
15 Debugging

kind

specific

283

Using Error Messages

one
pokerhand

in pokerhand

I don’t know how to one in pokerhand

I haven’t talked much, until now, about how to find and fix mistakes in the programs you
write. Except for the chapter-length examples in Chapters 6, 12, and 14, it hasn’t been
much of a problem because the sample programs I’ve shown you have been so small. That
doesn’t mean you can’t make a mistake in a small program! But mistakes are relatively
easy to find when the entire program is one procedure with just a few instruction lines.
In a real programming project, which might have 20 or 200 procedures, it’s harder to
locate an error.

At one point in Chapter 13 I saw the error message

Logo’s error messages were deliberately designed to use an informal, smooth, low-key
style so that beginning programmers won’t find them intimidating. But there is a lot
of information in that message if you learn how to find it. The message tells me three
things. First, it tells me what of error is involved. In this particular message, the
phrase “I don’t know how” suggests that a procedure is missing, and the words “to one”
subtly suggest how the problem could be fixed. Second, the message tells me the
expression that was in error: the word . Third, it tells me that the error was detected
while Logo was carrying out the procedure named .

The precise form of the message may be different in different situations. If you
make a mistake in a top-level instruction (that is, one that you type to a question mark
prompt, not inside a procedure), the part about won’t be included.

found
is.

should

284 Chapter 15 Debugging

I don’t know how to forwrad in poly

I don’t know how to straight in pokerhand

I don’t know how

forward poly

pokerhand
straight

straight
straight pokerhand

pots
straight

map
map

I don’t know how to
map map

ifelse

One very important thing to remember is that the place where an error is may
not be the place where the error really That’s a little vague, so let’s think about the

error. All the Logo interpreter knows is that it has been asked to
invoke a procedure that doesn’t exist. But there can be several possible reasons for that.
The most common reason is that you’ve just misspelled the name of a procedure. When
the message is

you can be pretty sure, just from reading the message, that the problem is a misspelling
of . In this case the mistake is in , just as the message tells you.

On the other hand you might get a message like this about a procedure that really
should exist. For example, I might have seen

If I had been confronted with that message, I might have looked at , and
indeed I would have found an instruction that invokes a procedure named .
But that’s not an error; there be such a procedure. One of two things would be
wrong: either I’d forgotten to define altogether or else I made a spelling
mistake in the title line of rather than in an instruction line of .
To find out, I would type the command (which, as you recall, stands for Print Out
TitleS) and look for a possible misspelling of .

Another way to get the same error message is to write a program using one version
of Logo and then transfer it to another version with somewhat different primitives.
For example, Berkeley Logo includes higher order functions such as that are not
primitive in most other Logo dialects. If you write a program that uses and then try
to run it in another version of Logo, you’ll get a message saying

. In that case you’d have to write your own version of or rewrite the program to
avoid using it—for example, by using a recursive operation instead.

The mistake I actually made in Chapter 13 wasn’t a misspelling, a missing definition,
or a nonexistent primitive. Instead, I failed to quote a list with square brackets. The
particular context in which I did it, in an input to , is a fairly obscure one. But
here is a common beginner’s mistake, especially for people who are accustomed to other
programming languages:

Invalid Data

does
doesn’t

Invalid Data 285

I don’t know how

word

word

butfirst
butfirst

butfirst

print "How are you?"

procedure datum

print word "hello, [old buddy]

?
How
i don’t know how to are

doesn’t like as input

?
word doesn’t like [old buddy] as input

butfirst doesn’t like [] as input

butfirst doesn’t like as input

The moral of all this is that the error message give you some valuable help in
finding your bug, but it tell you the whole story. You have to read the message
intelligently.

I’ve spent a lot of time on the message because it’s probably the
most common one. Another very common kind of message, which will merit some
analysis here, is

In general, this means that you’ve violated the rules about the kinds of data that some
primitive procedure requires as input. (Recall that the type of input is one of the things
I’ve been insisting that you mention as part of the description of a procedure.) For
example, requires words as inputs, so:

There are several special cases, however, that come up more often than something
as foolish as using a list as an input to . The most common message of this form is
this one:

This almost invariably means that you’ve left out the stop rule in a recursive procedure.
The offending input to isn’t an explicit empty list but instead is the result of
evaluating a variable, usually an input to the procedure you’re writing, that’s ed
in the recursive invocation. This is a case where the error isn’t really in the instruction
that caused the message. Usually there is nothing wrong with the actual invocation of

; the error is a missing instruction earlier in the procedure. If the input is a
word instead of a list, this message will take the possibly confusing form

like as

286 Chapter 15 Debugging

to process :instruction
test emptyp :instruction
iftrue [type "|? | process readlist stop]
iffalse [print sentence [|I don’t know how to|] first :instruction]
end

to process :instruction
print sentence [|I don’t know how to|] first :instruction
end

first doesn’t like [] as input in process

/ doesn’t like 0 as input

to second :thing
output first butfirst :thing
end

to swap :list
output list (second :list) (first :list)
end

That’s an invisible empty word between and !

