding the processby which
Logo carries them out.

In Chapter 3, I introduced you to the metaphor of a computer full of little elves.Eachelf
is an expert on a particular procedure. I promised that this metaphor would be helpful
later, when we'd haveto think about two little people carrying out the sameprocedure at
the sametime. Well, ªlaterº is now.

I want to use the elf metaphor to think about the example of the previous
chapter:

Recall that we are imagining the computer to be full of elves,each of whom is a
specialist in carrying out some procedure. There are elves, elves,
elves,and so on. Each elf has some number of pockets, used to hold the inputs for
a particular invocation of a procedure. So a elf will have one pocket, while an

elf needstwo pockets.

+

168 Chapter 9 How Recursion Works

downup "hello

print :word

print thing "word

if equalp count :word 1 [stop]

downup
downup

downup

print if

downup
downup

hello

downup

print thing print
thing

thing
word word

word downup thing
hello print

We're going to be most interested in the elvesand the contents of their
pockets. To help you keep straight which elf is which, I'm going to name the
elvesalphabetically: the ®rst one will be Ann, then Bill, then Cathy, then David, and so
on. Sincewearen't so interested in the other elves,I won't bother naming them.

If you're reading this with a group of other people, you may ®nd it helpful for each
of you to take on the role of one of the elvesand actually stick words in your
pockets. If you have enough people, some of you should also serve as elves for the
primitive procedures used, like and .

What happenswhen you type the instruction

to Logo? The Chief Elf reads this instruction and seesthat it calls for the use of the
procedure named . She therefore recruits Ann, an elf who specializesin that
procedure. Since hasone input, the Chief Elf hasto give Ann something to put
in her one pocket. Fortunately, the input you provided is a quoted word, which evaluates
to itself. No other elvesare needed to compute the input. Ann getsthe word in
her pocket.

Ann's task is to carry out the instructions that make up the de®nition of .
The ®rstinstruction is

This, you'll remember, is an abbreviation for

Ann must hire two more elves,a specialistand a specialist. The elf
can't begin his work until he'sgiven something to put in his pocket. Ann asksthe
elf to ®gureout what that input should be. The elf alsogetsan input, namely the
word . As we sawin Chapter 3, is what's written on the name tag in Ann's
pocket, since is the nameof 's input. Sothe elf looks in that pocket,
where it ®ndsthe word . That word is then given to the elf, who prints it
on your computer screen.

Ann is now ready to evaluatethe secondinstruction:

Ann Bill

downup butlast :word

not

another

procedure invocation

instantiation
two

Little People and Recursion 169

if count thing
if count

hello if false
if [stop] stop

if true
if stop

false if

downup
downup

butlast thing
hell butlast hello

downup
word word

hello word hell

downup

word

Ann must hire severalother elves to help her: an elf, a elf, and a
elf. I won't go through all the stepsin computing the inputs to ; since the of
the word is not 1, the ®rst input to tur ns out to be the word . The
secondinput to is, of course,the list . (Notice that Ann does hire a
specialist. A list inside squarebracketsevaluatesto itself, just like a quoted word, without
invoking any procedures. If the ®rst input to had tur ned out to be , it would
havebeen the elf who would havehired a elf to carry out the instruction inside
the list.) Since its ®rstinput is , the elf endsup doing nothing.

Ann's third instruction is

Here' s where things start to get interesting. Ann must hire specialist,
named Bill. (Ann can't carry out this new instruction herself becauseshe's
already in the middle of a job of her own.) Ann must give Bill an input to put in his
pocket; to compute this input, shehires a elf and a elf. They eventually
come up with the word (the of), and that' swhat Ann puts in Bill' s
pocket.

We now have two active elves, Ann and Bill. Each has a pocket. Both
pocketsare named , but they havedif ferent contents: Ann's pocket contains

, while Bill' s pocket contains .

Here is what this metaphor represents, in more technical language: Although there
is only one named , there can be more than one of that
procedure in progress at a particular moment. (An invocation of a procedure is also
sometimescalled an of the procedure.) Each invocation has its own local
variables;at this moment there are variablesnamed . It is perfectly possiblefor

global

procedure,
invocation

same

scroll, elves’ jackets.

first
then

170 Chapter 9 How Recursion Works

downup

word

downup1 downup2
word

word downup

downup

word
downup

print hell
hell hello thing

:word thing
word

if
downup downup

hel word

two variablesto havethe samename aslong asthey are associatedwith (local to) dif ferent
procedure invocations.

