
10 Turtle Geometry

turtle

but

word,

turtle

179

A Review, or a Brief Introduction

Logo is best known as the language that introduced the as a tool for computer
graphics. In fact, to many people, Logo and turtle graphics are synonymous. Some
computer companies have gotten away with selling products called “Logo” that provided
nothing turtle graphics, but if you bought a “Logo” that provided only the list
processing primitives we’ve used so far, you’d probably feel cheated.

Historically, this idea that Logo is mainly turtle graphics is a mistake. As I mentioned
at the beginning of Chapter 1, Logo’s name comes from the Greek word for
because Logo was first designed as a language in which to manipulate language: words
and sentences. Still, turtle graphics has turned out to be a very powerful addition to
Logo. One reason is that any form of computer graphics is an attention-grabber. But
other programming languages had allowed graphics programming before Logo. In this
chapter we’ll look at some of the reasons why graphics, specifically, was such a major
advance in programming technology.

This chapter can’t be long enough to treat the possibilities of computer graphics
fully. My goal is merely to show you that the same ideas we’ve been using with words and
lists are also fruitful in a very different problem domain. Ideas like locality, modularity,
and recursion appear here, too, although sometimes in different guises.

I’ve been assuming that you’ve already been introduced to Logo turtle graphics, either in
a school or by reading Logo tutorial books. If not, perhaps you should read one of those
books now. But just in case, here is a very brief overview of the primitive procedures for
turtle graphics. Although some versions of Logo allow more than one turtle, or allow

forward 80

cs clearscreen

forward
fd Forward forward

dynamic

first

not

180 Chapter 10 Turtle Geometry

turtles with programmable shapes and speeds, for now I’ll only consider the
traditional, single, static turtle.

Type the command (short for), with no inputs. The effect of
this command is to initiate Logo’s graphics capability. A turtle will appear in the center
of a graphics window. (Depending on which version of Logo you have, the turtle may
look like an actual animal with a head and four legs or—as in Berkeley Logo—it may
be represented as a triangle.) The turtle will be facing toward the top of the screen.
Any previous graphic drawing will be erased from the screen and from the computer’s
memory.

The crucial thing about the turtle, which distinguishes it from other metaphors for
computer graphics, is that the turtle is pointing in a particular direction and can only
move in that direction. (It can move forward or back, like a car with reverse gear, but not
sideways.) In order to draw in any other direction, the turtle must turn so that it is
facing in the new direction. (In this respect it is unlike a car, which must turn and move
at the same time.)

The primary means for moving the turtle is the command, abbreviated
. takes one input, which must be a number. The effect of is to

move the turtle in the direction it’s facing, through a distance specified by the input.
The unit of distance is the “turtle step,” a small distance that depends on the resolution
of your computer’s screen. (Generally, one turtle step is the smallest line your computer
can draw. This is slightly oversimplified, though, because that smallest distance may be
different in different directions. But the size of a turtle step does depend on the
direction; it’s always the same distance for any given computer.) Try typing the command

Since the turtle was facing toward the top of the screen, that’s the way it moved. The
turtle should now be higher on the screen, and there should be a line behind it indicating
the path that it followed.

The first turtles were actual robots that rolled along the floor. They got the name
“turtle” because of the hard shells surrounding their delicate electronic innards. A robot
turtle has a pen in its belly, which it can push down to the floor, or pull up inside itself.
When the pen is down, the turtle draws a trace of its motion along the floor.

clearscreen dash 14

penup pu

pendown pd

back bk
back

fd bk

Left lt

left 360

turtle’s screen’s

turtle’s

A Review, or a Brief Introduction 181

penup
forward 30

to dash :count
repeat :count [penup forward 4 pendown forward 4]
end

?