I said that this message is almost always caused by a missing stop rule. You have to
be careful about the “almost.” For example, recall this practical joke procedure from
Chapter 1:

This is not a recursive procedure, and the question of stop rules doesn’t arise. But its
input might be empty, because the victim enters a blank line. If I hadn’t thought of that,
and had written

the result would be

Another case that sometimes comes up in programs that do arithmetic is

For example, if you write a program that takes the average of a bunch of numbers and
you try to use the program with an empty list of numbers as input, you’ll end up trying
to divide zero by zero. The solution is to insert an instruction that explicitly tests for that
possibility.

As always, the procedure that provokes the error message may not actually be the
procedure that is in error. Consider this short program:

two

second
second

swap second

swap swap

swap

defensive programming.

Invalid Data 287

print swap [watch pocket]

print swap [farewell]

* Actually, when you invoke this version of with a bad input, you’ll see error messages.
The procedure itself will print an error message. Then, since it s instead of ting
something to its superprocedure, you’ll get a error message from the Logo
interpreter.

?
pocket watch
?
first doesn’t like [] as input in second
[output first butfirst :thing]

to swap :list
if emptyp :list [pr [empty input to swap] stop]
if emptyp butfirst :list [pr [singleton input to swap] stop]
output list (second :list) (first :list)
end

to swap :list
if emptyp :list [output []]
if emptyp butfirst :list [output :list]
output list (second :list) (first :list)
end

swap
stop output

didn’t output

Although the error was caught during the invocation of , there is nothing wrong
with itself. The error was in the top-level instruction, which provided a bad
input to . That instruction doesn’t even include an explicit reference to .
In this small example it’s easy to see what happened. But in a more complicated program
it can be hard to find errors like this one.

There are two ways you can protect yourself against this kind of difficulty. The first
is I could have written the program this way:

This version checks for bad inputs and gives a more helpful error message.* It would also
be possible to figure out an appropriate output for these cases and not consider them
errors at all:

This version manages to produce an output for any input at all. How should you choose
between these two defensively written versions? It depends on the context in which you’ll
be using . If you are writing a program in which should always get a particular
kind of list as input, which should always have two members, then you should use the
first defensive version, which will let you know if you make an error in the input to .

Incorrect Results

288 Chapter 15 Debugging

show lput "c [a b]

show lput [a b] "c

swap

second

doesn’t like
lput

lput

Lput fput

Arabic
arabic

?
[a b c]

?
lput doesn’t like c as input

to arabic :num
output addup map "digit :num
end

But if is intended as a general tool, which might be used in a variety of situations, it
might be better to accept any input.

The second protective technique, besides defensive programming, is tracing, the
technique we used in Chapter 9. If you get an error message from a utility procedure like

and you have no idea how it was invoked, you can find out by tracing the entry
into all of your procedures.

Another way to get the message is to forget the order of inputs to a
procedure, either a primitive or one that you’ve written. For example, is a primitive
operation that requires two inputs. The first input can be any datum, but the second
must be a list. The output from is a list that contains all the members of the second
input, plus one more member at the end equal to the first input.

takes its inputs in the same order as , with the new member first and then the
old list. But you might get confused and want the inputs to appear left-to-right as they
appear in the result:

Beginning programmers are often dismayed when they see an error message, but more
experienced programmers are relieved. They know that the bugs that cause such
messages are the easy ones to find! Much harder are the bugs that allow a program to
run to completion but produce the wrong answer. In that kind of situation you don’t
have the advantage of knowing which procedure tickled the error message, so it’s hard
to know where to begin looking.

Here’s a short program with a couple of bugs in it. is an operation that takes
one input, a word that is a Roman numeral. The output from is the number
represented by that Roman numeral in ordinary (Arabic numeral) notation.

