
crypto

11 Example: Cryptographer’s Helper

cryptogram

simple substitution cipher. code

cipher
substitution

simple

205

Program file for this chapter:

A is a kind of word puzzle, like a crossword puzzle. Instead of definitions,
though, a cryptogram gives you the actual words of a quotation, but with each letter
replaced with a different letter. For example, each letter A in the original text might be
replaced with an F. Here is a sample cryptogram:

LB RA, BT YBL LB RA: LJGL CQ LJA FUAQLCBY: KJALJAT ’LCQ YBRXAT
CY LJA DCYP LB QUSSAT LJA QXCYWQ GYP GTTBKQ BS BULTGWABUQ
SBTLUYA, BT LB LGHA GTDQ GWGCYQL G QAG BS LTBURXAQ, GYP RM
BIIBQCYW AYP LJAD?

The punctuation marks and the spaces between words are the same in this cryptogram as
they are in the original (“clear”) text.

A cryptogram is a kind of secret code. The formal name for this particular kind
of code is a Strictly speaking, a is a method of disguising a
message that uses a dictionary of arbitrarily chosen replacements for each possible word.
A foreign language is like a code. A is a method in which a uniform algorithm or
formula is used to translate each word. A cipher is one in which every letter
(or sometimes every pair of letters, or some such grouping) is replaced by a disguised
equivalent. A substitution cipher is one in which each letter has a single equivalent
replacement, which is used throughout the message. (A more complicated substitution
cipher might be something like this: the first letter A in the message is replaced with F,
the second A is replaced with G, the third with H, and so on.)

Years ago, Arthur Conan Doyle and Edgar Allen Poe were able to write mystery
stories in which simple substitution ciphers were used by characters who really wanted to
keep a message secret. Today, partly because of those stories, too many people know how
to “break” such ciphers for them to be of practical use. Instead, these ciphers are used as
word puzzles.

crypto

crypto
cgram1 cgram4

Crypto

large

histogram

continuous
discrete

206 Chapter 11 Example: Cryptographer’s Helper

The technique used for decoding a cryptogram depends on the fact that some letters
are more common than others. The letter A is much more common in English words
than the letter Z. If, in a cryptogram, the letter F occurs many times, it’s more likely to
represent a letter like A in the original text than a letter like Z.

The most commonly used letter in English is E, by a wide margin. T is in second
place, with A and O nearly tied for third. I, N, and R are also very commonly used. These
rankings apply to texts. In the usual short cryptogram, the most frequent letter
doesn’t necessarily represent E. But the letter that represents E will probably be among
the two or three most frequent.

Before reading further, you might want to try to solve the cryptogram shown above.
Make a chart of the number of times each letter appears, then use that information to
make guesses about which letter is which. As you’re working on it, make a note of what
other kinds of information are helpful to you.

This project is a program to help you solve cryptograms. The program doesn’t solve
the puzzle all by itself; it doesn’t know enough about English vocabulary. But it does
some of the more boring parts of the job automatically, and can make good guesses about
some of the letters.

The top-level procedure is . It takes one input, a list whose members are the
words of the cryptogram. Since these lists are long and easy to make mistakes in, you’ll
probably find it easier to type the cryptogram into the Logo editor rather than directly at
a question mark prompt. You might make the list be the value of a variable, then use that
variable as the input to . (The program file for this project includes four such
variables, named through , with sample cryptograms.)

begins by going through the coded text, letter by letter. It keeps count of
how often each letter is used. You can keep track of this counting process because the
program draws a on the screen as it goes. A histogram is a chart like the one at
the top of the next page.

A histogram is a kind of graph, but it’s different from the graphs you use
in algebra. Histograms are used to show quantities of things, like letters of the
alphabet.

The main reason the program draws the histogram is that it needs to know the
frequencies of occurrence of the letters for later use. When I first wrote the program,
it counted the letters without printing anything on the screen. Since this counting is a
fairly slow process, it got boring waiting for the program to finish. The histogram display
is a sort of video thumb-twiddling to keep you occupied while the program is creating an
invisible histogram inside itself.

Chapter 11 Example: Cryptographer’s Helper 207

A-17-E B-18-

L-19-T

A E H T

LB RA, BT YBL LB RA: LJGT CQ LJA

FUAQLCBY: KJALJAT ’LCQ YBRXAT CY LJA

DCYP LB QUSSAT LJA QXCYWQ GYP GTTBKQ

BS BULTGWABUQ SBTLUYA, BT LB LGHA

GTDQ GWGCYQL G QAG BS LTBURXAQ, GYP

RM BIIBQCYW AYP LJAD?

