
basic

define

computer!

too

81

6 Example: BASIC Compiler

Program ®le for this chapter:

The BASIC programming languagewasdesigned by John Kemeny and Thomas Kurtz in
the late 1960s.(The name isan acronym for Beginner'sAll-purposeSymbolicInstruction
Code.) It was®rst implemented on a large, central computer facility at Dartmouth; the
designers'goal wasto havea languagethat all studentscould usefor simple problems, in
contrast to the arcaneprogramming languagesusedby most experts at that time.

A decade later, when the microcomputer was invented, BASIC took on a new
importance. Kemeny and Kurtz designed a simple language for the sakeof the users,
but that simplicity also made the language easyfor the Every programmin g
languagerequires a computer program to translate it into instructions that the computer
can carry out. For example, the Logo programs you write are translated by a Logo
interpreter . But Logo is a relatively complex language, and a Logo interpreter is a
pretty big program. The ®rstmicrocomputers had only a few thousand bytesof memory.
(Today's home computers, by contrast, haveseveralmillion bytes.) Those early personal
computers couldn't handle Logo, but it waspossible to write a BASIC interpreter that
would ®t them. As a result, BASIC became the near-universal language for amateur
computer enthusiastsin the late 1970sand early 1980s.

Today'spersonal computers come with translatorsfor a wide varietyof programmin g
languages,and alsowith softwarepackagesthat enable many people to accomplish their
computing taskswithout writing programs of their own at all. BASICis much lesswidely
usedtoday, although it hasserved asthe core for Microsoft' s ªVisual Basicºlanguage.

In this chapter, I want to show how Logo's command can be used in
a program-writing program. My program will translate BASIC programs into Logo
programs. I chose BASIC for the samereason the early microcomputers used it: It' s
a small language and the translator is relatively easyto write. (Kemeny and Kurtz, the
designersof BASIC, have criticized the microcomputer implementations as simple

5

A Short Course in BASIC

line number.

82 Chapter 6 Example: BASIC Compiler

10 print "Table of Squar es "
20 print
30 print "How many value s would you like?"
40 input num
50 for i=1 to num
60 print i, i * i
70 next i
80 end

Table of Squares

How many values would you like?

1 1
2 4
3 9
4 16
5 25

75 print "Have a nice day."

and asunfaithful to their original goals. My implementation will share that defect, to
make the project easier. Don't usethis version asa basison which to judge the language!
For that you should investigate True Basic, the version that Kemeny and Kurtz wrote
themselvesfor personal computers.)

Here' sa typical short BASICprogram:

And here'swhat happenswhen werun it:

Each line in the sample BASIC program begins with a These numbers
are used for program editing. Instead of the modern screen editors with which you're
familiar, the earlyversionsof BASIChad avery primitive editing facility; you could replace
a line by typing a new line with the samenumber. There wasno wayto replace lessthan
an entire line. To delete a line completely, you'd enter a line containing just the number.
The reason the line numbers in this program are multiples of ten is to leave room for
inserting new lines. For example, I could say

to insert a new line between lines 70 and 80. (By the way, the earliest versionsof Logo
used a similar line numbering system,except that each Logo procedure wasseparately

Logo
BASIC

to for
then if

let make

let

A Short Course in BASIC 83

LET varia bl e = value
PRINT value s
INPUT varia ble s
FOR varia bl e = value TO value
NEXT variab le
IF value THEN command
GOTOlinenu mber
GOSUBlinen umber
RETURN
END

10 print "Table of Squar es ":p ri nt
30 print "How many value s would you like?" :i nput num
50 for i=1 to num : print i, i * i : next i
80 end

make "x :y + 3 ()
let x = y + 3 ()

numbered. The editing technique isn't really part of the language design; early systems
used ªline editorsº becausethey had typewriter-like paper terminals instead of today's
displayscreens.I'm using a line editor in this project becauseit' seasyto implement!)

The BASIC language consistsof one or two dozen commands, depending on the
version used. My BASICdialect understandsonly theseten commands:

Unlike Logo procedure calls, which consist of the procedure name followed by inputs
in a unifor m format, each BASIC command has its own format, sometimes including
inter nal separatorssuch asthe equal sign and the word in the command format,
or the word in the command format.

In someversionsof BASIC, including this one, a single line can contain more than
one command, if the commands are separated with colons. Thus the same program
shownearlier could alsobe written this way:

The command assignsavalueto avariable, like Logo's procedure. Unlike
Logo, BASIC does not have the rule that all inputs are evaluated before applying the
command. In particular, the word after must be the name of the variable, not an
expressionwhosevalue is the name. Therefore the name is not quoted. Also, a variable
can't have the samename asa procedure, so there is no need for anything like Logo's
use of the colon to indicate a variable value. (This restricted version of BASIC doesn't
havenamed procedures at all, like someearly microcomputer versions.)

string

operations

84 Chapter 6 Example: BASIC Compiler

print "x = "; x, "y = "; y, "sum = "; x+y

input "Plea se enter x and y: " x,y

+ - * /

print
print

let

input print
input

readword readlist
make

input

type print

input

for next
for for

In my subsetof BASIC, the value of a variable must be a number. More complete BASIC
dialects include string variables(like words in Logo) and arrays(like Logo's arrays).

