
name
value:

137

8 Property Lists

print thing "book

french

Butfirst

thing

[[boo k livre] [compu te r ordinat eur] [windo w fenetr e]]

make "paper "papie r
make "chair "chais e
make "compu ter "ordi nate ur
make "book "livre
make "windo w "fene tr e

?
livre

In the ®rstvolume of this series,I wrote a procedure named that translateswords
from English to French using a dictionar y list like this:

This technique works ®newith a short word list. But supposewe wanted to undertake a
serioustranslation project, and supposewe wanted to be able to translate English words
into severalforeign languages. (You can buy hand-held machines these dayswith little
keyboardsand displaypanelsthat do exactlythat.) ing through a list of tensof
thousandsof words would be pretty slow, and setting up the lists in the ®rstplace would
be very dif®cult and error-prone.

If we were just dealing with English and French, one solution would be to set up
many variables, with each an English word as its and the corresponding French
word asits

Once we'vedone this, the procedure to translate from English to French is just :

Naming Properties

property list.
names, values.

138 Chapter8 Property Lists

make "book. fre nc h "livre
make "book. spa ni sh "libr o

to spanis h :word
outpu t thing word :word ".spani sh
end

make "book [livre libro buch libro liber]

to spanis h :word
outpu t item 2 thing :word
end

[Fren ch livre Spanis h libro German buch Italia n libro Latin liber]

The advantageof this technique is that it' s easyto correct a mistake in the translation;
you just haveto assigna newvalueto the variable for the one word that is in error, instead
of tr ying to edit a huge list.

But we can't quite usethis technique for more than one language. We could create
variableswhosenamescontained both the English word and the target language:

This is a perfectly workable technique but a little messy. Many variableswill be needed.
A compromise might be to collect all the translations for a single English word into one
list:

The only thing wrong with this technique is that we haveto remember the correct order
of the foreign languages. This can be particularly tricky becausesome of the words are
the same,or almost the same,from one language to another. And if we happen not to
know the translation of a particular word in a particular language,wehave to take some
pains to leavea gap in the list. Instead we could usea list that tells us the languagesas
well asthe translated words:

A list in this form is called a The odd-numbered members of the list are
property and the even-numberedmembersare the corresponding property

You can seethat this solution is a very ¯exible one. We can add a new language to
the list later, without confusing old procedures that expect a particular length of list. If
we don't know the translation for a particular word in a particular language,we can just
leaveit out. The order of the properties in the list doesn't matter, so we don't have to

print gprop "book "Germa n

Writing Property List Proceduresin Logo

Writing Property List Proceduresin Logo 139

book part.of.speech
noun

pprop

pprop

remprop

remprop
gprop

gprop
gprop

?
buch

to pprop :list :name :valu e
if not namep :list [make :list []]
make :list pprop1 :name :value thing :list
end

to pprop1 :name :value :oldli st
if emptyp :oldli st [outp ut list :name :value]
if equalp :name first :oldlis t ~

[outpu t fput :name (fput :valu e (butfir st butfi rs t :oldl is t))]
outpu t fput (first :oldl is t) ~

(fput (first butfir st :oldl ist)
(pprop 1 :name :valu e (butfir st butfir st :oldl is t)))

end

remember it. The properties need not all be unifor m in their signi®cance;we could,
for example, give a property whosename is and whosevalue is

.

To make this work, BerkeleyLogo (along with severalother dialects) hasprocedures
to create, remove,and examine properties. The command (Put PROPerty) takes
three inputs; the ®rsttwo must be words,and the third can be anydatum. The ®rstinput
is the name of a property list; the secondis the name of a property; the third is the value
of that property. The effect of is to add the new property to the named list. (If
there wasalready a property with the given name, its old value is replaced by the new
value.) The command (REMove PROPerty) takestwo inputs, which must be
words: the name of a property list and the name of a property in the list. The effect
of is to remove the property (name and value) from the list. The operation

(Get PROPerty) also takes two words as inputs, the name of a property list and
the name of a property in the list. The output from is the value of the named
property. (If there is no suchproperty in the list, outputs the empty list.)