L
B L
AB L
AB L
AB L
AB L
AB L Q
AB L Q Y
AB G L Q T Y
AB G L Q T Y
AB G L Q T Y
ABC G L Q T Y
ABC G J L Q T Y
ABC G J L Q TU Y
ABC G J L QRSTU Y
ABC G J L PQRSTU W Y
ABCD G J L PQRSTU WXY
ABCD G IJKL PQRSTU WXY
ABCD FGHIJKLM PQRSTU WXY

C-08- D-03- E
F-01- G-11-A H-01- I-02- J-07-H
K-02- M-01- N O
P-04- Q-13- R-05- S-05- T-11-
U-06- V W-04- X-03- Y-12-
Z

BCD FG IJKLMNOPQRS UVWXYZ

T E, T T E: THAT THE

E T : HETHE ’T E THE

T E THE A A

T A E T E, T TA E

A A A T A EA T E , A

E THE ?

Histogram Screen display

By the way, since there are only 24 lines on the screen, the top part of the histogram
may be invisible if the cryptogram is long enough to use some letters more than 24 times.

The shape of this histogram is pretty typical. A few letters are used many times, while
most letters are clumped down near the bottom. In this case, A, B, and L stand out. You
might guess that they represent the most commonly used letters: E, T, and either A or O.
But you need more information to be able to guess which is which.

After it finishes counting letters, the program presents a screen display like the one
shown above. The information provided in this display comes in three parts. At the
top is an alphabetical list of the letters in the cryptogram. For each letter, the program
displays the number of times that letter occurs in the enciphered text. For example,
the letter P occurs four times. The letter that occurs most frequently is highlighted by
showing it in reverse video characters, represented in the book with boldface characters.
In this example, the most frequently used letter is L, with 19 occurrences. Letters with
occurrence counts within two of the maximum are also highlighted. In the example, A
with 17 and B with 18 are highlighted. If a letter does not occur in the cryptogram at all,
no count is given. In the example, there is no E in the enciphered text.

T
something

208 Chapter 11 Example: Cryptographer’s Helper

The top part of the display shows one more piece of information: if either the
program or the person using it has made a guess as to the letter that a letter represents,
that guess is shown after the frequency count. For example, here the program has
guessed that the letter L in the cryptogram represents the letter T in the clear text. (You
can’t tell from the display that this guess was made by the program rather than by the
person using it. I just happen to know that that’s what happened in this example!)

The next section of the display is a single line showing all the letters of the alphabet.
In this line, a letter is highlighted if a guess has been made linking some letter in the
cryptogram with that letter in the clear text. In other words, this line shows the linkages
in the reverse direction from what is shown in the top section of the display. For example,
I just mentioned that L in the cryptogram corresponds to T in the clear text. In the top
part of the display, we can find L in alphabetical order, and see that it has a T linked to it.
But in the middle part of the display, we find , not L, in alphabetical order, and discover
that is linked to it. (It turns out that we don’t usually have to know which letter
corresponds to T.)

Here is the purpose of that middle section of the display: Suppose I am looking at
the second word of the cryptogram, RA. We’ve already guessed that A represents E, so
this word represents something-E. Suppose I guess that this word is actually HE. This just
happens to be the first two-letter word I think of that ends in E. So I’d like to try letting
R represent H. Now I look in the middle section of the display, and I see that H is already
highlighted. So some other letter, not R, already represents H. I have to try a different
guess.

The most important part of the display is the bottom section. Here, lines of
cryptogram alternate with their translation into clear text, based on the guesses we’ve
made so far. The cryptogram lines are highlighted, just to make it easy to tell which lines
are which. The program ensures that each word entirely fits on a single line; there is no
wrapping to a new line within a single word.

There is room on the screen for eight pairs of lines. If the cryptogram is too big to
fit in this space, only a portion of it will be visible at any time. In a few paragraphs I’ll talk
about moving to another section of the text.

The program itself is very limited in its ability to guess letters. For the most part, you
have to do the guessing yourself when you use it. There are three guessing rules in the
program:

1. The most frequently occurring single-letter word is taken to represent A.

2. Another single-letter word, if there is one, is taken to represent I.

D-03-

D-03-M

heuristic.
algorithm.

