
41

The User Interface

4 Example: Solitaire

solitaire

catch
throw

throw

throw
throw

...initialization...

...initialization...

to solitaire

catch "exit [forever [onegame]]
end

to onegame

catch "endgame [forever [catch "bell [parsecmd]]]
end

Program file for this chapter:

This program deals out a hand of solitaire and maintains a picture of the card layout as
you play the game by entering commands to move cards. It doesn’t try to provide help
with strategy, but it does know the rules for legal moves.

This chapter follows Chapter 3 because the solitaire program uses and
for three kinds of nonlocal exit. The program is an infinite loop that plays games

repeatedly, so there is an exit command that is implemented as a . Each game
is itself an infinite loop, processing user commands repeatedly until either the game is
won or the user asks to start a new game. The command to start a new game is also
implemented as a . Finally, if the program detects an error in a user command,
such as asking to move a card that isn’t playable, the program rings a bell and s
back to the command-reading loop.

But what I actually find most interesting about this program is the way in which it interacts
with the user. By now, most people have seen computer solitaire programs in which the
cards are drawn graphically on the screen, and the user moves cards by dragging with a

The Game of Solitaire

easier

everything

stacks
hidden shown

hand pile

top
pile

42 Chapter 4 Example: Solitaire

mouse. (A program of that kind is included with Microsoft Windows, and versions are
also available for most other computer systems.) The advantage of the mouse interface
is that it’s very easy to learn. Once you’ve seen how dragging an object with the mouse
works in a painting program or a word processor, it’s immediately obvious how to drag
cards in the solitaire program, without reading an instruction manual.

This Logo solitaire program doesn’t use a mouse. Instead, you move cards with
keyboard commands. Most of the time it takes a single keystroke to tell the program
which card to move, and where to move it. The trouble is that you have to learn the
command keys! Given the choice, I think that most people would rather start playing
right away with a mouse-driven program than take the time to learn to use mine. But I
actually find the Logo program to use. Typing a single key is faster and easier on
the wrist than moving the mouse to where the card is, holding down the mouse button,
moving the mouse to where you want to put the card, and then releasing the button.

There’s no question that mouse-based graphical user interfaces have vastly increased
the acceptance and use of computers by people who are not technical experts. And I was
happy to have a mouse-based drawing program to produce many of the illustrations in
these books! But I did the word processing with a keyboard-controlled text editor; I find
it easier to use and more flexible than the mouse-based word processors. Maybe it’s just
incipient old age, but I’m still a holdout against the idea that is better done
with a mouse.

Play several games using this program, and several using a mouse-based solitaire
program, and see what you think.

On the next page is a picture of a solitaire game in progress.

In the center of the picture are seven of cards. Each stack may include some
cards and some cards. The hidden cards, if any, are beneath the shown

cards. If there are any cards at all in a stack, at least one must be shown. Cards that are
not part of this layout are held in the and dealt from the hand onto the ; the
cards in the hand are hidden, while the top card of the pile is visible. At the top of the
picture are four more piles of cards, one for each suit; I’ll call these piles “the ” so that
I can reserve the name for the one at the bottom.

The Game of Solitaire 43

Here is how the same layout would be represented by the program:

Shown cards are represented on the screen by the rank and suit of the card. Several cards
may be shown in each stack, while only one card is shown in the pile, and one of each
suit in the top. Each stack has a dash at the top of its display if there are any hidden cards
in that stack; the hand is represented by the number of cards in it.

In playing solitaire it’s important to distinguish black cards from red cards, so
the program does its best to present the color information to you. The facilities for

standout

solitaire

or

and

44 Chapter 4 Example: Solitaire

color display vary tremendously between computer models, both in what capabilities are
available and in the means by which a program can use them. Berkeley Logo sacrifices
versatility for uniformity; there is a primitive operation that can be used to
print text in “reverse video,” whichever of black-on-white and white-on-black isn’t the
usual presentation.

The program displays red cards in normal text and black cards in reverse
video. The DOS version normally displays white text on a black background, while the
Macintosh version normally displays black text on a white background, so the effect looks
different on each kind of computer.

There are many variations in the rules of solitaire, so I should describe in detail the
version this program knows. In the initial layout, there are seven stacks. The first stack
(on the left) has one shown card. The second has one shown and one hidden. The
third has one shown and two hidden. Each stack has one more hidden card than the one
before it, so the seventh stack, at the right, has one shown card and six hidden cards.
There are 28 cards altogether on the board; the remaining 24 cards are in the hand.

Here are the legal moves:

1. Three cards at a time may be dealt from the hand to the pile. The cards are turned
face up, so that the last one dealt is shown. If there are fewer than three cards in
the hand, however many cards are left may be dealt in this way. If there are no
cards in the hand at all, the entire pile may be picked up and turned upside down,
so that they return to the hand in the same order they were in at the beginning.

2. The top card of the pile, or the topmost card of any stack, may be moved to the top
if (a) it is an ace, (b) the card of the same suit and the immediately preceding
rank is visible at the top. For example, the four of clubs can be played onto the
three of clubs at the top.

3. The top card of the pile, or any shown card in any stack, may be moved onto a
stack if the topmost card of that stack is (a) of the opposite color, (b) of the
immediately following rank as the card you are moving. For example, the four of
clubs can be played onto the five of hearts or the five of diamonds on a stack.