−

print arabic "MLXVI

Incorrect Results 289

Arabic
digit C

M addup

CLIV
I V I V

I

arabic

digit
digit addup

addup digit digit addup
digit digit

to digit :digit
output lookup :digit [[I 1] [V 5] [X 10] [L 50] [C 100] [D 500] [M 1000]]
end

to lookup :word :dictionary
if emptyp :dictionary [output "]
if equalp :word first first :dictionary [output last first :dictionary]
output lookup :word bf :dictionary
end

to addup :list
if emptyp :list [output 0]
if emptyp bf :list [output first :list]
if (first :list) < (first bf :list) ~

[output sum ((first bl :list)-(first :list)) addup bf bf :list]
output sum first :list addup bf :list
end

?
13

uses two non-primitive subprocedures, dividing its task into two parts. First
translates each letter of the Roman numeral into the number it represents: into

100, into 1000. The result is a list of numbers. Then translates that list into a
single number, adding or subtracting each member as appropriate. The rule is that the
numbers are added, except that a smaller number that appears to the left of a larger one
is subtracted from the total. For example, in the Roman numeral all the letters are
added except for the , which is to the left of the . Since represents 1 and represents
5, and 1 is less than 5, the is subtracted. The result is 100 + 50 + 5 1 or 154.

Here’s what happened the first time I tried :

This is a short enough program that you may be able to find the bug just by reading
it. But even if you do, let’s pretend that you don’t, because I want to use this example to
talk about some ways of looking for bugs systematically.

The overall structure of the program is that is invoked for each letter, and
the combined output from all the calls to is used as the input to . The first
step is to try to figure out which of the two is at fault. Which should we try first? Since

depends on the work of , whereas doesn’t depend on , it’s
probably best to start with . So let’s try looking at the output from directly.

map
digit

map
map.se map

290 Chapter 15 Debugging

?
1000
?
5

?
1000501051

?
[1000 50 10 5 1]

to arabic :num
output addup map.se "digit :num
end

?
1066

?
3
?
17
?
155
?
150
?

print digit "M

print digit "V

show map "digit "MLXVI

show map.se "digit "MLXVI

print arabic "MLXVI

print arabic "III

print arabic "XVII

print arabic "CLV

print arabic "CLIV

So far so good. Perhaps the problem is in the way is used to combine the results
from :

Aha! I wanted a list of numbers, one for each Roman digit, but instead I got all the
numbers combined into one long word. I had momentarily forgotten that if the second
input to is a word, its output will be a word also. As soon as I see this, the solution is
apparent to me: I should use instead of .

This time I got the answer I expected. On to more test cases:

Another error! The result was 150 instead of the correct 154. Since the other three
examples are correct, the program is not completely at sea; it’s a good guess that the bug
has to do with the case of subtracting instead of adding. Trying a few more examples will
help confirm that guess.

how

behavior

correct

know

Incorrect Results 291

?
0
?
1000
?
1080
?
1776
?

?
[5 1 1]
?
[1000 500 100 100 50 10 10 5 1]

MCMLXXXIV CM IV

digit addup

digit addup digit
addup

map digit

digit

digit

print arabic "IV

print arabic "MCM

print arabic "MCMLXXXIV

print arabic "MDCCLXXVI

show map.se "digit "VII

show map.se "digit "MDCCLXXVI

Indeed, numbers that involve subtraction seem to fail, while ones that are purely additive
seem to work. If you look carefully at exactly the program fails, you may notice
that the letter that should be subtracted and the one after it are just ignored. So in the
numeral , which represents 1984, the and the don’t contribute to the
program’s result.

Once again, we must find out whether the bug is in or in , and it makes
sense to start by checking the one that’s called first. (If you read the instructions in the
definitions of and , you’ll see that handles each digit in isolation,
whereas is the one that looks at two consecutive digits to decide whether or not
to subtract. But at first I’m not reading the instructions at all; I’m trying to be sure that I
understand the of each procedure before I look inside any of them. For a simple
problem like this one, the approach I’m using is more ponderous than necessary. But it
would pay off for a larger program with more subtle bugs.)

I’ve started with Roman numerals for which the overall program works. Why not just
concentrate on the cases that fail? Because I want to see what the output from

ping over the Roman numeral is supposed to look like. It turns out to be a
list of numbers, one for each letter in the Roman numeral.