Chapter 11 Example: Cryptographer’s Helper 209

3. The most frequently occurring three-letter word is taken to represent THE, but only
if its last letter is one of the ones highlighted in the top part of the display.

In the example, the only single-letter word in the cryptogram is G, in the next-to-last line.
The program, following rule 1, has guessed that G represents A. Rule 2 did not apply,
because there is no second single-letter word. The most frequently used three-letter word
is LJA, which occurs three times. The last letter of that word, A, is highlighted in the top
section because it occurs 17 times. Therefore, the program guesses that L represents T, J
represents H, and A represents E.

Of course you understand that these rules are not infallible; they’re just guesses. (A
fancy name for a rule that works most of the time is a A rule that works all
the time is called an) For example, the three-letter word GYP appears twice in
the cryptogram, only once less often than LJA. Maybe GYP is really THE. However, the
appearance of the word THAT in the translation of the first line is a pretty persuasive
confirmation that the program’s rules have worked out correctly in this case.

If you didn’t solve the cryptogram on your own, at my first invitation, you might
want to take another look at it, based on the partial solution you now have available. Are
these four letters (A, E, I, and T) enough to let you guess the rest? It’s a quotation you’ll
probably recognize.

Once this display is on the screen, you can make further guesses by typing to the
program. For example, suppose you decide that the last word of the cryptogram, LJAD,
represents THEM. Then you want to guess that D represents M. To do that, type the
letters D and M in that order. Don’t use the RETURN key. Your typing will not be echoed
on the screen. Instead, three things will happen. First, the entry in the top section of the
display that originally said

will be changed to say

Second, the letter M will be highlighted in the alphabet in the second section of the
display. Finally, the program will type an M underneath every D in the cryptogram text.

If you change your mind about a guess, you can just enter a new guess about the
same cryptogram letter. For example, if you decide that LJAD is really THEY instead of
THEM, you could just type D and Y. Alternatively, if you decide a guess was wrong but

Program Structure

instead of

windowing

Compulsory
Miseducation

210 Chapter 11 Example: Cryptographer’s Helper

you don’t have a new guess, type the cryptogram letter (D in this example) and then the
space bar.

If you guess that D represents M, and then later you guess that R also represents
M, the program will complain at you by beeping or by flashing the screen, depending
on what your computer can do. If you meant that R should represent M D
representing M, you must first undo the latter guess by typing D, space bar, R, and M.

The process of redisplaying the clear text translation of the cryptogram after each
guess takes a fairly long time, since the program has to look up each letter individually.
Therefore, the program is written so that you don’t have to wait for this redisplay to
finish before guessing another letter representation. As soon as you type any key on the
keyboard, the program stops retyping the clear text. Whatever key you typed is taken as
the first letter of a two-letter guess command.

If the cryptogram is too long to fit on the screen, there are three other things you can
type to change which part of the text is visible. Typing a plus sign (+) eliminates the first
four lines of the displayed text (that is, four lines of cryptogram and four corresponding
lines of cleartext) and brings in four new lines at the end. Typing a minus sign (–) moves
backwards, eliminating the four lines nearest the bottom of the screen and bringing back
four earlier lines at the top. These commands have no effect if you are already
seeing the end of the text (for +) or the beginning of the text (for –).

The third command provided for long cryptograms is the atsign (@) character.
This is most useful after you’ve figured out all of the letter correspondences. It clears
the screen and displays only the clear text, without the letter frequencies, table of
correspondences, or the enciphered text. This display allows 23 lines of clear text to fit
on the screen instead of only eight. If you don’t have the solution exactly right, you can
type any character to return to the three-part display and continue guessing.

The program never stops; even after you have made guesses for all the letters, you
might find an error and change your mind about a guess. When you’re done, you stop
the program with control-C or command-period or whatever your computer requires.

In the complete listing at the end of this chapter, there are a few cryptograms for
you to practice with. They are excerpted from one of my favorite books,

by Paul Goodman.