The valueto beassignedto avariablecanbecomputed usingan arithmetic expression
made up of variables,numbers, the arithmetic operators , , , and , and parentheses
for grouping.

The command is similar to Logo's print procedure in that it prints a line on
the screen. That line can include any number of values. Here is an example
command:

In this example two kinds of valuesareprinted: arithmetic values(asin the command)
and strings. A is anysequenceof characterssurrounded by quotation marks.

Notice that the valuesin this example are separatedby punctuation marks, either
commasor semicolons. When asemicolon isused,the two valuesareprinted right next to
eachother, with no spacebetweenthem. (That' swhy each of the strings in this example
ends with a space.) When a comma is used, BASIC prints a tab character between the
two values,so that valueson dif ferent lines will line up to form columns. (Look again at
the table of squaresexample at the beginning of this chapter.)

The command is the opposite of ; it readsvaluesfrom the keyboard
and assignsthem to variables. There is nothing in Logo exactly like . Instead,
Logo has and that output the contents of a line; those
valuescan be assignedto variablesusing or can be used in some other way. The
Logo approach is more ¯exible, but the early versionsof BASICdidn't haveanything like
Logo's operations. The command will also accept a string in quotation marks
before its list of variables;that string is printed asa prompt before BASICreadsfrom the
keyboard. (BASIC doesnot start a new line after printing the prompt, sothe effect is like
Logo's command rather than like .) Here' san example:

The user can type the valuesfor x and y on the sameline, separatedby spaces,or on
separate lines. BASIC keeps reading lines until it has collected enough numbers for
the listed variables. Notice that the variable names in the command must be
separatedby commas,not by semicolons.

The and commands work together to provide a numeric iteration
capability like Berkeley Logo's procedure. The command format includes a

4

A Short Course in BASIC 85

for next

For
next

next j next i for next

if if
if

then
if goto

if = < >

10 input "Input size: " num
20 for i = 1 to num
30 for j = i to num
40 print i;" ";j
50 next j:next i
60 end

Input size:
1 1
1 2
1 3
1 4
2 2
2 3
2 4
3 3
3 4
4 4

let
make if equal p

* Notice that the equal sign has two meanings in BASIC. In the command, it' s like Logo's
; in the command, it' s like Logo's . In the early 1980s,Logo enthusiastshad

®ercearguments with BASIC fans, and this sort of notationa l inconsistencywasone of the things
that drove us crazy! (More serious concerns were the lack of operations and of recursion in the
microcompute r versionsof BASIC.)

variable name, a starting value, and an ending value. (The step value is always1.) The
named variable is given the speci®edstarting value. If that value is lessthan the ending
value, then all of the commands between the command and the matching
command (the one with the samenamed variable) are carried out. Then the variable
is increasedby 1, and the processcontinues until the ending value is reached. and

pairs with dif ferent variablescan be nested:

Notice that the must come before the so that the / pairs are
properly nested.

The command allowsconditional execution, much like Logo's command, but
with a dif ferent notation. Instead of taking an instruction list asan input, BASIC's
usesthe keyword to introduce a single conditional command. (If you want to make
more than one command conditional, you must combine with , describednext.)
The value that controls the must be computed using one of the operators , , or
for numeric comparison.*

Using the BASIC Translator

only

86 Chapter 6 Example: BASIC Compiler

goto
if

gosub return

goto

end end

end
throw toplevel

basic
READY

10 input x
20 if x > 0 then goto 100
30 print "x is negat iv e. "
40 print "x = "; x
50 goto 200
100 print "x is positi ve ."
200 end

10 let x=7
20 gosub 100
30 let x=9
40 gosub 100
50 goto 200
100 print x, x* x
110 retur n
200 end

The command transferscontrol to the beginning of a command line speci®ed
by its line number. It can be usedwith to make a sequenceof commandsconditional:

The and commands provide a rudimentar y procedure calling
mechanism. I call it ªrudimentaryº becausethe procedures haveno inputs, and can only
be commands,not operations. Also, the command lines that make up the procedure are
alsopart of the main program, soyou generally need a in the main program to skip
over them:

Finally, the command ends the program. There must be an at the end of a
BASICprogram, and there should not be one anywhereelse. (In this implementation of
BASIC,an stopsthe BASICprogram evenif there are more lines after it. It' sroughly
equivalent to a to in Logo.)

To start the translator, run the Logo procedure with no inputs. You will then see
the BASICprompt, which is the word on a line by itself.

At the prompt you can do either of two things. If you type a line starting with a line
number, that line will be entered into your BASIC program. It is inserted in order by
line number. Any previous line with the samenumber will be deleted. If the line you
type contains a line number, then the line in the program with that number will be
deleted.

run
list

exit

Overview of the Implementation

immediate

source
target

machine language

another

batch

Overview of the Implementation 87

If your line doesnot start with a number, then it is taken asan command,
not as part of the program. This version of BASIC recognizes only three immediate
commands: The word meansto run your program, starting from the smallest line
number. The word meansto print out a listing of the program's lines, in numeric
order. The word retur ns to the Logo prompt.

There aretwokinds of translatorsfor programming languages:compilersand in terpreters.
The dif ference is that a compiler translates one language (the language) into
another (the language), leaving the result around so that it can be run repeatedly
without being translated again. An interpreter translates each little piece of source
language into one action in the target language and runs the result, but does not
preservea complete translated program in the target language.