If you had trouble ®guring out how works in Chapter 7, it' salmost certainly
becauseof a misunderstanding about this businessof local variables. That' s what makes
the elf metaphor so helpful. For example, if you're accustomed to programming in
BASIC, then you're familiar with variablesasthe only possibility in the language.
If all variableswere global in Logo, then there could only be one variable in the entire
computer named . Insteadof representing variablesaspocketsin the elves'clothes,
we'd haveto represent them assafedeposit boxeskept in somecentral bank and shared
by all the elves.

But even if you're familiar with Logo's use of local variables, you may have been
thinking of the variables as being local to a instead of understanding that
they are local to an of a procedure. In that caseyou may have felt perfectly
comfortable with the procedures named , , and so on, each of them
using a separatevariable named . But you maystill havegotten confused when the

variable , the one belonging to the single procedure , seemedto have
severalvaluesat once.

If you wereconfused in that way, here'show to usethe elf metaphor to help yourself
get unconfused: Supposethe procedure de®nitions are written on scrolls,which are kept
in a librar y. There isonly one copyof eachscroll. (That is, there isonly one de®nition for
a given procedure.) All the elveswho specializein a particular procedure, like ,
have to share the same scroll. Well, if variables were local to a procedure, they'd be
pockets in the rather than pockets in the By directing your attention
to the elves(the invocations) instead of the scrolls (the procedure de®nitions), you can
seethat there can be two variableswith the samename (), associatedwith the same
procedure (), but belonging to dif ferent invocations (represented by the elves
Ann and Bill).

We still haveseveralmore elvesto meet, soI'm going to passover someof the details
more quickly now. We've just reached the point where Bill is ready to set to work. For
his ®rstinstruction he hires a elf, who prints the word on your screen. Why

and not ? The answeris that when Bill hires a expert to evaluatethe
expression , the rules saythat that expert must look in Bill' s pockets,

(if Bill didn 't havea pocket named) in Ann'spockets.

Bill then carries out the instruction, which again hasno effect. Then Bill is ready
for the instruction. He hires a third elf, named Cathy. Bill puts the
word in Cathy's pocket. There are now three elves,all with pockets named ,
eachwith a dif ferent word.

repea t 100 [print "hello if equal p random 5 0 [stop]]

not

seven

lowest-level invocation of a user-defined procedure.

Little People and Recursion 171

hel
if downup

downup he

downup
he if

count he
downup h

h if
if true count

h if
[stop] stop

if stop
stop If stop

stop
downup

stop

stop
if if

stop

hello

stop repeat

Cathy is now ready to get to work. Don't forget, though, that Ann and Bill haven't
®nishedtheir jobs. Bill is still working on his third instruction, waiting for Cathy to report
the completion of her task. Similarly, Ann is waiting for Bill to ®nish.

Cathy evaluatesher ®rst instruction, printing on the screen. She evaluatesthe
instruction, with no effect. Then she's ready for the instruction, the third

one in the procedure de®nition. To carry out this instruction, she hires David, a fourth
expert. Sheputs the word in his pocket.

David's career is like that of the other elveswe've met so far. He startsby
printing his input, the word . He evaluatesthe instruction, with no effect. (The

of the word is still not equal to 1.) He then getsto the recursive invocation of
, for which he hires a ®fth expert, named Ellen. He puts the word in Ellen's

pocket.

Ellen's career is quite like that of the other elves. It startssimilarly: she prints
her input, the word , on your screen. Then shepreparesto evaluatethe instruction.
This time, though, the ®rst input to tur ns out to be the word , since the
of is, indeed, 1. Therefore, the elf evaluatesthe instruction contained in its second
input, the list . It hires a elf, whose job is to tell Ellen to stop working.
(Why Ellen? Why not one of the other active elves? There are elvesactive at the
moment: Ann, Bill, Cathy, David, Ellen, the elf, and the elf. The rule is that
a elf stops the and are
primitives, so they don't satisfythe elf. The remaining ®veelvesare experts in

, a user-de®nedprocedure; of the ®ve,Ellen is the lowest-levelinvocation.)

(By the way, the insistenceof on a user-de®nedprocedure to stop is one of the
few waysin which Logo treats such procedures dif ferently from primitive procedures. If
you think about it, you'll seethat it would be uselessfor to stop just the invocation
of . That would mean that the instruction would never do anything of interest
and there would be no wayto stop a procedure of your own conditionally. But you can
imagine other situations in which it would be nice to be able to a primitive. Here' s
one:

If it worked, this instruction would print the word some number of times, up to
100, but with a 20 percent chance of stopping after each time. In fact, though, you can't
use to stop a invocation.)