4. When a card is moved onto a stack, it is placed so that it does not completely cover
any other shown cards on that stack. Any such shown cards remain shown.

solitaire
s

+ =
P
R
?
card
M
W
G
X

Running the Program

Running the Program 45

Welcome to solitaire

Here are the commands you can type:
Deal three cards onto pile
Play top card from pile
Redisplay the board
Retype these instructions
Play that card
Move same card again
Play up as much as possible (Win)
Give up (start a new game)
Exit to Logo

5. When moving a shown card from a stack, any other cards that are above it (partly
covering it, because they were moved onto it earlier) must be moved along with it.

6. When all shown cards are removed from a stack, the topmost hidden card is turned
over so that it becomes a shown card. If there are no hidden cards in that stack,
the stack becomes empty. (At the beginning of the game, there are no empty
stacks.)

7. Any king that is the top card of the pile, or a shown card in any stack, may be
moved onto an empty stack.

8. The game is won if all cards are moved to the top. The game is lost if there are no
legal moves and not all cards are moved to the top.

I’ve expressed these rules in more formal language than would usually be used. Card
players have shorthand ways of speaking, like “play up in the same suit at the top” or “play
down in the opposite color on the stacks.” I wanted to be very precise in stating the rules
because each part of a rule must be reflected in the computer program. Even so, I’ve left
out some details. For example, my list of rules talks about concepts like “suit” and “rank”
without defining them. I haven’t specified the rank order, namely ace-low. (That is, ace
comes before two, not after king.) What other details, if any, have I forgotten?

To use the program, invoke the command with no inputs. (Being as I am a
lazy typist, I’ve also defined an abbreviation for this command.) The program prints an
initial screenful of instructions, and then repeatedly deals solitaire hands until you give
the exit command. Here are the instructions:

8S

P

M

G

A 2 3 4 5 6 7 8 9 10 J Q K T

H S D C
.

! @ # $ % ˆ &

where

onto.

46 Chapter 4 Example: Solitaire

A card consists of a rank:
or for 10

followed by a suit:

or followed by to play all possible suits up

If you make a mistake, hit delete or backspace.

To move an entire stack,
hit the shifted stack number:

for stacks
1 2 3 4 5 6 7

My goal in designing the “human interface” for this program was that most moves
should require typing only a single character. My idea is that the most common moves
are to play a card from the pile and to move an entire stack (that is, the entire shown
part of a stack) at once. There are one-character commands for all these. If you want to
move only part of a stack, then you must type the name of the card, in the form for
the eight of spades.

As it turns out, in this case what’s easy for the user is also easiest for the program.
When you refer to a card by its position, it’s easy for the program to look up which card
you mean. For example, when you say to play the top card from the pile, it’s easy for
the program to find out what card that is. But when you specify a card by typing its rank
and suit, it’s harder for the program to know that card is. The program must check
the pile and all the stacks to see if your card is a member of each one. So the program
runs faster if you use the single-keystroke commands.

The instructions don’t say how to let the program know where you want to move the
chosen card The reason is that in most cases there is only one possible place, and
the program finds that place itself. (This is the most complicated part of the program.)
Sometimes the chosen card can be moved to two different places. If so, the program
picks a stack to move the card onto, and if you don’t like the program’s choice, you can
type to move the same card again until it ends up where you wanted it.

The program makes no effort to help you with strategic decisions. For example,
some people like to play cards to the top as soon as possible, while other people prefer
to keep cards visible on the stacks as long as possible. Such choices are up to you. Also,
the program does not detect losing the game. (Detecting winning is easy—all four tops
have kings showing—but you haven’t lost the game until no further moves are possible,
which is harder for the program to figure out.) When you decide the game is over, you
just type to start another game.

•
•
•
•
•
•
•
•

Program Structure

Program Structure 47

card

cards

where

onto

:where :onto
run

solitaire onegame
onegame

parsecmd

10H
Parsecmd 1

0 digit parsecmd
H play.by.name

There are about 60 procedures in this program. These procedures can be roughly
divided into several purposes:

initialization
reading and interpreting keyboard commands
finding the chosen card in the layout
finding where the chosen card can move
moving the card
displaying the card layout
miscellaneous user commands
data abstraction

In the procedures that move cards, the most interesting part of the program, a few
important variables are used to communicate what moves should be made:

The card that the user asked to move.

All the cards that must be moved. (There may be more than one if the
requested card is in the middle of a stack.)

The location (before moving) of the chosen card.

A list of all possible locations to which the card can be moved.

As we’ll see later in more detail, the card locations in and are represented
in the form of Logo instructions that can be to perform the desired move.

The overall program structure is two nested loops. The top-level procedure
repeatedly invokes . As its name suggests, each invocation of

plays one solitaire game. It shuffles and deals the cards, then repeatedly in-
vokes , which reads a character from the keyboard and chooses the appropriate
procedure to carry out the user’s command.

(Most user commands require only one character. The situation is a little more
complicated if the user types the name of a card, such as for the ten of hearts, as a
command. actually treats this as three separate commands. The and the

merely record the card’s rank in a variable named . When sees the
letter , which selects the card’s suit, it invokes , which combines the
remembered rank with the just-typed suit to determine the desired card.)

Initialization

shuffling

48 Chapter 4 Example: Solitaire

solitaire onegame

localmake
local make

hand

butfirst

setitem

solitaire
onegame shuffle

arraytolist

do.something.with first :hand
make "hand butfirst :hand

to shuffle :len :array
if :len=0 [output arraytolist :array]
localmake "choice random :len
localmake "temp item :choice :array
setitem :choice :array (item :len-1 :array)
setitem :len-1 :array :temp
output shuffle :len-1 :array
end

Both and include initialization instructions. That’s because some
actions are only required once, such as computing the 52 names of cards in the deck,
while others are required for each game, such as shuffling those cards.