It would be possibleto write Logo procedures that would useordinar y variablesto hold
property lists, which would work just like the ones I've described. Since Berkeley Logo
provides property lists asa primitive capability, you won't need to load these into your
computer, but later parts of the discussionwill make more senseif you understand how
they work. Here they are:

list

thing

thing book

Property Lists Aren't Variables

name

not

third

140 Chapter8 Property Lists

Note that the input called in each of these procedures is not a property list itself
but the of a property list. That' swhy eachof the superproceduresevaluates

to passdown asan input to its subprocedure.

The primitive procedures that support property lists in Berkeley Logo, however, do
use to ®nd the property list. Justas the sameword can independently name a
procedure and a variable, a property list is a kind of named entity, which is separate
from the with the samename. For example, if we gave the property list
shownwith a seriesof instructions like

to rempro p :list :name
if not namep :list [make :list []]
make :list remprop 1 :name thing :list
end

to rempro p1 :name :oldli st
if emptyp :oldli st [outp ut []]
if equalp :name first :oldlis t [outpu t butfirs t butfirs t :oldli st]
outpu t fput (first :oldl is t) ~

(fput (first butfir st :oldl ist)
(rempr op1 :name (butfirs t butfir st :oldli st)))

end

to gprop :list :name
if not namep :list [outp ut []]
outpu t gprop1 :name thing :list
end

to gprop1 :name :props
if emptyp :props [outp ut []]
if equalp :name first :props [outpu t first butfi rs t :props]
outpu t gprop1 :name (butfi rst butfi rs t :props)
end

thing :list

pprop "book "Frenc h "livre
pprop "book "Spani sh "libr o

print :book

How LanguageDesignersEarn Their Pay

book

book make

plist Plist

plist

map map

memberp

variable

a property.

pairs

nodes.

HowLanguageDesignersEarn TheirPay 141

?
book has no value

[[Fre nc h livre] [Spani sh libro] [Germ an buch]
[Itali an libro] [Lati n liber]]

and soon, wewould not be creating a named .

(Of course, we could give a value with a instruction, but that value would
havenothing to do with the property list.) Instead there is a fourth primitive procedure
called that can be used to examine a property list. takes one input, a
word. It outputs the property list associatedwith that word. If there is no such property
list, outputs the empty list.

If you're like me, you may have some questions about why this Logo feature works the
wayit does. The form of a property list, for example, may seemarbitrar y to you. Why
should it be a ¯at list, with names as the odd-numbered members and valuesas the
even-numberedones?Wouldn't it be more sensibleto structure the list this way:

In this schemeeachmember of a property list is A property hastwo parts,
a name and a value. A list structured in this waywould be easier to use with iterative
tools like . (Try to ®gure out a wayto rede®ne so that it could map a function
over of members of its input list. Your goal is to ®nd a waythat isn't a kludge.) You
wouldn't have to think ªWhat if the list has an odd number of membersº when writing
procedures to manipulate property lists.

So why does Logo use the notation it does? I'm afraid the real answer is ªIt' s
traditional.º Logo property lists are the waythey are becausethat' s what property lists
look like in Lisp, the languagefrom which Logo is descended.Now, whywasthat decision
made in the design of Lisp? I'm not sure of the answer, but one possible reason is that
the ¯at property lists take up lessroom in the computer' s memory than the list-of-lists
that I'd ®nd more logical. (Logo measuresits available memory in It takes two
overhead nodes per property, not including the ones that actually contain the name and
the value, for the ¯at property list; it would take three overhead nodes per property for
the list-of-lists.)

Another minor advantageisthat if youwant to live dangerously, youcanuse
to seeif aparticular property nameexistsin aproperty list. It' sliving dangerouslybecause

FastReplacement

Defaults

make "mypro ps plist "mysel f

value

copy

142 Chapter8 Property Lists

memberp

pprop1 fput
pprop

pprop remprop myself
myprops plist

plist
myprops

gprop

the property name might, by coincidence, be the of some other property. (In
the dictionar y example, this would be the situation if the German word for ªbookº were
ªGreekº!) The advantageis that is a primitive procedure, so it' s faster than
one you could write yourself that would check just the odd-numbered members of the
property list.