Ordinarily , the target language for both compilers and interpreters is the ªnativeº
language of the particular computer you're using, the language that is wired into the
computer hardware. This is the only form in which a program can
actually be run. The BASIC compiler in this chapter is quite unrealistic in that it uses
Logo as the target language, which means that the program must go through
translation, from Logo to machine language, before it can actually be run. For our
purposes, there are three advantagesto using Logo asthe target language. First, every
kind of computer has its own machine language, so I'd have to write severalversionsof
the compiler to satisfyeveryone if I compiled BASIC into machine language. Second, I
know you know Logo, soyou can understand the resulting program, whereasyou might
not be familiar with any machine language. Third, this approach allowsme to cheat by
leaving out a lot of the complexity of a real compiler. Logo is a ªhigh levelº language,
which means that it takescare of many details for us, such as the allocation of speci®c
locations in the computer' s memory to hold each piece of infor mation used by the
program. In order to compile into machine language, I'd haveto pay attention to those
details.

Why would anyonewant an interpreter , if the compiler translatesthe program once
and for all, while the interpreter requires retranslation every time a command is carried
out? One reason is that an interpreter is easier to write, because(just as in the case
of a compiler with Logo as the target language) many of the details can be left out.
Another reason is that traditional compilers work using a method, which means
that you must ®rstwrite the entire program with a text editor, then run the compiler to
translate the program into machine language,and ®nally run the program. This is okay

40
basic%40

run

incremental compiler,

88 Chapter 6 Example: BASIC Compiler

run (list (word "basic % first :line numbers))

10 let x=3
20 let y=9
30 ...

to basic% 10
make "%x 3
basic %20
end

for a working program that is used often, but not recompiled often. But when you're
creating a program in the ®rstplace, there is a debugging processthat requires frequent
modi®cationsto the sourcelanguageprogram. If eachmodi®cation requires a complete
recompilation, the debugging is slowand frustrating. That' s why interpreted languages
are often used for teachingÐwhen you're learning to program, you spend much more
time debugging a program than running the ®nal version.

The bestof both worlds is an a compiler that can recompile only
the changed part when a small change is made to a large program. For example, Object
Logo is a commercial version of Logo for the Macintosh in which each procedure is
compiled when it isde®ned. Modifying aprocedure requires recompiling that procedure,
but not recompiling the others. Object Logo behaveslike an interpreter , becausethe
user doesn't have to ask explicitly for a procedure to be compiled, but programs run
faster in Object Logo than in most other versionsbecauseeach procedure is translated
only once, rather than on every invocation.

The BASIC translator in this chapter is an incremental compiler. Each numbered
line is compiled into a Logo procedure assoon asit is typed in. If the line number is
then the resulting procedure will be named . The last step in each of these
procedures is to invoke the procedure for the next line. The compiler maintains a list of
all the currently existing line numbers, in order, so the command is implemented
by saying

Actually, what I just saidabout eachprocedure ending with an invocation of the next
one is slightly simpli®ed. Supposethe BASICprogram starts

and wetranslate that into

Overview of the Implementation 89

show member "the [when in the cours e of human events]

basic%15 basic%20

nextline

Nextline member memberp
true

member

emptyp if

butfirst

to basic% 20
make "%y 9
basic %30
end

to basic% 10
make "%x 3
nextl in e 10
end

to basic% 20
make "%y 9
nextl in e 20
end

to nextli ne :num
make "targe t member :num :linen umbers
if not emptyp :targe t [make "targ et butfir st :targ et]
if not emptyp :targe t [run (list (word "basic% first :targe t))]
end

?
[the course of human event s]

Then whathappensif the useraddsanewline numbered 15? We would haveto recompile
line 10 to invoke instead of . To avoid that, each line is compiled
in a waythat defers the choice of the next line until the program is actually run:

This solution depends on a procedure that ®nds the next available line
number after its argument:

usesthe BerkeleyLogo primitive , which is like the predicate
except that if the ®rst input is found asa member of the second, instead of giving
asits output, it givesthe portion of the secondinput starting with the ®rst input:

If the ®rst input is not a member of the second, outputs an empty word or list,
depending on the type of the secondinput.

The two separate testsare used instead of a single becausethe desired
line number might not be in the list at all, or it might be the last one in the list, in which
casethe invocation will output an empty list. (Neither of thesecasesshould
arise. The ®rstmeansthat we're running a line that doesn't exist, and the secondmeans

•

•

•

•

The Reader

10 let linenum bers = 100

end

basic%10 x
%x

linenumbers

%linenumbers

let x+1

if
then

nextline

reader

parser

code generator

runtime library

optimizer

reader

90 Chapter 6 Example: BASIC Compiler

that the BASIC program doesn’t end with an line. But the procedure tries to avoid
disaster even in these cases.)

Look again at the definition of . You’ll see that the variable named in the
BASIC program is named in the Logo translation. The compiler uses this renaming
technique to ensure that the names of variables and procedures in the compiled program
don’t conflict with names used in the compiler itself. For example, the compiler uses a
variable named whose value is the list of line numbers. What if someone
writes a BASIC program that says

This won’t be a problem because in the Logo translation, that variable will be named
.

The compiler can be divided conceptually into four parts:

The divides the characters that the user types into meaningful units. For
example, it recognizes that is a single word, but should be understood as
three separate words.