When talking about the screen turtle, it’s customary to think of the screen as a kind
of map, representing a horizontal floor. Therefore, instead of referring to the screen
directions as “up,” “down,” “left,” and “right,” we talk about the compass headings North,
South, West, and East. Your turtle is now facing North. Besides fitting better with the
turtle metaphor, this terminology avoids a possible confusion: the word “left” could mean
either the left or the left. (They’re the same direction right now, but they
won’t be the same after we turn the turtle.) To avoid this problem, we use “West” for
the left edge of the screen, and reserve the word “left” for the direction to the left of
whichever way the turtle is facing.

Logo provides primitive commands to raise and lower the turtle’s pen. The command
(abbreviated) takes no inputs; its effect is to raise the pen. In other words,

after you use this command, any further turtle motion won’t draw lines. Try it now:

Similarly, the command () takes no inputs, and lowers the pen. Here’s a
procedure you can try:

The command (or) takes one input, which must be a number. The effect
of is to move the turtle backward by the distance used as its input. (What do you
think and will do if you give them noninteger inputs? Zero inputs? Negative
inputs? Try these possibilities. Then look up the commands in the reference manual for
your version of Logo and see if the manual describes the commands fully.)

To turn the turtle, two other commands are provided. (abbreviated) takes
one input, which must be a number. Its effect is to turn the turtle toward the
own left. The angle through which the turtle turns is the input; angles are measured
in degrees, so will turn the turtle all the way around. (In other words, that
instruction has no real effect!) Another way of saying that the turtle turns toward its own

☞

Local vs. Global Descriptions

repeat 4 [forward 100 right 90]

right rt left

forward back
left right

counterclockwise.

local
global

turtle-relative

Cartesian coordinates.

182 Chapter 10 Turtle Geometry

left is that it turns The command (or) is just like , except
that it turns the turtle clockwise, toward its own right.

Clear the screen and try this, the classic beginning point of Logo turtle graphics:

This instruction tells Logo to draw four lines, each 100 turtle steps long, and to turn 90
degrees between lines. In other words, it draws a square.

There are many more turtle procedures provided in Logo, but these are the
fundamental ones; with them you can go quite far in generating interesting computer
graphics. If you haven’t had much experience with turtle graphics before, you might
enjoy spending some time exploring the possibilities. There are many introductory
Logo turtle graphics books to help you. Because that part of Logo programming is so
thoroughly covered elsewhere, I’m not going to suggest graphics projects here. Instead I
want to go on to consider some of the deeper issues in computer programming that are
illuminated by the turtle metaphor.

Earlier we considered the difference between variables, which are available only
within a particular procedure, and variables, which are used throughout an entire
project. I’ve tried to convince you that the use of local variables is a much more powerful
programming style than one that relies on global variables for everything. For one thing,
local variables are essential to make recursion possible; in order for a single procedure to
solve a large problem and a smaller subproblem simultaneously, each invocation of the
procedure must have its own, independent variables. But even when recursion is not an
issue, a complex program is much easier to read and understand if each procedure can
be understood without thinking about the context in which it’s used.

The turtle approach to computer graphics embodies the same principle of locality,
in a different way. The fact that the turtle motion commands (and)
and the turtle turning commands (and) are all means that a
graphics procedure need not think about the larger picture.

To understand what that means, you should compare the turtle metaphor with the
other metaphor that is commonly used in computer graphics: This
metaphor comes from analytic geometry, invented by René Descartes (1596–1650). The
word “Cartesian” is derived from his name. Descartes’ goal was to use the techniques

[3 -2]

[-1 4]

[0 0]

setpos
set pos Setpos

forward back

clearscreen
setpos [0 100]
setpos [100 100]
setpos [100 0]
setpos [0 0]

numbers points.

origin;
x-coordinate

y-coordinate

Local vs. Global Descriptions 183

of algebra in solving geometry problems by using to describe In a
two-dimensional plane, like your computer screen, you need two numbers to identify a
point. These numbers work like longitude and latitude in geography: One tells how far
the point is to the left or right and the other tells how high up it is.