Another question you might askis this one: Why haveproperty list primitives at all? The
list is a very general data structure, which can be organized in many ways.Why single out
this particular wayof using lists asthe one to support with specialprimitive procedures?
After all, it' seasyenough to implement property lists in Logo, asI've done in this chapter.

One answeris that the primitiv escan be much faster than the versionsI've written in
Logo becausethey can replace a value inside a property list without recopying the rest of
the list. My procedure , for example, has to do two s for each property in
the list every time you want to changea single property. The primitive version of
doesn't reconstruct the entire list; it just rips out the old value from inside the list and
sticksin a new value.

Asidefrom the question of speed,the dif ference betweenchanging something inside
a list and making a modi®ed copy of the list may not seemlike a big deal. But it does
raisea subtle question. If you say

and then, later, use or to change some of the properties of ,
doesthe valueof the variable change?The answerisno; really outputs a

of the property list asit existsat the moment you invoke . That copy becomes
the value of , and it doesn't change if the property list itself is changed later.
(Berkeley Logo, like Lisp, does have primitives that allow you to change things inside
lists in general, and this possibility of a variable magically changing in valuebecauseyou
changesomething elsereally doesarise!)

Another languagedesign question you might be wondering about is why outputs
the empty list if you askfor a property that doesn't exist. How do you sayªbookº in Urdu?

show gprop "book "urdu?
[]

book has no urdu prope rt y

thing

if not namep

thing

first first

variable

default.

origin

teachers
implementors

Defaults 143

If you ask for a that doesn't exist, you get an error message.Why doesn't Logo
print something like

in this situation?

The name for ªwhat you get when you haven't provided an answerºisa There
aren't very many situations in which Logo provides defaults. One obscure example in
Berkeley Logo is the of an arrayÐthe number used to select its ®rst member. By
default the ®rst member is number one, but it' s possible to set up an array that begins
with someother number (most commonly zero).

The question of what should be considered an error is alwaysa hot one among
language designers. The issue is one of programming convenience versus ease of
debugging. Suppose output the empty list if askedfor a nonexistent variable. It
would have been easier for me to write the property list procedures in this chapter; I
could have left out the instructions. This is a situation in which I might
askfor a variable that hasn't been given a value ªon purpose,º with a perfectly clear idea
of what result I want. On the other hand, if were permissive in this way, what
would happen if I gaveit an input that wasn't a variable name becauseI made a spelling
error? Insteadof getting an error messageright away, my program would muddle on with
an empty list instead of whatevervalue wasreally needed. Eventually I'd get a dif ferent
error messageor an incor rect result, and it would be much harder to ®nd the point in
the program that causedthe problem.

The sameissuearises,by the way, about operations like . What should
do if you give it an empty list asinput? Logo considersthis an error, asdo most versions
of Lisp. Someversionsof Lisp, though, output an empty list in this situation.

It' s most common to need ªpermissiveºprimitives when working on extensions to
Logo itself, such as property lists, as opposed to speci®capplication programs. An
application programmer has complete control over the inputs that procedures will be
given; an implementor of a programming language(or an extension to it) hasto handle
anything that comesup. I think that' s why, traditionally , it' s alwaysbeen the of
Logo who vote in favor of error messagesand the who prefer permissive
primitives.

Abraham Ann Albert Amelia

Bill Betty Bob Barbara Brian Boris

Colin Cathy Chris CecilCharlie Carol

An Example: Family Trees

144 Chapter8 Property Lists

gprop

mother
father kids sex kids

sex male female

to family :mom :dad :girls :boys
catch "erro r [ppro p :mom "sex "fema le]
catch "erro r [ppro p :dad "sex "male]
forea ch :girls [ppro p ? "sex "femal e]
forea ch :boys [pprop ? "sex "male]
local make "kids senten ce :girls :boys
catch "erro r [ppro p :mom "kids :kids]
catch "erro r [ppro p :dad "kids :kids]
forea ch :kids [pprop ? "mothe r :mom pprop ? "fathe r :dad]
end

famil y "Ann "Abrah am [Bett y] [Bill Bob]
famil y "Amelia "Albe rt [Barba ra] [Brian Boris]
famil y "Betty [] [Cath y] [Colin]
famil y "Barbar a "Bob [Caro l] [Charl ie]
famil y [] "Boris [] [Chris Cecil]

Sowhy is permissivewhen all other Logo primitives are not? Well, the others
were designed early in the history of the language when teacherswere in charge at the
design meetings. Property lists were added to Logo more recently; the implementor s
showedup one day and said, ªGuesswhat? We've put in property lists.º So they did it
their way!