Many initialization actions use the Berkeley Logo primitive command ,
which is an abbreviation for a command followed by a command. The
program uses no global variables, although the variables that are local to these top-level
procedures are available to any procedure within the solitaire program.

For most purposes, the most convenient representation of the deck of cards is as a
list. That’s because what the program most often does with the deck is to deal a card
from it to somewhere else. If the deck is represented as a list in the variable , then
dealing a card is roughly equivalent to these instructions:

A list is convenient because can be used to remove a card from the deck. It
turns out, however, that the deck is easiest if it’s represented as an array. That’s
because the technique used to shuffle the deck is to exchange pairs of cards repeatedly.
In the first step, we swap the 52nd card of the deck with a randomly chosen card (perhaps
itself). The newly chosen last card is now exempt from further exchanges. In the second
step, the 51st card of the deck is swapped with some card in the remainder of the deck,
and so on, for 51 steps. The primitive makes it easy to change the value of a
member partway through an array. If the deck were represented as a list, each exchange
would require making a (slightly changed) copy of the entire list.

The solution to this problem is that both representations, list and array, are used in
the program. The procedure creates an array containing the 52 cards. For
each game, invokes , which shuffles the cards in the array and then
uses the primitive to output a list containing the cards in their new order.
That list is used by the other parts of the program.

Data Abstraction

Data Abstraction 49

first last

8C
butlast

last first butlast

A J Q K

ranknum

to rank :card
output butlast :card
end

to suit :card
output last :card
end

to redp :card
output memberp (suit :card) :reds
end

to ranknum :rank
if emptyp :rank [output 0]
if numberp :rank [output :rank]
if :rank = "A [output 1]
if :rank = "J [output 11]
if :rank = "Q [output 12]
if :rank = "K [output 13]
end

As in most large programs, the solitaire program uses selectors like and for
several different purposes in different contexts. To make the program easier to read and
maintain, more meaningful names are used in each context.

For example, cards are represented in the program as words containing the rank
and the suit, so the word represents the eight of clubs. To find the rank of a card,
the program must take the of the word, and to find the suit, it must take the

of the word. (Why not use instead of to get the rank? Because if
the card happens to be a ten, there are two digits in its rank. The suit is always a single
character.) Instead of using these primitive selectors directly, I’ve defined synonyms:

When considering playing a card onto a stack, the program does not have to know the
precise suit of the card, but must know whether it’s red or black:

One complication in dealing with cards is that the program wants to use a card’s rank
in two different ways. For user interaction (reading commands and displaying cards on
the screen) the ranks should be represented using the names for aces and picture cards
(, , , and). But for comparison purposes (such as deciding whether a card can be
played on top of another card), it’s more convenient to represent all ranks as numbers:
1 for ace, 11 for jack, 12 for queen, and 13 for king. A conversion function
makes this possible:

Stacks

emptyp

toph tops
topd topc

top settop

onegame

stack pushdown list

50 Chapter 4 Example: Solitaire

to top :suit
output thing word "top :suit
end

to settop :suit :value
make (word "top :suit) :value
end

foreach :suits [settop ? "]

(When would a rank be empty? The test is useful in the case of deciding whether
a card can be played onto an empty “top.” In general, the only card that can be played
onto a top is the rank after the one that’s already visible there; for example, if a five is
showing, then a six can be played. Treating an empty top as having a rank of zero means
that the following rank, an ace, is permitted, just as the rules require.)

In an actual solitaire game, a top is a pile of several cards of the same suit, with an
ace on the bottom and other cards over it in sequence. But in the program, there is no
need to represent any but the topmost card, since the lower cards have no further role
in the game. In this program, the tops are represented by four variables , ,

, and . (The last letter indicates the suit.) The value of each variable is the
empty word if that top is empty, or the rank of the topmost card if not. Instead of using
these variables directly, the program uses data abstraction procedures and
to examine and modify the values:

For example, part of the initialization in is to make all four tops empty:

A (also called a) is a data structure that is used to remember things
and recall them later. A stack uses the rule “Last In, First Out.” That is, when you take
something out of a stack, the one you get is the one you put in most recently. The
name “stack” is based on the metaphor of the spring-loaded stack of trays you find in a
self-service cafeteria. You add a tray to the stack by pushing down the trays that were
already there, adding the new tray at the top of the pile. When you remove a tray, you
take the one at the top of the pile—the one most recently added to the stack.

A pile of cards in a solitaire game works just like a pile of trays in a cafeteria. You
add cards to the top of the pile, and you remove cards from the top of the pile. I’ve used
the name “stack” for some of the piles of cards in this project partly because those groups
of cards are represented in the program by stacks in the technical sense.

push

pop

name

Stacks 51

push pop
fput

first

shown3 hidden3
push

push pop Push

Pop

make "hidden3 fput :card :hidden3

make "card first :hidden3
make "hidden3 butfirst :hidden3

push "hidden3 :card
make "card pop "hidden3

to push :stack :thing
make :stack fput :thing (thing :stack)
end

to pop :stack
local "result
make "result first thing :stack
make :stack butfirst thing :stack
output :result
end

Berkeley Logo provides primitive procedures and to implement stacks.
Each stack is represented as a list. To push something onto the stack, Logo uses ;
to pop something off the stack, it uses . (Actually, it’s slightly more complicated,
as you’ll see in a moment. But this is essentially true.) For example, each of the seven
numbered card stacks in the solitaire layout is represented by two lists, one for the shown
cards and one for the hidden cards. The lists for the third stack are kept in variables
named and . To a new card onto the hidden stack without using
the primitive, you could say

To a card from that stack, you’d say

In this case, the first instruction reads the top of the stack, while the second removes that
entry from the stack.