Let' s reviewwhat'sbeen printed so far:

+

his own

172 Chapter 9 How Recursion Works

downup

:word
word thing

word he

print hel
word

hell
hello

downup

inout

hello printe d by Ann
hell printe d by Bill
hel printe d by Cathy
he printe d by David
h printe d by Ellen

print :word

hello printe d by Ann
hell printe d by Bill
hel printe d by Cathy
he printe d by David
h printe d by Ellen
he printe d by David
hel printe d by Cathy
hell printe d by Bill
hello printe d by Ann

Ellen hasjust stopped. Shereports back to David, the elf who hired her. He' s been
waiting for her; now he can continue with his own work. David is up to the fourth and
®nal instruction in the de®nition of :

What word will David print? For David, refers to the contents of pocket
named . That is, when David hires a expert, that expert looks ®rstin David's
pockets,before tr ying Cathy's,Bill' s,and Ann's. The word in David's pocket is .
Sothat' swhat David prints.

Okay, now David has reached the end of his instructions. He reports back to his
employer, Cathy. She's been waiting for him, so that she can continue her own work.
She, too, has one more instruction to evaluate. She has the word in her

pocket, so that' swhat sheprints.

Cathy now reports back to Bill. He prints his own word, . He reports back to
Ann. Sheprints her word, .

When Ann ®nishes,shereports back to the Chief Elf, who prints a question mark on
the screenand waitsfor you to type another instruction.

Here is the complete effect of this instruction:

You might want to see if the little person metaphor can help you understand the
working of the procedure from Chapter 7. Remember that each elf carrying out
the recursiveprocedure needstwo pockets,one for each input.

Tracing

trace "downu p
downup "logo

sequential

tracing

Tracing 173

downup
downup print

downup
downup

downup

downup

(downup "logo)

(downup "log)

(downup "lo)

(downup "l)

downup stops

downup stops

downup stops

downup stops

to downup :word
print :word
if equalp count :word 1 [stop]
downup butlast :word
print :word
end

?
?

logo

log

lo

l

lo

log

logo

Many people ®nd the idea of multiple, simultaneous invocations of a single procedure
confusing. To keep track of what's going on, you have to think about severalªlevelsº of
evaluation at once. ªWhere is up to right now?º Ð ªWell, it depends what you
mean. The lowest-level invocation hasjust evaluatedits ®rst instruction.
But there are three other invocations of that are in the middle of evaluating
their recursive instructions.º This can be especiallyconfusing if you've always
been taught that the computer can only do one thing at a time. People often emphasize
the nature of the computer; what we'vebeen sayingabout recursion seemsto
violate that nature.

If this kind of confusion is a problem for you, it mayhelp to think about a procedure
like by its progress. That is, we can tell the procedure to print out extra
infor mation each time it' s invoked, to help you seethe sequenceof events.

Justfor reference, here's again:

The trace command takesa procedure name (or a list of procedure names,to trace more
than one) asits input. It tells Logo to notify you wheneverthat procedure is invoked:

log

lo

l

lo

log

Level and Sequence

downup

downup

l

downup

downup
logo downup log

downup

downup

downup

(downup "log)

downup stops

(downup "lo)

(downup "l)

downup stops

downup stops

level

vertically, sequence

horizontally,
levels

174 Chapter 9 How Recursion Works

To make this result a little easierto read, I've printed the lines that are generated by the
tracing in smaller letters than the lines generated by itself. Of course the actual
computer output all looks the same.

Each line of tracing infor mation is indented by a number of spacesequal to the
number of tracedprocedure invocationsalreadyactiveÐthe of procedure invocation.
By looking only at the lines between one invocation and the equally-indented
stopping line, you canseehow much isaccomplishedbyeachrecursivecall. For example,
the inner most invocation (at level 4) prints only the letter .

The result of tracing is most helpful if you think about it two-dimensionally.
If you read it it represents the of instructions that ®ts the traditional
model of computer programming. That is, the order of the printed lines representsthe
order of events in time. First the computer enters at level 1. Then it prints
the word . Then it enters at level 2. Then it prints . And so on.
Each printed line, including the ªof®cialº lines aswell as the tracing lines, representsa
particular instruction, carried out at a particular moment. Reading the trace vertically
will help you ®t 's recursivemethod into your sequential habits of thought.