Here is an example program using property lists. My goal is to represent this family tree:

Each person will be represented asa property list, containing the properti es ,
, , and . The ®rsttwo will havewords(names) astheir values, will

be a list of names,and will be or . Note that this is only a partial family
tree; wedon't know the name of Betty'shusband or Boris's wife. Here' show I'll enter all
this infor mation:

father

An Example:FamilyTrees 145

The instructions that catch errors do so in casea family has an unknown mother or
father, which is the casefor two of the ones in our family tree.

Now the idea is to be able to get infor mation out of the tree. The easypart is to get
out the infor mation that is there explicitly:

Of courseseveralmore such procedures can be written along similar lines.

The more interesting challenge is to deduce infor mation that is not explicitly in the
property lists. The following procedures make use of the ones just de®ned and other
obviousoneslike .

to mother :perso n
outpu t gprop :pers on "moth er
end

to kids :perso n
outpu t gprop :pers on "kids
end

to sons :perso n
outpu t filter [equal p (gprop ? "sex) "male] kids :perso n
end

to grandf at her s :perso n
outpu t sentenc e (fathe r father :perso n) (fathe r mother :perso n)
end

to grandc hi ldr en :pers on
outpu t map.se [gprop ? "kids] (kids :perso n)
end

to grandd aught er s :perso n
outpu t justgir ls grand ch il dre n :perso n
end

to justgi rl s :peop le
outpu t filter [equal p (gprop ? "sex) "female] :peopl e
end

to aunts :person
outpu t justgir ls sente nc e (siblin gs mother :pers on) ~

(siblin gs father :pers on)
end

or

146 Chapter8 Property Lists

siblings
aunts cousins siblings

grandfathers

father

sentence grandfathers

cousins
sentence

person26
familyname givenname name

father cousins
person26

realnames

to cousin s :person
outpu t map.se [gprop ? "kids] sente nc e (siblin gs mother :pers on) ~

(siblin gs father :pers on)
end

to siblin gs :perso n
local "pare nt
if emptyp :perso n [outpu t []]
make "paren t mothe r :perso n
if emptyp :paren t [make "parent fathe r :person]
outpu t remove :perso n kids :paren t
end

to father :perso n
if emptyp :perso n [outpu t []]
outpu t gprop :pers on "fath er
end

In writing , I've been careful to haveit output an empty list if its input isempty.
That' sbecause and mayinvoke with an empty input if we're
looking for the cousinsof someonewhosefather or mother is unknown.

You'll ®nd, if you tr y out these procedures, that similar care needs to be exercised
in some of the ªeasyºprocedures previously written. For example, will
give an error messageif applied to a person whosemother father is unknown, even if
the other parent is known. One solution would be a more careful version of :

The reason for choosing an empty list asoutput for a nonexistent person rather than
an empty word is that the former just disappears when combined with other things
using , but an empty word staysin the resulting list. So , for
example, will output a list of length 1 if only one grandfather is known rather than a list
with an empty word in addition to the known grandfather. Procedureslike also
rely heavily on the ¯attening effect of .

This is rather an arti®cial family tree becauseI've paid no attention to family names,
and all the given names are unique. In practice, you wouldn't be able to assumethat.
Instead,eachproperty list representing a person would havea name like and
would include properties and or perhapsjust a property
whose value would be a list. All the procedures like and would
output lists of these funny -type names, and you'd need another procedure

that would extract the real namesfrom the property lists of people in a list.
But I thought it would be clearer to avoid that extra level of naming confusion here.