The recognizes the form of each of the ten BASIC commands that this dialect
understands. For example, if a command starts with , the parser expects an
expression followed by the word and another command.

The constructs the actual translation of each BASIC command into one
or more Logo instructions.

The contains procedures that are used while the translated program
is running, rather than during the compilation process. The procedure
discussed earlier is an example.

Real compilers have the same structure, except of course that the code generator produces
machine language instructions rather than Logo instructions. Also, a professional
compiler will include an that looks for ways to make the compiled program as
efficient as possible.

A is a program that reads a bunch of characters (typically one line, although not in
every language) and divides those characters into meaningful units. For example, every

The Reader 91

-

x x- 3

first 555- 2368
555

:

"

basicread

print :x - 3

make "phone s [555 - 2368 555 - 9827 555 - 8311]

+ - * / = < > () , ; :

Logo implementation includes a reader that interprets square brackets as indications
of list grouping. But some of the rules followed by the Logo reader differ among
implementations. For example, can the hyphen character () be part of a larger word,
or is it always a word by itself? In a context in which it means subtraction, we’d like it to
be a word by itself. For example, when you say

as a Logo instruction, you mean to print three less than the value of the variable named
, not to print the value of a variable whose name is the three-letter word ! On the

other hand, if you have a list of telephone numbers like this:

you’d like the of that list to be an entire phone number, the word ,
not just . Some Logo implementations treat every hyphen as a word by itself; some
treat every hyphen just like a letter, and require that you put spaces around a minus sign
if you mean subtraction. Other implementations, including Berkeley Logo, use a more
complicated rule in which the status of the hyphen depends on the context in which it
appears, so that both of the examples in this paragraph work as desired.

In any case, Logo’s reader follows rules that are not appropriate for BASIC. For
example, the colon () is a delimiter in BASIC, so it should be treated as a word by itself;
in Logo, the colon is paired with the variable name that follows it. In both languages,
the quotation mark () is used to mark quoted text, but in Logo it comes only at the
beginning of a word, and the quoted text ends at the next space character, whereas in
BASIC the quoted text continues until a second, matching quotation mark. For these
and other reasons, it’s desirable to have a BASIC-specific reader for use in this project.

The rules of the BASIC reader are pretty simple. Each invocation of
reads one line from the keyboard, ending with the Return or Enter character. Within
that line, space characters separate words but are not part of any word. A quotation mark
begins a quoted word that includes everything up to and including the next matching
quotation mark. Certain characters form words by themselves:

All other characters are treated like letters; that is, they can be part of multi-character
words.

The Parser

parser

92 Chapter 6 Example: BASIC Compiler

show basicre ad
30 print x;y;"fo o, baz" ,z :p rin t hello+ 4

basicread

Basicread readword Readword

Basicread

basicread

let

x (3 * y) + 7

let

?

[30 print x ; y ; "foo,b az " , z : print hello + 4]

let x = (3 * y) + 7

LET varia bl e = value

Notice that the comma inside the quotation marks is not made into a separate word by
. The other punctuation characters, however, appear in the output sentence

as one-character words.

uses the Logo primitive to read a line. can be
thought of as a reader with one trivial rule: The only special character is the one that
ends a line. Everything else is considered as part of a single long word.
examines that long word character by character, looking for delimiters, and accumulating
a sentence of words separated according to the BASIC rules. The implementation of

is straightforward; you can read the procedures at the end of this chapter
if you’re interested. For now, I’ll just take it for granted and go on to discuss the more
interesting parts of the BASIC compiler.

The is the part of a compiler that figures out the structure of each piece of the
source program. For example, if the BASIC compiler sees the command

it must recognize that this is a command, which must follow the pattern

and therefore must be the name of a variable, while must be an
expression representing a value. The expression must be further parsed into its
component pieces. Both the variable name and the expression must be translated into
the form they will take in the compiled (Logo) program, but that’s the job of the code
generator.

In practice, the parser and the code generator are combined into one step; as each
piece of the source program is recognized, it is translated into a corresponding piece
of the object program. So we’ll see that most of the procedures in the BASIC compiler
include parsing instructions and code generation instructions. For example, here is the
procedure that compiles a command:

The Parser 93

queue

make let

let
compile.let

let

pop

let

pop
expression if

to compil e. let :command
make "command butfir st :command
make "var pop "command
make "delim ite r pop "command
if not equalp :delim it er "= [(throw "error [Need = in let.])]
make "exp expres si on
queue "defi nit io n (sente nc e "make (word ""% :var) :exp)
end

make "command butfir st :command

make "var pop "command

make "delim ite r pop "command
if not equalp :delim it er "= [(throw "error [Need = in let.])]

make "exp expres si on

In this procedure, all but the last instruction (the line starting with) are parsing
the source command. The last line, which we’ll come back to later, is generating a Logo

instruction, the translation of the BASIC in the object program.