This diagram shows a computer screen with a grid of horizontal and vertical lines
drawn on it. The point where the two heavy lines meet is called the it is
represented by the numbers . For other points the first number (the)
is the horizontal distance from the origin to the point, and the second number (the

) is the vertical distance from the origin to the point. A positive x-coordinate
means that the point is to the right of the origin; a negative x-coordinate means that the
point is to the left of the origin. Similarly, a positive y-coordinate means that the point is
above the origin; a negative y-coordinate puts it below the origin. Logo does allow you to
refer to points by their Cartesian coordinates, using a list of two numbers. The origin is
the point where the turtle starts when you clear the screen.

The primary tool for Cartesian-style graphics in Logo is the command (for
ition). requires one input, which must be a list of two numbers. Its

effect is to move the turtle to the point on the screen at those coordinates. If the pen is
down, the turtle draws a line as it moves, just as it does for and . Here is
how you might draw a square using Cartesian graphics instead of turtle graphics:

square

square

184 Chapter 10 Turtle Geometry

to square :size
repeat 4 [forward :size right 90]
end

to face
pendown square 100
penup forward 20
right 90
forward 25
pendown forward 50
penup back 75
left 90
forward 65
right 90
forward 20
pendown square 15
penup forward 45
pendown square 15
penup back 15
right 90
forward 20
left 45
pendown square 20
end

Do you see why I said that the Cartesian metaphor is global, like the use of global
variables? Each instruction in this square takes into account the turtle’s position within
the screen as a whole. The “point of view” from which we draw the picture is that of
an observer standing above the plane looking down on all of it. This observer sees not
only the turtle but also the edges and center of the screen as part of what is relevant to
drawing each line. By contrast, the turtle geometry metaphor adopts the point of view of
the turtle itself; each line is drawn without regard to where the turtle is in global terms.

Using the turtle metaphor, we can draw our square (or any other figure we can
program) anywhere on the screen at any orientation. First I’ll write a command:

Now here’s an example of how can be used in different positions and orientations:

The head and the eyes are upright squares; the nose is a square at an angle (a diamond).
To write this program using Cartesian graphics, you’d have to know the absolute
coordinates of the corners of each of the squares. To draw a square at an unusual angle,
you’d need trigonometry to calculate the coordinates.

☞

The Turtle’s State

repeat 20 [pendown square 12 penup forward 20 right 18]

square

setpos
setheading seth Setheading

Pos
Heading

history

position heading,
state.

The Turtle’s State 185

Here is another demonstration of the same point. Clear the screen and type this
instruction:

You’ll see squares drawn in several different orientations. This would not be a one-line
program if you tried to do it using the Cartesian metaphor!

From a turtle’s-eye point of view, drawing an upright square is the same as drawing a
diamond. It’s only from the global point of view, taking the borders of the screen into
account, that there is a difference.

From the global point of view how can we think about that difference? How do we
describe what makes the same procedure sometimes draw one thing (an upright square)
and sometimes another (a diamond)? The answer, in the most general terms, is that the
result of the command depends on the past of the turtle—its twists and
turns before it got to wherever it may be now. That is, the turtle has a sort of memory of
past events.

But what matters is not actually the turtle’s entire past history. All that counts is the
turtle’s current and its current no matter how it got there. Those two
things, the position and the heading, are called the turtle’s It’s a little like trying to
solve a Rubik’s Cube; you may have turned part of the cube 100 times already, but all that
counts now is the current pattern of colors, not how you got there.

I’ve mentioned the command, which sets the turtle’s position. There is also
a command (abbreviated) to set the heading. takes
one input, a number. The effect is to turn the turtle so that it faces toward the compass
heading specified by the number. Zero represents North; the heading is measured in
degrees clockwise from North. (For example, East is 90; West is 270.) The compass
heading is different from the system of angle measurement used in analytic geometry, in
which angles are measured counterclockwise from East instead of clockwise from North.