You may wonder why I need to investigate the correct behavior of experi-
mentally. If I’ve planned the program properly in the first place, I should what
it’s supposed to do. There are several reasons why I might feel a need for this sort of
experiment. Perhaps it’s someone else’s program I’m debugging, and I don’t know what
the plan was. Perhaps it’s a program I wrote a long time ago and I’ve forgotten. Finally,
since there is a bug after all, perhaps my understanding is faulty even if I do think I know
what is supposed to do.

292 Chapter 15 Debugging

digit

Digit
addup

addup

if
if

output

roman
I V X X

show map.se "digit "IV

show map.se "digit "MCMLXXXIV

?
[1 5]
?
[1000 100 1000 50 10 10 10 1 5]
?

if (first :list) < (first bf :list) ~
[output sum ((first bl :list)-(first :list)) addup bf bf :list]

first :list

bf bf :list

Now let’s try for some of the buggy cases.

still does the right thing: It outputs the number corresponding to each letter.
The problem must be in .

Now it’s time to take a look at . There are four instructions in its definition.
Which is at fault? It must be one that comes into play only for the cases in which
subtraction is needed. That’s a clue that it will be one of the instructions, although
instructions that aren’t explicitly conditional can, in fact, depend on earlier tests.
(In this procedure, for example, the last instruction doesn’t look conditional. But it is
carried out only if none of the earlier instructions results in an being evaluated.)

Rather than read every word of every line carefully, we should start by knowing the
purpose of each instruction. The first one is an end test, detecting an empty numeral.
The second is also an end test, detecting a single-digit numeral. (Why are two end
tests necessary? How would the program fail if each one were eliminated?) The third
instruction deals with the subtraction case, and the fourth with the addition case. The
bug, then, is probably in the third instruction. Here it is again:

At this point a careful reading of the instruction will probably make the error obvious. If
not, look at each of the expressions used within the instruction, like

and

What number or list does each of them represent?

(If you’d like to take time out for a short programming project now, you might try
writing , an operation to translate in the opposite direction, from Arabic to Roman
numerals. The rules are that can be subtracted from or ; can be subtracted from

Tracing and Stepping

Pausing

tracing stepping

Pausing 293

L C C D M
IV IIII

trace step
Trace step

trace

step

print pons Pons

or ; and can be subtracted from or . You should never need to repeat any symbol
more than three times. For example, you should use rather than .)

In Chapter 9 we used the techniques of and to help you understand how
recursive procedures work. The same techniques can be very valuable in debugging.
Tracing a procedure means making it print an indication of when it starts and stops.
Stepping a procedure means making it print each of its instructions and waiting for you
to type something before evaluating the instruction.

Berkeley Logo provides primitive commands and that automatically
trace or step procedures for you. and take one input, which can be either a
word or a list. If the input is a word, it must be the name of a procedure. If a list, it must
be a list of words, each of which is the name of a procedure. The effect of is to
modify the procedure or procedures named in the input to identify the procedure and
its inputs when it is invoked. The effect of is to modify the named procedure(s) so
that each instruction is printed before being evaluated.

Tracing a procedure is particularly useful in the annoying situation in which a
program just sits there forever, never stopping, but never printing anything either.
This usually means that there is an error in a recursive procedure, which invokes itself
repeatedly with no stop rule or with an ineffective one. If you trace recursive procedures,
you can find out how you got into that situation.

When a program fails, either with an error message or by printing the wrong result, it can
be helpful to examine the values of the variables used within the program. Of course, you
understand by now that “the variables used within the program” may be a complicated
idea; if there are recursive procedures with local variables, there may be several variables
with the same name, one for each invocation of a procedure.

Once a program is finished running, the local variables created by the procedures
within the program no longer exist. You can examine global variables individually by

ing their values or all at once with the command. (stands for Print
Out NameS; it takes no inputs and prints the names and values of all current variables.)
But it’s too late to examine local variables after a program stops.

make "erract [pause]

ern "erract

?

?

to demo.error
print first :nonesuch
end

still active;

automatically

294 Chapter 15 Debugging

pause

stop output pause

pause
pause

erract

erract ern

continue co
continue

continue pause

To get around this problem, Berkeley Logo provides a command. This
command takes no inputs. Its effect is to stop, temporarily, the procedure in which it
appears. (Like and , is meaningless at top level.) Logo prints a
question mark prompt (along with the name of the paused procedure to remind you
that it’s paused), and you can enter instructions to be evaluated as usual. But the paused
procedure is its local variables still exist. (Any superprocedures of the paused
procedure, naturally, are also still active.) The instructions you type while the procedure
is paused can make use of local variables, just as if the instructions appeared within the
procedure definition.