BASIC was designed to be very easy to parse. The parser can read a command from
left to right, one word at a time; at every moment, it knows exactly what to expect. The
command must begin with one of the small number of command names that make up
the BASIC language. What comes next depends on that command name; in the case
of , what comes next is one word (the variable name), then an equal sign, then
an expression. Each instruction in the procedure handles one of these
pieces. First we skip over the word by removing it from the front of the command:

Then we read and remember one word, the variable name:

(Remember that the operation removes one member from the beginning of a list,
returning that member. In this case we are removing the variable name from the entire

command.) Then we make sure there’s an equal sign:

And finally we call a subprocedure to read the expression; as we’ll see later, that procedure
also translates the expression to the form it will take in the object program:

The parsers for other BASIC commands have essentially the same structure as
this example. They repeatedly invoke to read one word from the command or

to read and translate an expression. (The command is a little more

split

Split
Split

94 Chapter 6 Example: BASIC Compiler

show split [30 print x ; y ; "foo,b az " , z : print hello + 4]?
[30 [prin t x ; y ; "foo, baz" , z] [prin t hello + 4]]

to basic
forev er [basic pr ompt]
end

to basicp ro mpt
print "READY
make "line basicre ad
if emptyp :line [stop]
ifels e numberp first :line [compi le split :line] [immed ia te :line]
end

to compil e :comman ds
make "numbe r first :commands
ifels e emptyp butfir st :commands ~

[erasel in e :numbe r] ~
[makede f (word "basic% :numb er) butfirs t :comman ds]

end

to makedef :name :commands
...
forea ch :commands [run list (word "comp ile . first ?) ?]
...
end

complicated because it contains another command as a component, but that inner
command is just compiled as if it occurred by itself. We’ll look at that process in more
detail when we get to the code generation part of the compiler.)

Each compilation procedure expects a single BASIC command as its input. Remem-
ber that a line in a BASIC program can include more than one command. The compiler
uses a procedure named to break up each line into a list of commands:

outputs a list whose first member is a line number; the remaining members are
lists, each containing one BASIC command. works by looking for colons within
the command line.

Here is the overall structure of the compiler, but with only the instructions related
to parsing included:

The Code Generator

The Code Generator 95

Basic basicprompt
Basicprompt

split compile
Compile

makedef
makedef

compile.

if for

let make
print type print

nextline

define

10 let x = 3 : let y = 4 : print x,y+6

to basic% 10
make "%x 3
make "%y 4
type :%x
type char 9
type :%y + 6
print []
nextl in e 10
end

defin e "basic% 10 [[] [make "%x 3] [make "%y 4] ... [nextl in e 10]]

does some initialization (not shown) and then invokes repeatedly.
calls the BASIC reader to read a line; if that line starts with a number,

then is used to transform the line into a list of commands, and is
invoked with that list as input. remembers the line number for later use, and
then invokes with the list of commands as an input. I’ve left out most of
the instructions in because they’re concerned with code generation, but the
important part right now is that for each command in the list, it invokes a procedure
named something based on the first word of the command, which must be
one of the command names in the BASIC language.

Each line of the BASIC source program is going to be compiled into one Logo procedure.
(We’ll see shortly that the BASIC and commands are exceptions.) For example,
the line

will be compiled into the Logo procedure

Each of the three BASIC commands within the source line contributes one or more
instructions to the object procedure. Each command is translated into a
instruction; the command is translated into three instructions and a
instruction. (The last instruction line in the procedure, the invocation of ,
does not come from any of the BASIC commands, but is automatically part of the
translation of every BASIC command line.)

To generate this object procedure, the BASIC compiler is going to have to invoke
Logo’s primitive, this way:

show express io n [3 + x * 4]

Beyond Programming.

96 Chapter 6 Example: BASIC Compiler

defin e :name :defi ni ti on

queue "defi nit io n (sente nc e "make (word ""% :var) :exp)

?
[3 + :%x * 4]

define

name makedef
definition makedef

define
basic%10

definition
queue Queue

compile.let

make

expression

3+x * 4
x

expression
x :%x

makedef

Of course, these actual inputs do not appear explicitly in the compiler! Rather, the inputs
to are variables that have the desired values:

The variable is an input to , as we’ve seen earlier. The variable
is created within . It starts out as a list containing just the empty

list, because the first sublist of the input to is the list of the names of the desired
inputs to , but it has no inputs. The procedures within the compiler that parse
each of the commands on the source line will also generate object code (that is, Logo
instructions) by appending those instructions to the value of using Logo’s

command. takes two inputs: the name of a variable whose value is a list,
and a new member to be added at the end of the list. Its effect is to change the value of
the variable to be the extended list.

Look back at the definition of above. Earlier we considered the
parsing instructions within that procedure, but deferred discussion of the last instruction:

Now we can understand what this does: It generates a Logo instruction and
appends that instruction to the object procedure definition in progress.

We can now also think about the output from the procedure. Its job is
to parse a BASIC expression and to translate it into the corresponding Logo expression.
This part of the compiler is one of the least realistic. A real compiler would have to think
about such issues as the precedence of arithmetic operations; for example, an expression
like must be translated into two machine language instructions, first one that
multiplies by 4, and then one that adds the result of that multiplication to 3. But the
Logo interpreter already handles that aspect of arithmetic for us, so all has
to do is to translate variable references like into the Logo form .

(We’ll take a closer look at translating arithmetic expressions in the Pascal compiler
found in the third volume of this series,)

We are now ready to look at the complete version of :

The Code Generator 97

nextline

nextline

define

goto gosub
goto goto gosub

goto

goto
nextline

stop

to makedef :name :commands
make "defin iti on [[]]
forea ch :commands [run list (word "comp ile . first ?) ?]
queue "defi nit io n (list "nextli ne :numb er)
defin e :name :defi ni ti on
make "linen umber s insert :numbe r :linen umber s
end

goto 40

basic %40 stop

stop
basic %40

* In fact, the Berkeley Logo interpreter is clever enough to notice that there is a instruction
after the invocation of , and it arranges things so that there is no “return” from that
procedure. This makes things a little more efficient, but doesn’t change the meaning of the
program.