Berkeley Logo provides and as a data abstraction mechanism. is a
command that takes two inputs. The first input is a word, the of a stack. The second
input is any Logo datum. is an operation with one input, the name of a stack. Its
output is the first datum on the stack. It also has the effect of removing that datum from
the stack. Instead of the instructions above, you can say

If Berkeley Logo didn’t already provide these procedures, it would be easy to write
them:

52 Chapter 4 Example: Solitaire

?
?
AH
?
AH
?
AH

?
AH
?
5C
?
10S

to setempty :stack
make :stack []
end

push :stack
thing :stack make

stack
stack

Pop

pop

pop

pop
push pop

pop

make

make "cards [AH 5C 10S]
print first :cards

print first :cards

print first :cards

print pop "cards

print pop "cards

print pop "cards

Within the definition of , the expression represents the name of the stack,
while the expression represents the stack itself. The instruction is
an example of indirect assignment; it does not give a new value to the variable but
rather to the variable whose name is contained in .

is an unusual Logo procedure in that it’s an operation that also has an effect.
Most operations don’t have effects. They compute some value, but they don’t make any
permanent change in the state of the computer. Another way of looking at this is to say
that for most operations, if you apply the same operation to the same inputs repeatedly,
you’ll get the same result every time.

But if you apply to the same input repeatedly, you’ll get a different output each time.

The combination of output and effect in is a powerful technique, but a potentially
confusing one. It’s important for anyone who tries to read this program to be aware
that has an effect. Fortunately, the concept of a stack is a standard, well-known
convention in computer science, and the names and are the traditional ones
for this purpose, so is somewhat self-documenting.

Before a stack can be used, it must be initialized. Generally a stack starts out with
no data in it. That is, it’s initially an empty list. This initialization could be done with an
explicit instruction, but instead I invented a procedure for the purpose:

computed

name

Stacks 53

hidden3
"hidden3 :hidden3

thing

First doesn’t like [] as input

if not emptyp :hidden3 [make "card pop "hidden3]

word "hidden :num

to shown :num
output word "shown :num
end

to hidden :num
output word "hidden :num
end

push (shown 5) :card
make "card pop shown 5
setempty shown 5

I think this makes the program slightly more elegant.

It is an error to try to pop more items from a stack than you’ve pushed onto it. If
you try to do this, you’ll get an error message something like

Often the logic of a program ensures automatically that you never try to overpop a stack.
But in the solitaire program I sometimes have to check for this possibility explicitly, with
an instruction like

I’ve been using the name as an example in this discussion, typing
when the name of the stack was needed or when its value was

needed. In fact, such names do not appear explicitly in the program. There are no
instructions that are directed exclusively to the third stack. Instead, stack instructions
are applied either to all seven stacks or to a stack chosen by the user through keyboard
commands. The name of a stack must be using an expression like

The contents of the stack would be examined by applying to that expression. To
make the program cleaner I created procedures to generate these variable names.

Remember that these operations output the of a stack variable, not the contents of
a stack. So, for example, you can use them in instructions like these:

There are only a few places in the program where a procedure needs to refer to the entire
contents of a stack, rather than just pushing or popping a single datum at a time. (One

reverse

Program as Data

is

turn it over

54 Chapter 4 Example: Solitaire

remshown
thing

shown hidden

:hand
:pile emptyp

thing shown hidden stackemptyp
thing

reverse

emptyp thing shown :num

to stackemptyp :name
output emptyp thing :name
end

stackemptyp shown :num

to deal
if emptyp :hand [make "hand :pile setempty "pile]
if emptyp :hand [output []]
output pop "hand
end

such place, for example, is , which has the job of removing perhaps several
cards from a stack.) In those places, there is an explicit use of to examine the
contents of a stack selected by or . An expression that occurred often in
the program was

to see if a stack is empty; I cleaned up these expressions somewhat by inventing a special
procedure for this test.

This is used in an expression like

Note that when a stack mentioned explicitly by name in the program, like
or , it is tested for emptiness with the ordinary . In this case the colon
abbreviates the invocation of ; for the or names,
abbreviates the invocation of .

One small detail that’s easy to miss is that in a non-computer game of solitaire, when
a hand is completely dealt out, you pick up the pile from the table and to form
a new hand. What was the top card of the pile becomes the bottom card of the hand.
The program achieves the same effect while dealing cards:

The Berkeley Logo primitive operation is used to reverse the order of the cards
as they are moved from the pile to the hand.

In order for the program to move a card, it must first make sure that the requested move
is legal. The first step is to find the card’s current position. (That’s easy if the move

safe

Program as Data 55

P

parsecmd
playpile P playstack
play.by.name 7D

play.by.name

card
where
playcard

checktop checkonto

checktop

checkonto
. W

to playcard
setempty "onto
if not coveredp [checktop]
if and not :upping

or (emptyp :onto) (not upsafep rank :card)
[checkonto]

if emptyp :onto [bell]
run :where
run first :onto
end

is requested by position, using the command to play the card at the top of the pile,
or a shifted stack number to move the entire shown stack; it’s a little harder if the card
is requested by its rank and suit. Even then, in order to be playable the card must be
either on top of the pile or somewhere in a shown stack.) The next step is to look for
another position into which the card can be moved; the only possibilities are a stack or a
top. Only after both old and new positions have been verified can the program actually
modify its data structures (and the screen display) to move the card.