The main use of is for debugging. If your program dies with an error message
you don’t understand, you can insert a command just before the instruction that
gets the error. Then you can examine the variables that will be used by that instruction.

Better yet, you can ask Logo to pause whenever an error occurs. In fact,
you can ask Logo to carry out any instructions you want, whenever an error occurs, by
creating a variable named (short for error action) whose value is an instruction
list. If you want your program to pause at any error, say

before you run the program. To undo this request, you can erase the variable name
with the (erase name) command:

Once you’ve examined the relevant variables, you may want to continue running the
program. You’ll certainly want to continue if this pause wasn’t the one you’re waiting for,
just before the error happens. Logo provides the command (abbreviated)
for this purpose. If you type with no input, Logo will continue the evaluation
of the paused procedure where it left off.

It is also possible to use with an input, turning the command into
an operation by providing a value for it to output. Whether or not that’s appropriate
depends on which error message you get. If the message complains about a missing
value, you may be able to provide one to allow the program to continue:

stop
stop

throw

Final Words of Wisdom

context

loop

Final Words of Wisdom 295

make "erract [pause]
demo.error

continue "hello

?
?
nonesuch has no value in demo.error
[print first :nonesuch]
Pausing...
demo.error?
h

throw "toplevel

If, after examining variables, you figure out the reason for the bug, you may not
want to bother continuing the buggy procedure. Instead you’ll want to forget about it,
edit the definition to fix the bug, and try again. But you shouldn’t just forget about it
because the procedure is still active. If you don’t want to continue it, you should it
instead, to get back to the “real” top level with no procedures active. (Instead of , a
more definitive way to stop all active procedures is with the instruction

For now just think of this as a magic incantation; we’ll talk more about in the
second volume.)

Berkeley Logo also has a special character that you can type on the keyboard to
cause an immediate pause. The character depends on which computer you’re using; see
Appendix A. This is not as useful a capability as you might think because it’s hard to
synchronize your typing with the activity of the program so that it gets paused in the right

(that is, with the right procedures active and the right local variables available).
But it can be useful if you can see that the program is repeating the same activities over
and over, for example; pausing just about anywhere during that kind of is likely to
give you useful information.

You may be feeling a frustrating sense of incompleteness about this chapter. After the
chapter on variables, for example, you really knew everything there is to know about
variables. (I suppose that’s not strictly true, since you hadn’t thought about recursion
yet, but it’s true enough.) But you certainly don’t know everything there is to know about
debugging. That’s because there isn’t a complete set of rules that will get you through
every situation. You just have to do a lot of programming, meet a lot of bugs, and develop
an instinct for them.

As a beginner, you’ll probably meet bugs with a different flavor from the ones I’ve
been discussing. You’ll put a space after a quotation mark or a colon, before the word

x y

meant

296 Chapter 15 Debugging

to which it should be attached. You’ll leave out a left or right parenthesis or bracket.
(Perhaps you’ll get confused about when to use parentheses and when brackets!) All
of these simple errors will quickly get you error messages, and you can probably find
your mistake just by reading the offending instruction. Later, as your programs get more
complicated, you’ll start having the more interesting bugs that require analysis to find
and fix.

It’s a good idea to program with a partner. Sometimes you can find someone
else’s bugs more easily than your own—when you read your own program, you know
too well what you to say. This advice is not just for beginners; even experienced
programmers often benefit from sharing their bugs with a friend. Another advantage of
such a partnership is that trying to explain your program to someone else will often help
you understand it more clearly yourself. I’ve often discovered a persistent bug halfway
through explaining the problem to someone.

The main point, I think, is one I’ve made in earlier chapters: there is nothing
shameful about a bug in your program. As a teacher, I’ve been astonished to see students
react to a simple bug by angrily erasing an entire program, which they’d spent hours
writing! Teach yourself to expect bugs and approach them with a good-natured spirit.

On the other hand, you can minimize your debugging time by writing the program
in a reasonable style in the first place. If your program is one long procedure, you should
know that you’re making it harder to locate an offending instruction. If all your variables
are named and , you deserve whatever happens to you! And if you can’t figure out,
yourself, which procedure does what, then perhaps you should stop typing in procedures
and spend a little time with paper and pencil listing the tasks each procedure needs to
carry out.