On the other hand, if you read the trace it showsyou the hierarchy
of of 's invocations. To see this, think of the trace as divided into two
overlapping columns. The left column consistsof the of®cialpattern of wordsprinted by
the original . In the right column, the pattern of entering and exiting from each
level is shown. The lines corresponding to a particular level are indented by a number of
spacesthat correspondsto the level number. For example, ®nd the line

and the matching

Betweenthesetwo lines you'll seethis:

+

Instr uction Stepping

log
lo
l
lo
log

log

...

log

log
lo l lo

downup

downup if
print step

downup

(downup "log)

(downup "lo)

downup stops

downup stops

part of

directly

total
direct

Instruction Stepping 175

What this shows is that levels 3 and 4 are level 2. You can see that the traced
invocation and stopping lines for levels 3 and 4 begin further to the right than the ones
for level 2. Similarly, the lines for level 4 are further indented than the ones for level 3.
This variation in indentation is a graphic display of the superprocedure/subprocedure
relationships among the various invocations.

There are two ways of thinking about the lines that aren’t indented. One way is to
look at all such lines within, say, level 2:

This tells you that those five lines are printed somehow within the activity of level 2. (In
terms of the little people metaphor, those lines are printed by Bill, either directly or
through some subordinate elf.) Another way to look at it is this:

What this picture is trying to convey is that only the two lines are within the
control of level 2. The three shorter lines (, ,) are delegated to level 3.

We’ve seen three different points of view from which to read the trace, one vertical
and two horizontal. The vertical point of view shows the sequence of events in time. The
horizontal point of view can show either the responsibility of a given level or the

responsibility of the level. To develop a full understanding of recursion, the trick is
to be able to see all of these aspects of the program at the same time.

Try invoking the traced with a single-letter input. Make a point of reading
the resulting trace from all of these viewpoints. Then try a two-letter input.

Perhaps you are comfortable with the idea of levels of invocation, but confused about the
particular order of instructions within . Why should the instruction be where
it is, instead of before the first , for example? Logo’s command will allow
you to examine each instruction line within as it is carried out:

>>>

trace step

?
?

ant

an

a

an

ant

?
?
?

ant

an

a

an

ant

176 Chapter 9 How Recursion Works

step "downup
downup "ant

step "downup
trace "downu p
downup "ant

After each of the lines ending with , Logo waits for you to press the RETURN or
ENTER key.

You can combine and :

[print :word] >>>

[if equalp count :word 1 [stop]] >>>
[downup butlast :word] >>>
[print :word] >>>

[if equalp count :word 1 [stop]] >>>
[downup butlast :word] >>>
[print :word] >>>

[if equalp count :word 1 [stop]] >>>
[print :word] >>>

[print :word] >>>

(downup "ant)
[print :word] >>>

[if equalp count :word 1 [stop]] >>>
[downup butlast :word] >>>

(downup "an)
[print :word] >>>

[if equalp count :word 1 [stop]] >>>
[downup butlast :word] >>>

(downup "a)
[print :word] >>>

[if equalp count :word 1 [stop]] >>>
downup stops

[print :word] >>>

downup stops
[print :word] >>>

downup stops

+

Instruction Stepping 177

(downup "an)

downup stops

step trace

trace step untrace
unstep

downup
downup downup

print

an if
downup downup

a

downup

In this case, the lines are indented to match the lines.

Once a procedure is d or ped, it remains so until you use the
or command to counteract the tracing or stepping.

Try drawing a vertical line extending between the line

and the equally indented

Draw the line just to the left of the printing, after the indentation. The line you drew
should also touch exactly four instruction lines. These four lines make up the entire
definition of the procedure. If we restrict our attention to one particular
invocation of , like the one you’ve marked, you can see that each of ’s
instructions is, indeed, evaluated in the proper sequence. Below each of these instruction
lines, you can see the effect of the corresponding instruction. The two instructions
each print one line in the left (unindented) column. (In this case, they both print the
word .) The instruction has no visible effect. But the recursive invocation of

has quite a large effect; it brings into play the further invocation of with
the word as input.

One way to use the stepping information is to “play computer.” Pretend you are the
Logo interpreter, carrying out a instruction. Exactly what would you do, step by
step? As you work through the instructions making up the procedure definition, you can
check yourself by comparing your activities to what’s shown on the screen.