When you type a card-moving command, invokes one of three procedures:
for the command, for one of the shifted stack numbers (such

as for stack 3), or for a rank and suit (such as). The first two of
these must figure out which card is desired, and ensure that there is in fact a card in the
requested position; has the opposite job, since it already knows the card
and must determine that it’s in a playable position. But in either case, these procedures
do not actually move the card. They ensure that the variable has the desired card
as its value, and that the variable has as its value a representation of the card’s
current position. Then they call , whose job is to ensure that there is a valid
destination for the card, and if so, to move it:

Subprocedures and determine whether the requested card
can be moved to the top or to a stack. (Each of these is called only if certain conditions
are met. For , the condition is that the desired card must not be in the middle
of a shown stack; it must be either the bottommost card of a shown stack or visible on the
pile. The condition for calling is more complicated. If the user’s command
was or , then cards are played only into the top, so there is no need to check the stacks.
In other cases, to make the game move more quickly, the program will always move the
card to the top if it is both possible and to do so. Such a move is considered safe if
every card whose rank is less than that of the requested card by two or more is already in
the top, because then any card of rank one less than the chosen card can be played to
the top, and so the chosen card is not needed in the stacks.)

syntax

56 Chapter 4 Example: Solitaire

:where :onto
Checktop checkonto

:onto checktop checkonto

run

where

P
Parsecmd playpile

P

where

Rempile
playstack1

where

to playpile
if emptyp :pile [bell]
if not emptyp :digit [bell]
make "card first :pile
make "where [rempile]
carddis :card
playcard
end

[rempile]

make "where sentence "remshown :num

[remshown 4]

Just as identifies the card’s current position, will hold all of the
possible destination positions. and add possible positions to this
variable, which is a list. If is empty after and have been
invoked, then there is no legal way to move this card.

I want to focus attention on the two instructions. They are the ones that actually
do the work of moving a card from one place to another; the first removes the card from
its original position and the second inserts the card at its new position.

The value of the variable is not merely a number or word indicating where
the card is to be found, but a Logo instruction that invokes the procedure needed to
remove the card. For example, suppose you type the letter to play a card from the top
of the pile. then invokes :

The first two instructions check for errors. The first checks for trying to play a card from
the pile when there are no cards in the pile. The second checks for the error of
typing a rank and then typing instead of a suit. Having cleared those hurdles, the next
instruction finds the actual card (rank and suit) you want to play from the pile. The
interesting part for the present discussion is that the variable is given as its value
the list

is the name of a procedure with no inputs, so this list contains a valid Logo
instruction. The corresponding instruction in is

which gives a value like

instruction
datum.

list

Program as Data 57

playcard
run :where

coveredp

run
where

Playcard

onto

checktop
checkonto :onto

:onto

Playcard
M

:card :onto
:onto

:onto

if equalp :where [rempile] [output "false]

if :where = 0 [rempile]
if :where = 1 [remshown 1]
if :where = 2 [remshown 2]

[[playonto 3] [playonto 6] [playtop]]

to again
if not emptyp :digit [bell]
if emptyp :onto [bell]
make "where list "remshown last pop "onto
if emptyp :onto [bell]
carddis :card
run :where
run first :onto
end

if you’ve selected stack four. In either case, can later remove the card from its
original location just by ning . At the same time, this Logo can be
examined as a For example, contains the instruction

Most programming languages don’t have a facility like Logo’s command. In those
languages, the variable would have to contain, for example, a number indicating
where the card is to be found. would then use this number to choose a course
of action with a series of instructions like this:

... and so on.

The situation concerning the variable is similar, except that there is a slight
complication because there may be more than one legal destination for a card. (By
contrast, every card starts out in exactly one place!) Therefore, and

set up as a of Logo instructions, one for every possible destination.
If a card could be played onto stack 3, stack 6, or the top, will be

runs the first member of this list. Why bother saving the other members?
After a successful move, the user can type to move the same card to a different
destination. Here’s how that is done:

This procedure uses the values that are still left over in and from the last
move. The first member of is the instruction that moved the card onto a stack. (If
the card was moved to the top, it’s because there were no alternatives in , because

Multiple Branching

58 Chapter 4 Example: Solitaire

playtop
:onto

where

pop onto

M

if
stop

[[playonto 3] [playonto 6] [playtop]]

make "where list "remshown last pop "onto

[remshown 3]

[[playonto 6] [playtop]]

to parsecmd ;; abbreviated version
local "char
make "char uppercase readchar
if equalp :char "T [parsedigit 1 parsezero stop]
if memberp :char [1 2 3 4 5 6 7 8 9 A J Q K] [parsedigit :char stop]
if equalp :char "0 [parsezero stop]
if memberp :char :suits [play.by.name :char stop]
if equalp :char ". [allup stop]
if equalp :char "W [wingame stop]
if equalp :char "M [again stop]
; several more possibilities omitted...
bell
end

is always the last choice in the list.) That stack is now the card’s position of
origin! If was

then the instruction

will give the value

and, because removes the first datum from the stack, leaves with the value

The chosen card will be moved from stack three to stack six. If the user types again,
then the card will be moved from stack six to the top.