In addition to commands that set the turtle’s state, Logo provides operations to find
out the state. is an operation with no inputs. Its output is a list of two numbers,
representing the turtle’s current position. is also an operation with no inputs.
Its output is a number, representing the turtle’s current heading.

Remember that when you use these state commands and operations, you’re thinking
in the global (Cartesian) style, not the local (turtle) style. Global state is sometimes

☞

Symmetry

186 Chapter 10 Turtle Geometry

setpos
widget

setpos setpos

setpos

forward right

to squiggle
forward 100
right 135
forward 40
right 120
forward 60
right 15
end

repeat 20 [squiggle]

important, just as global variables are sometimes useful. If you want to draw a picture
containing three widgets, you might use to get the turtle into position for each
widget. But the procedure, which draws each widget, probably shouldn’t use

. (You might also use extensively in a situation in which the Cartesian
metaphor is generally more appropriate than the turtle metaphor, like graphing a
mathematical function.) As in the case of global variables, you’ll be most likely to overuse
global graphics style if you’re accustomed to BASIC computer graphics. A good rule
of thumb, if you’re doing something turtleish and not graphing a function, is that you
shouldn’t use with the pen down.

Do you see why?

Very young children often begin playing with Logo simply by moving the turtle around
at random. The resulting pictures usually don’t look very interesting. You can recapture
the days of your youth by alternating and commands with arbitrary
inputs. Here is a sample, which I’ve embodied in a procedure:

This isn’t a very beautiful picture. But something interesting happens when you keep
squiggling repeatedly:

squaggle repeat 20 [squaggle]

☞

Symmetry 187

Squiggle squaggle

repeat
forward right

size

angle

to squaggle
forward 50
right 150
forward 60
right 100
forward 30
right 90
end

to poly :size :angle
forward :size
right :angle
poly :size :angle
end

poly 100 90
poly 80 60
poly 100 144

Instead of filling up the screen with hash, the turtle draws a symmetrical shape and
repeats the same path over and over! Let’s try another example:

turns into a sort of fancy square when you repeat it; turns
into an 18-pointed pinwheel. Does every possible squiggle produce a repeating pattern
this way? Yes. Sometimes you have to the procedure many times, but essentially
any combination of and commands will eventually retrace its steps.
(There’s one exception, which we’ll talk about shortly.)

To see why repetition brings order out of chaos, we have to think about a simpler
Logo graphics procedure that is probably very familiar to you:

Since this is a recursive procedure without a stop rule, it’ll keep running forever. You’ll
have to stop it by pressing the BREAK key, or command-period, or whatever your
particular computer requires. The procedure draws regular polygons; here are some
examples to try:

A little thought (or some experimentation) will show you that the input makes
the picture larger or smaller but doesn’t change its shape. The shape is entirely controlled
by the input.

What angle would you pick to draw a triangle? A pentagon? How do you know?

turtle starts here

turtle ends here

turtle travels
this distance

turtle turns
left 90°

☞

☞

☞

angle

squiggle

squiggle
squiggle

squaggle

squiggle

squiggle

and its original heading

before

188 Chapter 10 Turtle Geometry

to squoggle
forward 50
right 70
forward 10
right 160
forward 35
right 58
end

The trick is to think about the turtle’s state. When you finish drawing a polygon, the
turtle must return to its original position in order to be ready to
retrace the same path. To return to its original heading, the turtle must turn through
a complete circle, 360 degrees. To draw a square, for example, the turtle must turn
through 360 degrees in four turns, so each turn must be 360/4 or 90 degrees. To draw a
triangle, each turn must be 360/3 or 120 degrees.

Now explain why an input of 144 draws a star!

Okay, back to our squiggles. Earlier, I said that the only thing we have to remember
from the turtle’s past history is the change in its state. It doesn’t matter how that change
came about. When you draw a , the turtle moves through a certain distance
and turns through a certain angle. The fact that it took a roundabout path doesn’t
matter. As it happens, turns right through 135 + 120 + 15 degrees, for a total
of 270. This is equivalent to turning left by 90 degrees. That’s why repeating
draws something shaped like a square.