There are about 50 procedures in this program. These procedures can be roughly
divided into several purposes:

•
•
•
•
•
•
•
•
•
•

Program Structure 211

Redisplay

fixtop light dark

Bind

qbind

crypto parseloop
parsekey bind

light dark

bind

initialization
frequency counting and displaying the histogram
guessing letters automatically
reading user commands
keeping track of guesses
top section of display (frequencies)
middle section of display (alphabet)
bottom section of display (cryptogram text and cleartext)
windowing and full-text displays
data abstraction and other helper procedures

The diagram on the next page shows superprocedure/subprocedure relationships
within the main categories. (Helper procedures aren’t shown, to make the diagram
more readable.) The bottom half of the diagram has the procedures that are concerned
primarily with presenting information on the screen. , near the center of
the diagram, is called whenever the entire screen display must be redrawn: when the
initialization part of the program is finished, and whenever the user chooses a new
portion of the text to display. When the display changes slightly, because a new guess
is made, procedures such as , , and are used instead of redrawing
everything.

is the most important procedure, because it records and displays each new
guess. As the diagram shows, it invokes several subprocedures to update the display;
more importantly, it changes the values of several variables to keep track of the new guess.
There is also a similar procedure that’s used when a guess is made by the program
rather than by the user. (The “Q” stands for either “quick” or “quiet,” since this version
never has to undo an old guess, omits some error checking, and can’t beep because
there are no errors in automatic guesses.) If you ignore initialization and displaying
information, the entire structure of the program is that calls , which
repeatedly calls , which calls to record a guess.

Unfortunately, it’s not so easy in practice to divide up the procedures into groups,
with a single purpose for each group. Several procedures carry out two tasks at once.
For example, and have those names because they switch individual letters
between normal and inverse video in the alphabet display in the middle part of the
screen. But those procedures also set variables to remember that a particular cleartext
letter has or hasn’t been guessed, so they are also carrying out part of ’s job, keeping
track of guesses.

crypto

histogram
parseloop

bind

histlet

light dark alphabetfixtop

redisplay

parsekey

qbind

prepare.guess

moretext

guess.single

lesstext

guess.triple

fullclear

tally

showtop

showrow

onetop

showcode showclear

showcode1 showclear1

codeword clearword

histogram

guessing letters reading user
commands

keeping track
of guesses

windowing

display top

display middle

display bottom
(code) (cleartext)

Guided Tour of Global Variables

Crypto

bound True false
cnt
posn

x

x x
x x cleartext
x x
x x

212 Chapter 11 Example: Cryptographer’s Helper

uses many global variables to hold the information it needs. This includes
information about individual letters, about words, and about the text as a whole.

There are several sets of 26 variables, one for each letter of the alphabet. For these
variables, the last letter of the variable name is the letter about which the variable holds
information. In the table that follows, the italic in each name represents any letter.

Cleartext letter that is guessed to match in the cryptogram.
if appears in the as guessed so far; otherwise.

Count of how many times appears in the cryptogram.
Screen cursor position where the frequency count and guess for is
shown in the top part of the display.

words

y

y y.
y y.

Guided Tour of Global Variables 213

initvars posn
showrow

showclear thing :letter

count.single
count.triple
list.single
list.triple
max.single
max.triple

single
triple

fulltext
text

moretext +
textstack text -
maxcount

:Maxcount
:Text showcode showclear

Fulltext moretext textstack
text fulltext textstack Moretext

moretext

These variables are set up initially by , except for the variables, which are
set by . The variables with single-letter names start out with a space character
as their value. This choice allows to use as the thing to
type for every letter in the cryptogram. If no guess has been made for a letter, it will be
displayed as a blank space in the partially-decoded version of the text.

Here are the variables that have to do with in the cryptogram text. These
variables are needed for the part of the program that automatically makes guesses,
by looking for words that might represent A, I, and THE in the cleartext. In the
following variable names, represents either a one-letter word or a three-letter word in
the cryptogram text.

The number of occurrences of the most frequent one-letter word.
The number of occurrences of the most frequent three-letter word.
List of one-letter words in the cryptogram text.
List of three-letter words in the cryptogram text.
The most frequent one-letter word in the cryptogram text.
The most frequent three-letter word in the cryptogram text.
The number of occurrences of the one-letter word
The number of occurrences of the three-letter word

These variables are used only during the initial histogram counting, to keep track of
which one-letter word and which three-letter word are the most frequent in each category.
Once the most frequently occurring words have been determined, the actual count is no
longer important.

Finally, there are some variables that contain information about the text as a whole:

The complete cryptogram text.
The part of the cryptogram that is displayed on the screen right now.
The part of the text that should be displayed after a command.
A list of old values of , to be restored if the command is used.
The number of occurrences of the most frequently used letter.

is used to know which letters should be highlighted in the top section of the
display. is used by and to maintain the bottom section of
the display. , , and are part of the windowing feature.
At first, is equal to , and is empty. contains the
portion of the text starting on the fifth line that is displayed, providing there is some text
at the end of the cryptogram that didn’t fit on the screen. If the end of the text is visible,
then is empty. Here is what happens if you type the plus sign:

What’s In a Name?