Consider the procedure that interprets what you type at the keyboard while running the
solitaire program:

This sort of thing is common in Logo programming: a string of s in which each
conditional instruction list ends with because the choices are mutually exclusive.

stop

if

ifelse

ifelse
stop

Branch

Branch

multiple
branching

Multiple Branching 59

to parsecmd
local "char
make "char uppercase readchar
ifelse equalp :char "T ~

[parsedigit 1 parsezero]
[ifelse memberp :char [1 2 3 4 5 6 7 8 9 A J Q K]

[parsedigit :char]
[ifelse equalp :char "0 [parsezero]

; ...
bell]]

end

to parsecmd
local "char
make "char uppercase readchar
branch [
[[equalp :char "T] [parsedigit 1 parsezero]]
[[memberp :char [1 2 3 4 5 6 7 8 9 A J Q K]] [parsedigit :char]]
[[equalp :char "0] [parsezero]]
[[memberp :char :suits] [play.by.name :char]]
[[equalp :char ".] [allup]]
[[equalp :char "W] [wingame]]
[[equalp :char "M] [again]]
; several more possibilities omitted...
[["true] [bell]]]

end

Some people find this use of offensive because it doesn’t make it graphically
apparent when reading the program that the choices are exclusive. The form of the
program makes it seem that each decision (that is, each instruction) is independent
of the others.

It would be possible to meet this objection by using , putting each new test
in the false part of the previous one:

It’s not clear that this is an improvement, although the use of makes more sense
as an alternative to when only a single decision is involved.

Some programming languages provide a special representation for such a
decision. A Logo equivalent might look like this:

is a hypothetical command that takes a single input, a list of lists. Each member
of the input is a list with two members. The first member must be a Logo predicate
expression; the second must be a Logo instruction. evaluates the first half of

Further Explorations

60 Chapter 4 Example: Solitaire

push "undo.list (list "pile :pile)

true branch

false branch Branch

branch

branch

to branch :conditions
if emptyp :conditions [stop]
if (run first first :conditions) [run last first :conditions stop]
branch butfirst :conditions
end

to rempile
make "cards (list (pop "pile))
dispile
end

to rempile

make "cards (list (pop "pile))
dispile
end

each pair. If the value is , then carries out the instruction in the second
half of that pair, and then stops without evaluating the remaining pairs. If the value is

, goes on to the next pair. is not a Logo primitive, but it can
easily be written in Logo:

Inventing control structures like this is the sort of thing Logo makes easy and other
languages make impossible.

The trouble with this particular control structure in Logo is that the input to
is typically a very long list, extending over several lines on the screen. Traditional Logo
dialects have not done a good job of presenting such long lists with clear formatting. More
recent versions can, however, handle instructions like that multi-line invocation.

I keep thinking of new features I’d like in this program. I think the most important is
an Undo command, which would undo the effect of the previous user command. This
should be pretty easy to implement; every time the program changes the value of a
variable that represents card positions, it should make a list of the variable’s name and
its old value, and push that onto a changes list. For example, here’s the procedure that
removes a card from the pile:

And here’s how I’d change it for the undo command:

Program Listing

Program Listing 61

redisplay
Playcard setempty

P
parsecmd playpile playcard rempile playtop

The undo command itself would go through the list, restoring the values of all the
variables it finds, and then call to make the display match the program’s
state. would the undo list before moving any cards.

Another possibility is to improve the display. One person who tried this program
commented that it’s not enough to indicate whether the hidden part of a stack is empty
or nonempty; he wanted to see exactly how many cards are present. Novice users might
be helped by keeping an abbreviated command list in the empty space toward the right
side of the screen.

A more ambitious direction you could pursue is to write a similar program for a
different solitaire game. There are books of card games that include several variations
on this kind of solitaire as well as versions of solitaire that are totally different in their
rules and layouts.

Another direction would be to try to have the program offer strategic suggestions, or
even play the game entirely by itself. As with any strategy game, you would have to choose
between determining the strategy for the program in advance and letting it learn from
its experience and modify its strategy. Which is better, playing cards to the top quickly
or saving them in the stacks as long as possible? Which is better, playing a card from the
pile or playing a card of the same rank and color from the stacks? You could research
these questions by writing versions of the program with different strategies and collecting
statistics on their performance.

Another possibility would be to abandon solitaire and program the computer to play
one side of a two-player game with you. Blackjack is a simple example; poker is a harder
one.

A different kind of exploration would be to try to speed up the running of this
program. Earlier I suggested the possibility that the program might benefit from
remembering explicitly the position of each card. You could find out whether or not that
would really help. (It would speed up the searching process for a card, but it would also
slow down the moving of cards because the program would have to remember the new
location instead of the old one. My guess is that the speedup would be substantial and
the slowdown minimal, but I’m not sure.) What other bottlenecks can you find in this
program, and how can you improve them?