I hope you’ll find this straightforward. First we create an empty definition. Then, for
each BASIC command on the line, we append to that definition whatever instructions
are generated by the code generating instructions for that command. After all the BASIC
commands have been compiled, we add an invocation of to the definition.
Now we can actually define the Logo procedure whose text we’ve been accumulating.
The last instruction updates the list of line numbers that uses to find the next
BASIC command line when the compiled program is running.

In a sense, this is the end of the story. My purpose in this chapter was to illustrate
how can be used in a significant project, and I’ve done that. But there are a
few more points I should explain about the code generation for some specific BASIC
commands, to complete your understanding of the compiler.

One such point is about the difference between and . Logo doesn’t
have anything like a mechanism; both and must be implemented by
invoking the procedure corresponding to the given line number. The difference is that
in the case of , we want to invoke that procedure and not come back! The solution
is to compile the BASIC command

into the Logo instructions

In effect, we are calling line 40 as a subprocedure, but when it returns, we’re finished.
Any additional Logo instructions generated for the same line after the (including
the invocation of that’s generated automatically for every source line) will be
ignored because of the .*

generated symbol,

98 Chapter 6 Example: BASIC Compiler

for next
next

for for
next

basic%N
for

for

make basic%30 let
for

i
%g1

g1
gensym gensym

g1 g2

%g1 type print
print

30 let x = 3 : for i = 1 to 5 : print i,x : next i

to basic% 30
make "%x 3
make "%i 1
make "let%i 5
make "next% i [%g1]
%g1
end

to %g1
type :%i
type char 9
type :%x
print []
make "%i :%i + 1
if not greater p :%i :let%i [run :next %i stop]
nextl in e 30
end

The next tricky part of the compiler has to do with the and commands.
Think first about . It must increment the value of the given variable, test that
value against a remembered limit, and, if the limit has not been reached, go to... where?
The loop continues with the BASIC command just after the command itself.
That might be in the middle of a line, so can’t just remember a line number and
invoke for line number N. To solve this problem, the line containing the

command is split into two Logo procedures, one containing everything up to and
including the , and one for the rest of the line. For example, the line

is translated into

The first instruction in is the translation of the command. The
remaining four lines are the translation of the command; it must give an initial value
to the variable , remember the limit value 5, and remember the Logo procedure to be
used for looping. That latter procedure is named in this example. The percent
sign is used for the usual reason, to ensure that the names created by the compiler don’t
conflict with names in the compiler itself. The part is a created by
invoking the Berkeley Logo primitive operation . Each invocation of
outputs a new symbol, first , then , and so on.

The first four instructions in procedure (three s and a) are the
translation of the BASIC command. The next two instructions are the translation

The Code Generator 99

next make i if
%g1

run :next%i %g1 %g1
for

next
for

next%i next
next%i

for
next

print input

if

if

20 print "hi there "

50 if x<6 then print x, x* x

to basic% 50
if :%x < 6 [%g2]
nextl in e 50
end

to %g2
type :%x
type char 9
type :%x * :%x
print []
end

of the command; the instruction increments , and the instruction tests
whether the limit has been passed, and if not, invokes the looping procedure again.
(Why does this say instead of just ? Remember that the name was
created during the compilation of the command. When we get around to compiling
the command, the code generator has no way to remember which generated
symbol was used by the corresponding . Instead it makes reference to a variable

, named after the variable given in the command itself, whose value is the
name of the procedure to run. Why not just call that procedure itself instead of
using a generated symbol? The trouble is that there might be more than one pair of
and commands in the same BASIC program using the same variable, and each of
them must have its own looping procedure name.)

There is a slight complication in the and commands to deal with
quoted character strings. The trouble is that Logo’s idea of a word ends with a space, so
it’s not easy to translate

into a Logo instruction in which the string is explicitly present in the instruction. Instead,
the BASIC compiler creates a Logo global variable with a generated name, and uses that
variable in the compiled Logo instructions.

The trickiest compilation problem comes from the command, because it includes
another command as part of itself. That included command might be translated into
several Logo instructions, all of which should be made to depend on the condition that
the is testing. The solution is to put the translation of the inner command into a
separate procedure, so that the BASIC command line

is translated into the two Logo procedures

goto

stop %g3 %g3 basic%60
if

if

if

100 Chapter 6 Example: BASIC Compiler

60 if :foo < 10 then goto 200

to basic% 60
if :%foo < 10 [%g3]
nextl in e 60
end

to %g3
basic %200 stop
end

to basic% 60
if :%foo < 10 [basic %200 stop]
nextl in e 60
end

to compil e. if :command
make "command butfir st :command
make "exp expres si on
make "delim ite r pop "command
if not equalp :delim it er "then [(throw "error [Need then after if.])]
queue "defi nit io n (sente nc e "if :exp (list c.if1))
end

Unfortunately, this doesn’t quite work if the inner command is a . If we were
to translate

into

then the inside would stop only itself, not as desired. So the
code generator for checks to see whether the result of compiling the inner command
is a single Logo instruction line; if so, that line is used directly in the compiled Logo
rather than diverted into a subprocedure:

How does the code generator for divert the result of compiling the inner
command away from the definition of the overall BASIC command line? Here is the
relevant part of the compiler:

The Runtime Librar y

separate

The Runtime Library 101

if
then c.if1

definition

c.if1 c.if1

definition
compile.print compile.goto

nextline

readvalue
input BASIC

input
input

input Readvalue readline

to c.if1
local "defi nit io n
make "defin iti on [[]]
run list (word "comp il e. first :command) :command
ifels e (count :defin it io n) = 2 ~

[output last :defin iti on] ~
[make "newn ame word "% gensy m

define :newn ame :defini ti on
output (list :newn ame)]

end

The first few lines of this are straightforwardly parsing the part of the BASIC command
up to the word . What happens next is a little tricky; a subprocedure is
invoked to parse and translate the inner command. It has to be a subprocedure because
it creates a local variable named ; when the inner command is compiled,
this local variable “steals” the generated code. If there is only one line of generated code,
then outputs that line; if more than one, then creates a subprocedure and
outputs an instruction to invoke that subprocedure. This technique depends on Logo’s
dynamic scope, so that references to the variable named in other parts of
the compiler (such as, for example, or) will refer to
this local version.

We’ve already seen the most important part of the runtime library: the procedure
that gets the compiled program from one line to the next.

There is only one more procedure needed as runtime support; it’s called
and it’s used by the BASIC command. In , data input is independent of
lines. If a single command includes two variables, the user can type the two
desired values on separate lines or on a single line. Furthermore, two
commands can read values from a single line, if there are still values left on the line after
the first has been satisfied. uses a global variable whose
value is whatever’s still available from the last data input line, if any. If there is nothing
available, it reads a new line of input.

A more realistic BASIC implementation would include runtime library procedures
to compute built-in functions (the equivalent to Logo’s primitive operations) such as
absolute value or the trigonometric functions.

list 100- 200

define

102 Chapter 6 Example: BASIC Compiler

Further Explorations

Program Listing

to basic
make "linen umber s []
make "readl ine []
forev er [basic pr ompt]
end

to basicp ro mpt
print []
print "READY
print []
make "line basicre ad
if emptyp :line [stop]
ifels e numberp first :line [compi le split :line] [immed ia te :line]
end

This BASIC compiler leaves out many features of a complete implementation. In a real
BASIC, a string can be the value of a variable, and there are string operations such
as concatenation and substring extraction analogous to the arithmetic operations for
numbers. The BASIC programmer can create an array of numbers, or an array of strings.
In some versions of BASIC, the programmer can define named subprocedures, just as
in Logo. For the purposes of this chapter, I wanted to make the compiler as simple as
possible and still have a usable language. If you want to extend the compiler, get a BASIC
textbook and start implementing features.

It’s also possible to expand the immediate command capabilities of the compiler.
In most BASIC implementations, for example, you can say to list only a
specified range of lines within the source program.

A much harder project would be to replace the code generator in this compiler with
one that generates machine language for your computer. Instead of using to
create Logo procedures, your compiler would then write machine language instructions
into a data file. To do this, you must learn quite a lot about how machine language
programs are run on your computer!

I haven’t discussed every detail of the program. For example, you may want to trace
through what happens when you ask to delete a line from the BASIC source program.
Here is the complete compiler.

Program Listing 103

to compil e :comman ds
make "numbe r first :commands
make :numbe r :line
ifels e emptyp butfir st :commands ~

[erasel in e :numbe r] ~
[makede f (word "basic% :numb er) butfirs t :comman ds]

end

to makedef :name :commands
make "defin iti on [[]]
forea ch :commands [run list (word "comp ile . first ?) ?]
queue "defi nit io n (list "nextli ne :numb er)
defin e :name :defi ni ti on
make "linen umber s insert :numbe r :linen umber s
end

to insert :num :list
if emptyp :list [outpu t (list :num)]
if :num = first :list [output :list]
if :num < first :list [output fput :num :list]
outpu t fput first :list (insert :num butfirs t :list)
end

to erasel in e :num
make "linen umber s remove :num :line numbers
end

to immedi at e :line
if equalp :line [list] [forea ch :line numbers [prin t thing ?] stop]
if equalp :line [run] [run (list (word "basic% first :linen umbers))

stop]
if equalp :line [exit] [throw "topl ev el]
print sente nce [Inva li d command:] :line
end

;; Compil in g each BASIC command

to compil e. end :command
queue "defi nit io n [stop]
end

to compil e. got o :command
queue "defi nit io n (list (word "basi c% last :command) "stop)
end

104 Chapter 6 Example: BASIC Compiler

to compil e. gos ub :command
queue "defi nit io n (list (word "basi c% last :command))
end

to compil e. ret ur n :command
queue "defi nit io n [stop]
end

to compil e. pri nt :command
make "command butfir st :command
while [not emptyp :command] [c.pr in t1]
queue "defi nit io n [print []]
end

to c.prin t1
make "exp expres si on
ifels e equalp first first :exp "" ~

[make "sym gensym
make word "%% :sym butfir st butlas t first :exp
queue "defin it io n list "type word ":%% :sym] ~