What about ? If repeating it draws a figure with 18-fold symmetry, then
its total turning should be 360/18 or 20 degrees. Is it?

Here’s another bizarre shape. See if you can predict what kind of symmetry it will
show you actually repeat it on the computer.

Suppose you like the shape of , but you want to draw a completed picture
that looks triangular (3-fold symmetry) instead of square (4-fold). Can you do this? Of
course; you can simply change the last instruction of the procedure so that

squiggle protect.heading [squiggle]

Symmetry 189

squiggle

Squiggle
poly

protect.heading

heading setheading
oldheading
protect.heading run

squiggle squaggle

to protect.heading :squig
local "oldheading
make "oldheading heading
run :squig
setheading :oldheading
end

protect.heading [squiggle]
protect.heading [squaggle]

the total turning is 120 degrees instead of 90. (Go ahead, try it. Be careful about left and
right.)

But it’s rather an ugly process to have to edit in order to change not what
a squiggle looks like but how the squiggles fit into a larger picture. For one thing, it
violates the idea of modularity. ’s job should just be drawing a squiggle, and
there should be another procedure, something like , that combines squiggles into
a symmetrical pattern. For another, people shouldn’t have to do arithmetic; computers
should do the arithmetic!

To clean up our act, I’m going to start by writing a procedure that can draw an arbi-
trary squiggle but without changing the turtle’s heading. It’s called
because it protects the heading against change by the squiggle procedure.

This procedure demonstrates the use of and . We remember the
turtle’s initial heading in the local variable . Then we carry out whatever
squiggle procedure you specify as the input to . (The command
takes a Logo instruction list as input and evaluates it.) Here is how you can use it:

Notice that what is drawn on the screen is the same as it would be if you invoked
or directly; the difference is that the turtle’s final heading is the

same as its initial heading.

☞

☞

can

190 Chapter 10 Turtle Geometry

protect.heading poly

spin

squirrel

Squiggle
squirrel squirrel

spin spin

spin

to spin :turns :command
repeat :turns [protect.heading :command right 360/:turns]
end

spin 3 [squiggle]
spin 5 [squiggle]
spin 4 [squaggle]
spin 6 [squoggle]
spin 6 [fd 40 squoggle]
spin 5 [pu fd 50 pd squaggle]

to squirrel
forward 40
right 90
forward 10
right 90
forward 15
right 90
forward 20
right 90
end

Now we can use to write the decorated- procedure that
will let us specify the kind of symmetry we want:

Try out with instructions like these:

Isn’t that better?

I mentioned that there is an exception to the rule that every squiggle will eventually
retrace its steps if you repeat it. Here it is:

Try repeating 20 times. You’ll find that instead of turning around to
its original position and heading, the turtle goes straight off into the distance. Why?
(had four-fold symmetry because its total turning was 90 degrees. What is the
total turning of ?) Of course, if you use in the second input to

, it will perform like the others, because controls the turtle’s heading in that
case.

I’ve been using random squiggles with silly names to make the point that by paying
attention to symmetry, Logo make a silk purse from a sow’s ear. But of course there
is no reason not to apply to more carefully designed pieces. Here’s one I like:

Fractals

Fractals 191

to fingers :size
penup forward 10 pendown
right 5
repeat 5 [forward :size right 170 forward :size left 170]
left 5
penup back 10 pendown
end

spin 4 [fingers 50]
spin 10 [fingers 30]

to tree :size
forward :size
left 20
tree :size/2
right 40
tree :size/2
end

I’d like to write a procedure to draw this picture of a tree:

The trick is to identify this as a recursive problem. Do you see the smaller-but-similar
subproblems? The tree consists of a trunk with two smaller trees attached.