214 Chapter 11 Example: Cryptographer’s Helper

to moretext
if emptyp :moretext [beep stop]
push "textstack :text
make "text :moretext
redisplay "true
end

:moretext
:text

- text
:moretext

local

showhist fixhist
histogram histlet

hist

showhist showtop fixhist fixtop
hist top

If is empty, there is no more text to display, and the procedure stops with
a complaint. Otherwise, we want to remember what is now in in case of a later

command, and we want to change the value of to the version starting four lines
later that is already in .

In the solitaire project, I used a lot of instructions in the top-level procedures
to avoid creating global variables. In this project, I didn’t bother. There’s no good reason
why I was lazier here than there; you can decide for yourself whether you think it’s worth
the effort.

In revising this program for the second edition, I was struck by the ways in which bad
choices of procedure or variable names had made it needlessly hard to read. Changing
names was one of the three main ways in which I changed the program. (The other
two were an increased use of data abstraction and the introduction of iteration tools to
eliminate some helper procedures.)

I’ll start with a simple example. As I’ve mentioned, when I first wrote the program it
didn’t draw the histogram on the screen during the initial counting of letter frequencies.
Since the top part of the screen display is primarily a presentation of those frequencies,
I thought of that top part as the program’s “histogram” even though it doesn’t have the
form of a real histogram. That’s why, in the first edition, the procedures that maintain
the top part of the display were called , , and so on; when I added
the and procedures that draw the real histogram, it was hard to
keep track of which “ ” names were part of the initial histogram and which were part
of the letter frequency chart at the top of the program’s normal screen display. I’ve now
changed to , to , and so on. The procedures with

in their names are about the real histogram, and the ones with in their names
are about the frequency chart.

Here’s another example. In several parts of the program, I had to determine
whether a character found in the cryptogram text is a letter or a punctuation mark. The

What’s In a Name? 215

A B
namep

crypto

namep
crypto

copydef

save crypto
copydef

tally

to letterp :char
output memberp :char "ABCDEFGHIJKLMNOPQRSTUVWXYZ
end

if namep :char ...

copydef "letterp "namep

to tally :type :word
local "this
make "this word :type :word
if not memberp :word list. :type ~

[setlist. :type fput :word list. :type make :this 0]
make :this sum 1 thing :this
make "this thing :this
if :this > (count. :type) ~

[setcount. :type :this make (word "max. :type) :word]
end

most straightforward way to do this would be an explicit check against all the letters in
the alphabet:

But comparing the character against each of the 26 letters would be quite slow. Instead, I
took advantage of the fact that there happen to be variables in the program named after
each letter. That is, there’s a variable , a variable , and so on, but there aren’t variables
named after punctuation characters. Therefore, I could use the Logo primitive
to see whether or not the character I’m considering is a variable name, and if so, it must
be a letter. The first edition version of is full of instructions of the form

This is clever and efficient, but not at all self-documenting. Someone reading the
program would have no way to tell that I’m using to find out whether a character
is a letter. The solution was to add an instruction to the initialization in :

The primitive is used to give a new name to an existing procedure. (The old
name continues to work.) The existing procedure can be either primitive or user-defined.
The new name is not saved by the command; that’s why performs the

instruction each time.

Probably the worst example of bad naming was in the procedure. This
procedure has a complicated job; it must keep track of the most common one-letter and
three-letter words, in preparation for the program’s attempts to make automatic guesses
for A, I, and THE. Here is the version in the first edition:

216 Chapter 11 Example: Cryptographer’s Helper

type single triple
this

:this

tally tripleybl
this tripleybl

thing :this

:this

this countvar

count

setlist. list.
list.single

list.triple

make "this thing :this

to tally :type :word
localmake "countvar word :type :word
if not memberp :word list. :type ~

[setlist. :type fput :word list. :type make :countvar 0]
localmake "count (thing :countvar)+1
make :countvar :count
if :count > (count. :type) ~

[setcount. :type :count setmax. :type :word]
end

make (word "max. :type) :word

The input named is either the word or the word . One thing that
makes this procedure hard to read is the local variable named . What a vague name!
This what? Is it this word, or this letter, or this word length, or this guess? To make things
worse, partway through the procedure I recycled the same name to hold a different value.
At first, is a word that will be used as the name of a variable, counting the number
of times a given word appears. For example, if the word YBL appears in the cryptogram,
then will create a variable named whose value will be the number of
times that YBL occurs in the text. The value of will be the word , so
the expression represents the actual number. Then, near the end of the
procedure, I used the instruction

From then on, is the number itself, not the variable name! It’s really hard to
read a procedure in which the same name is used to mean different things in different
instructions.