[queue "defin it io n fput "type :exp]
if emptyp :command [stop]
make "delim ite r pop "command
if equalp :delim it er ", [queue "defin it ion [type char 9] stop]
if equalp :delim it er "\; [stop]
(thro w "error [Comma or semicol on neede d in print.])
end

to compil e. inp ut :command
make "command butfir st :command
if equalp first first :comman d "" ~

[make "sym gensym
make "prompt pop "command
make word "%% :sym butfir st butla st :promp t
queue "defin it io n list "type word ":%% :sym]

while [not emptyp :command] [c.in put1]
end

to c.inpu t1
make "var pop "command
queue "defi nit io n (list "make (word ""% :var) "readv alu e)
if emptyp :command [stop]
make "delim ite r pop "command
if not equalp :delim it er ", (thro w "error [Comma needed in input.])
end

Program Listing 105

to compil e. let :command
make "command butfir st :command
make "var pop "command
make "delim ite r pop "command
if not equalp :delim it er "= [(thr ow "error [Need = in let.])]
make "exp expres si on
queue "defi nit io n (sente nc e "make (word ""% :var) :exp)
end

to compil e. for :command
make "command butfir st :command
make "var pop "command
make "delim ite r pop "command
if not equalp :delim it er "= [(thr ow "error [Need = after for.])]
make "start expres si on
make "delim ite r pop "command
if not equalp :delim it er "to [(thro w "error [Need to after for.])]
make "end expres si on
queue "defi nit io n (sente nc e "make (word ""% :var) :start)
queue "defi nit io n (sente nc e "make (word ""let% :var) :end)
make "newna me word "% gensym
queue "defi nit io n (sente nc e "make (word ""next % :var)

(list (list :newna me)))
queue "defi nit io n (list :newnam e)
defin e :name :defi ni ti on
make "name :newnam e
make "defin iti on [[]]
end

to compil e. nex t :command
make "command butfir st :command
make "var pop "command
queue "defi nit io n (sente nc e "make (word ""% :var) (word ":% :var) [+ 1])
queue "defi nit io n (sente nc e [if not greate rp]

(word ":% :var) (word ":let% :var)
(list (list "run (word ":next % :var)

"stop)))
end

106 Chapter 6 Example: BASIC Compiler

to compil e. if :command
make "command butfir st :command
make "exp expres si on
make "delim ite r pop "command
if not equalp :delim it er "then [(thro w "error [Need then after if.])]
queue "defi nit io n (sente nc e "if :exp (list c.if1))
end

to c.if1
local "defi nit io n
make "defin iti on [[]]
run list (word "comp il e. first :command) :command
ifels e (count :defin it io n) = 2 ~

[output last :defin iti on] ~
[make "newn ame word "% gensy m

define :newn ame :defini ti on
output (list :newn ame)]

end

;; Compil e an expres si on for LET, IF, PRINT, or FOR

to expres si on
make "expr []
make "token expr1
while [not emptyp :token] [queue "expr :token

make "toke n expr1]
outpu t :expr
end

to expr1
if emptyp :command [outp ut []]
make "token pop "command
if memberp :token [+ - * / = < > ()] [outpu t :token]
if memberp :token [, \; : then to] [push "command :token outpu t []]
if number p :token [outpu t :token]
if equalp first :token "" [output :toke n]
outpu t word ":% :token
end

Program Listing 107

;; readin g input

to basicr ead
outpu t basicre ad1 readwo rd [] "
end

to basicr ead1 :input :outp ut :token
if emptyp :input [if not emptyp :toke n [push "outp ut :token]

output revers e :outpu t]
if equalp first :input "| | [if not emptyp :toke n [push "outp ut :token]

output basicr ead1 (butf irs t :input)
:outp ut "]

if equalp first :input "" [if not empty p :toke n [push "outp ut :toke n]
output breads tr in g butfirs t :input

:output "]
if memberp first :inpu t [+ - * / = < > () , \; :] ~

[if not emptyp :token [push "outpu t :token]
outpu t basicre ad1 (butfir st :inpu t) (fput first :input :outpu t) "]

outpu t basicre ad1 (butfi rs t :inpu t) :outpu t (word :token first :input)
end

to breads tr ing :inpu t :output :stri ng
if emptyp :input [(thr ow "error [Stri ng needs ending quote.])]
if equalp first :input "" ~

[outpu t basicre ad1 (butfir st :inpu t)
(fput (word "" :string "") :outpu t)
"]

outpu t breadst ri ng (butf ir st :input) :output (word :strin g first :input)
end

to split :line
outpu t fput first :line split1 (butfi rs t :line) [] []
end

to split1 :input :outp ut :command
if emptyp :input [if not emptyp :command [push "outp ut revers e :comman d]

output revers e :outpu t]
if equalp first :input ": [if not empty p :command

[push "outpu t revers e :comman d]
output split 1 (butf ir st :input) :outpu t []]

outpu t split1 (butfi rs t :input) :outp ut (fput first :input :command)
end

108 Chapter 6 Example: BASIC Compiler

;; Runtim e library

to nextli ne :num
make "targe t member :num :linen umbers
if not emptyp :targe t [make "targ et butfir st :targ et]
if not emptyp :targe t [run (list (word "basic% first :targe t))]
end

to readva lu e
while [empt yp :readl in e] [make "readl in e basic re ad]
outpu t pop "readli ne
end