If you trace the progress of a user command, let’s say to play from the pile, from
through and to and then either or

playonto
remshown playonto

62 Chapter 4 Example: Solitaire

, you’ll understand most of the program. There are a few slightly complicated
details in moving several cards from one stack to another (and)
but nothing really hard to understand.

to solitaire
print [Welcome to solitaire]
instruct
localmake "allranks [A 2 3 4 5 6 7 8 9 10 J Q K]
localmake "numranks map "ranknum :allranks
localmake "suits [H S D C]
localmake "reds [H D]
localmake "deckarray (listtoarray (crossmap "word :allranks :suits) 0)
localmake "upping "false
catch "exit [forever [onegame cleartext]]
cleartext
end

to s
solitaire
end

to onegame
print [Shuffling, please wait...]
local [card cards digit pile where]
localmake "onto []
local map [word "top ?] :suits
local cascade 9 [(sentence (word "shown #) (word "hidden #) ?)] []
localmake "ranks :allranks
localmake "numstacks 7
local map [word "num ?] :numranks
foreach :numranks [make word "num ? 4]
localmake "hand shuffle 52 :deckarray
setempty "pile
initstacks
foreach :suits [settop ? "]
redisplay
catch "endgame [forever [catch "bell [parsecmd]]]
end

Program Listing 63

;; Initialization

to instruct
print [] print [Here are the commands you can type:]
type "| | type (sentence standout "+ standout "=)
type "| | print [Deal three cards onto pile]
instruct1 "P [Play top card from pile]
instruct1 "R [Redisplay the board]
instruct1 "? [Retype these instructions]
instruct1 "card [Play that card]
instruct1 "M [Move same card again]
instruct1 "W [Play up as much as possible (Win)]
instruct1 "G [Give up (start a new game)]
instruct1 "X [Exit to Logo]
print [A card consists of a rank:]
type "| | print (sentence standout [A 2 3 4 5 6 7 8 9 10 J Q K]

"or standout "T [for 10])
print [followed by a suit:]
type "| | print standout [H S D C]
print (sentence [or followed by] standout ".

[to play all possible suits up])
print [] print [If you make a mistake, hit delete or backspace.]
print [] print [To move an entire stack,]
type "| | print [hit the shifted stack number:]
type "| | print (sentence standout [! @ # $ % ^ &] [for stacks])
type "| | print [1 2 3 4 5 6 7]
print []
end

to instruct1 :key :meaning
type "| |
type standout :key
repeat 5-count :key [type "| |]
print :meaning
end

to shuffle :len :array
if :len=0 [output arraytolist :array]
localmake "choice random :len
localmake "temp item :choice :array
setitem :choice :array (item :len-1 :array)
setitem :len-1 :array :temp
output shuffle :len-1 :array
end

64 Chapter 4 Example: Solitaire

to initstacks
for [num 1 7] [inithidden :num

turnup :num]
end

to inithidden :num
localmake "name hidden :num
setempty :name
repeat :num [push :name deal]
end

;; Reading and interpreting user commands

to parsecmd
if emptyp :digit [setcursor [1 22] type "| | setcursor [1 22]]
local "char
make "char uppercase readchar
if equalp :char "T [parsedigit 1 parsezero stop]
if memberp :char [1 2 3 4 5 6 7 8 9 A J Q K] [parsedigit :char stop]
if equalp :char "0 [parsezero stop]
if memberp :char :suits [play.by.name :char stop]
if equalp :char ". [allup stop]
if equalp :char "W [wingame stop]
if equalp :char "M [again stop]
if memberp :char [+ =] [hand3 stop]
if equalp :char "R [redisplay stop]
if equalp :char "? [helper stop]
if equalp :char "P [playpile stop]
if and equalp :char "|(| not emptyp :digit [cheat stop]
if and equalp :char "|)| not emptyp :digit [newstack stop]
if memberp :char [! @ # $ % ^ & * ()] ~

[playstack :char [! @ # $ % ^ & * ()] stop]
if memberp :char (list "| | char 8 char 127) [rubout stop]
if equalp :char "G [throw "endgame]
if equalp :char "X [throw "exit]
bell
end

to parsedigit :char
if not emptyp :digit [bell]
make "digit :char
type :digit
end

Program Listing 65

to parsezero
if not equalp :digit 1 [bell]
make "digit 10
type 0
end

to rubout
setcursor [1 22]
type "| |
setcursor [1 22]
setempty "digit
end

to bell
if not :upping [type char 7]
setempty "digit
throw "bell
end

;; Deal three cards from the hand

to hand3
if not emptyp :digit [bell]
if and emptyp :hand emptyp :pile [bell]
push "pile deal
repeat 2 [if not emptyp :hand [push "pile deal]]
dispile dishand
end

to deal
if emptyp :hand [make "hand reverse :pile setempty "pile]
if emptyp :hand [output []]
output pop "hand
end

;; Select card to play by position (pile or stack) or by name

to playpile
if emptyp :pile [bell]
if not emptyp :digit [bell]
make "card first :pile
make "where [rempile]
carddis :card
playcard
end

66 Chapter 4 Example: Solitaire

to playstack :which :list
if not emptyp :digit [bell]
foreach :list [if equalp :which ? [playstack1 # stop]]
end

to playstack1 :num
if greaterp :num :numstacks [bell]
if stackemptyp shown :num [bell]
make "card last thing shown :num
make "where sentence "remshown :num
carddis :card
playcard
end

to play.by.name :char
if emptyp :digit [bell]
if equalp :digit 1 [make "digit "a]
type :char
wait 0
make "card word :digit :char
setempty "digit
findcard
if not emptyp :where [playcard]
end

to findcard
if findpile [stop]
make "where findshown
if emptyp :where [bell]
end

to findpile
if emptyp :pile [output "false]
if equalp :card first :pile [make "where [rempile] output "true]
output "false
end

to findshown
for [num 1 :numstacks] ~

[if memberp :card thing shown :num [output sentence "remshown :num]]
output []
end