So a first approximation to the solution might look like this:

butfirst

depth

tree

tree

mistake;

state-invariant:

192 Chapter 10 Turtle Geometry

to tree :depth :size
if :depth=0 [stop]
forward :size
left 20
tree (:depth-1) :size/2
right 40
tree (:depth-1) :size/2
end

to tree :size
if :size<4 [stop]
forward :size
left 20
tree :size/2
right 40
tree :size/2
end

If you try running this procedure, you’ll see that we still have some work to do. But let
me remind you that an unfinished procedure like this isn’t a you shouldn’t feel
that you have to have every detail worked out before you first touch the keyboard. The
first obvious problem is that there is no stop rule, so the procedure keeps trying to draw
smaller and smaller subtrees. What should the limiting condition be? In this case there
is no obvious end, like the of a word becoming empty.

There are two approaches we could take to limiting the number of branches of the
tree. One approach would be to choose explicitly how deep we want to get in recursive
invocations. We could do this by adding another input, called , that will be the
number of levels of recursion to allow:

The other approach would be to keep letting the branches get smaller until they go below
a reasonable minimum:

Either approach is reasonable. I’ll choose the second one just because it seems a little
simpler. The cost of that choice is somewhat less control over the final picture; I’m not
sure if it’ll have exactly the number of branches I originally planned.

The modified procedure does come to a halt now, but it still doesn’t draw the
tree I had in mind. The problem is that this version of is not it
doesn’t leave the turtle with the same position and heading that it had originally. That’s
important because when says

tree 50

Fractals 193

tree :size/2
right 40
tree :size/2

to tree :size
if :size<4 [stop]
forward :size
left 20
tree :size/2
right 40
tree :size/2
left 20
back :size
end

to tree :size
if :size < 5 [forward :size back :size stop]
forward :size/3
left 30 tree :size*2/3 right 30
forward :size/6
right 25 tree :size/2 left 25
forward :size/3
right 25 tree :size/2 left 25
forward :size/6
back :size
end

the assumption is that at the end of the first smaller tree the turtle will be back at the top
of the main trunk, in position to draw the second subtree. We can fix the problem by
making the turtle climb back down the trunk (of each subtree):

Voilà! If you try you’ll see something like the picture I had in mind.

You’re probably thinking that this “tree” doesn’t look very tree-like. There are several
things wrong with it: It’s too symmetrical; it doesn’t have enough branches; the branches
should grow partway up the trunk as well as at the top. But all of these problems can be
solved by adding a few more steps to the procedure:

We can embellish the tree as much as we want. The only requirement is that the
procedure be state-invariant: The turtle’s final position and heading must be the same as
its beginning position and heading.

flake 0

flake 3flake 2

flake 1

☞

tree

Further Reading

fractal.

Turtle Geometry,

The Fractal Geometry of Nature,

194 Chapter 10 Turtle Geometry

Because I chose to use a minimum length as the stopping condition, the shape of the
tree depends on the size of its trunk. That’s slightly unusual in turtle graphics programs,
which usually draw the same shape regardless of the size.

A recursively-defined shape (one that contains smaller versions of itself) is called a
Until the 1970s, hardly anybody explored fractals except for kids learning Logo

and a few recreational mathematicians. Today, however, fractals have become important
becase movie producers are using computer graphics as an alternative to expensive sets
and models for fancy special effects. It turns out that programs like are the secret
of drawing realistic clouds, mountains, and other natural backgrounds with a computer.

If you want another challenging fractal project, try writing a program to produce
these fractal snowflakes:

If you’re interested in an intellectually rigorous exploration of turtle geometry, continuing
along the lines I’ve started here, read Abelson and diSessa (MIT Press,
1981). I learned many of the things in this chapter from them. It’s a hard book but
worth the effort.

The standard reference book on fractals is by Benoit
Mandelbrot (W. H. Freeman, 1982). Dr. Mandelbrot gave fractals their name and was
the first to see serious uses for them.