Program Listing 67

;; Figure out all possible places to play card, then pick one

to playcard
setempty "onto
if not coveredp [checktop]
if and not :upping ~

or (emptyp :onto) (not upsafep rank :card) ~
[checkonto]

if emptyp :onto [bell]
run :where
run first :onto
end

to coveredp
if equalp :where [rempile] [output "false]
output not equalp :card first thing shown last :where
end

to upsafep :rank
if memberp :rank [A 2] [output "true]
output equalp 0 thing word "num ((ranknum :rank)-2)
end

to checktop
if (ranknum rank :card) = 1 + (ranknum top suit :card) ~

[push "onto (list "playtop word "" suit :card)]
end

to checkonto
for [num :numstacks 1] ~

[ifelse stackemptyp shown :num
[checkempty :num]
[checkfull :num thing shown :num]]

end

to checkempty :num
if equalp rank :card "k [push "onto (list "playonto :num)]
end

to checkfull :num :stack
if equalp (redp :card) (redp first :stack) [stop]
if ((ranknum rank first :stack) = 1 + (ranknum rank :card)) ~

[push "onto (list "playonto :num)]
end

68 Chapter 4 Example: Solitaire

;; Play card, step 1: remove from old position

to rempile
make "cards (list (pop "pile))
dispile
end

to remshown :num
setempty "cards
remshown1 :num (count thing shown :num)
if stackemptyp shown :num [turnup :num disstack :num]
end

to remshown1 :num :length
do.until [push "cards (pop shown :num)] ~

[equalp :card first :cards]
for [i 1 [count :cards]] ~

[setcursor list (5*:num - 4) (5+:length-:i) type "| |]
end

to turnup :num
setempty shown :num
if stackemptyp hidden :num [stop]
push (shown :num) (pop hidden :num)
end

;; Play card, step 2: put in new position

to playtop :suit
localmake "var word "num ranknum rank :card
settop :suit rank :card
distop :suit
make :var (thing :var)-1
if (thing :var)=0 [make "ranks butfirst :ranks]
end

to playonto :num
localmake "row 4+count thing shown :num
localmake "col 5*:num-4
for [i 1 [count :cards]] ~

[localmake "card pop "cards
push (shown :num) :card
setcursor list :col :row+:i
carddis :card]

end

Program Listing 69

;; Update screen display

to redisplay
cleartext
for [num 1 :numstacks] [disstack :num]
foreach :suits "distop
dispile
dishand
setcursor [1 22]
setempty "digit
end

to disstack :num
setcursor list (-3 + 5 * :num) 4
type ifelse stackemptyp hidden :num ["| |] ["-]
if stackemptyp shown :num [setcursor list (-4 + 5 * :num) 5

type "| | stop]
localmake "stack (thing shown :num)
localmake "col 5*:num-4
for [i [count :stack] 1] ~

[setcursor list :col :i+4
carddis pop "stack]

end

to distop :suit
if emptyp top :suit [stop]
if equalp :suit "H [distop1 4 stop]
if equalp :suit "S [distop1 11 stop]
if equalp :suit "D [distop1 18 stop]
distop1 25
end

to distop1 :col
setcursor list :col 2
carddis word (top :suit) :suit
end

to dispile
setcursor [32 23]
ifelse emptyp :pile [type "| |] [carddis first :pile]
end

70 Chapter 4 Example: Solitaire

to dishand
setcursor [27 23]
type count :hand
type "| |
end

to carddis :card
ifelse memberp suit :card :reds [redtype :card] [blacktype :card]
type "| |
end

to redtype :word
type :word
end

to blacktype :word
type standout :word
end

;; Miscellaneous user commands

to again
if not emptyp :digit [bell]
if emptyp :onto [bell]
make "where list "remshown last pop "onto
if emptyp :onto [bell]
carddis :card
run :where
run first :onto
end

to allup
if emptyp :digit [bell]
if equalp :digit 1 [make "digit "a]
localmake "upping "true
type ". wait 0
foreach map [word :digit ?] [H S D C] ~

[catch "bell [make "card ?
findcard
if not emptyp :where [playcard]]]

setempty "digit
end

Program Listing 71

to helper
cleartext
instruct
print standout [type any key to continue]
ignore rc
redisplay
end

to wingame
type "W
localmake "cursor cursor
foreach :ranks [if not upsafep ? [stop]

make "digit ? ~
allup ~
setempty "digit ~
setcursor :cursor]

if equalp (map "top [H S D C]) [K K K K] ~
[ct print [you win!] wait 120 throw "endgame]

end

to newstack
localmake "num :numstacks+1
setcursor [1 22] type "| |
if not equalp :digit 9 [bell]
setempty hidden :num
setempty shown :num
make "numstacks :num
setempty "digit
end

to cheat
setcursor [1 22] type "| |
if not equalp :digit 8 [bell]
if and emptyp :hand emptyp :pile [bell]
push "pile deal
dispile
dishand
setempty "digit
end

;; Data abstraction (ranks)

to rank :card
output butlast :card
end

72 Chapter 4 Example: Solitaire

to ranknum :rank
if emptyp :rank [output 0]
if numberp :rank [output :rank]
if :rank = "A [output 1]
if :rank = "J [output 11]
if :rank = "Q [output 12]
if :rank = "K [output 13]
end

;; Data abstraction (suits)

to suit :card
output last :card
end

to redp :card
output memberp (suit :card) :reds
end

;; Data abstraction (tops)

to top :suit
output thing word "top :suit
end

to settop :suit :value
make (word "top :suit) :value
end

;; Data abstraction (card stacks)

to shown :num
output word "shown :num
end

to hidden :num
output word "hidden :num
end

;; Data abstraction (pushdown stacks)

to stackemptyp :name to setempty :stack
output emptyp thing :name make :stack []
end end