Here’s the new version:

The name is gone. Instead, I’ve first created a local variable named
whose value is the name of the count variable. Then I create another local variable
named that contains the actual count. These names are much more descriptive
of the purposes of the two variables.

Another change in the new version is a more consistent use of data abstraction. The
original version used the constructor and the selector to refer to the
list of all known cryptogram words of the appropriate length (the variable
or), but used the instruction

histogram

histlet
prepare.guess

tally

histogram

guessing letters

word

What’s In a Name? 217

setmax. setlist.

historgram

to histogram :text
foreach :text [foreach (filter "letterp ?) "histlet]
end

to count.words :text
foreach :text [prepare.guess (filter "letterp ?)]
end

to histogram :text
foreach :text [localmake "word filter "letterp ?

foreach :word "histlet
prepare.guess :word]

end

to construct the variable containing the most frequently appearing word of that length.
The new version uses a constructor named that’s analogous to the
constructor.

Rethinking the names of procedures can reorganize your ideas about how to group
the procedures into categories. For example, in the first edition I was upset about the
fact that , whose job is to count letter frequencies and draw the histogram
of those counts, also invokes prepare.guess, whose job is to count frequencies in
preparation for automatic guessing.

The reason for this mixture of tasks is efficiency. To prepare the histogram, the program
must extract the letters (omitting punctuation) from each word of the text, and count
them. To prepare for guessing words, the program must extract the letters from each
word, and count the occurrences of the letters-only words. I could have done these things
separately:

But it seemed better to scan the words of the text just once, and extract the letters from
each word just once:

preprocess

histlet
prepare.guess

tally

histogram guessing letters

Flag Variables

flag variable.

218 Chapter 11 Example: Cryptographer’s Helper

to redisplay :flag
cleartext
showtop
alphabet
showcode :text
if :flag [showclear :text]
end

histogram
preprocess

histogram

redisplay

redisplay true false

redisplay
redisplay

crypto
showclear

Crypto

But the punch line of this story is that I could avoid the confusing jump between
boxes—the feeling of mixing two tasks—merely by changing the name of the
procedure to something neutral like . Then the structure would be

Now we have one initialization procedure that includes invocations for two separate kinds
of preprocessing. It’s not really the program structure that is inappropriate, but only
using the name for a procedure whose job includes more than the creation
of the histogram.

Procedure has the job of redrawing the entire screen when there is a major
change to what should be shown, like moving to a different window in the cryptogram
text.

The input to is a It must have the value or .
(The name comes from the flags on mailboxes, which are either up or down to indicate
whether or not there is mail in the box.) It’s there because has two slightly
different jobs to do at two different points in the program. First, is invoked
by , the top-level procedure, to draw the screen initially. At this time, no letters
have been guessed yet. Therefore, it is not necessary to invoke (which
indicates the guessed letters in the bottom part of the display). executes the
instruction

predicate,

x

Flag Variables 219

redisplay "false

redisplay "true

if :flag [do.something]

if equalp :flag "yes [do.something]

Redisplay moretext lesstext
showclear

showcode
redisplay

bind qbind

redisplay

if

true false

yes no

p
redefp

flag

bound true

Setbound
setunbound true false
boundp

to avoid that unnecessary work. is also invoked by , ,
and . Each of these procedures uses the instruction

to include . If the flag variable weren’t used, there would have to be two
different versions of .

I used the latter technique in the procedures and . These could also
have been one procedure with a flag variable input. The advantage of the technique
used in is that it makes the program easier to read by reducing the number
of procedures, and keeping similar purposes together. The advantage of using two
procedures is that it’s a little faster, because you don’t have to test the flag variable with

.

A flag variable is somewhat analogous to a a procedure that always outputs
or . The advantage of using these particular values for flag variables is that

they’re easy to test; you can say

whereas, if you used some other pair of values like and , you’d have to say

Some people like to give flag variables names ending with , as in the convention for
predicates. (The special variable that controls redefinition of primitives in some
versions of Logo, including Berkeley Logo, is an example.) I’m somewhat uncomfortable
with that practice because to me it raises a confusion about whether a particular word is
the name of a variable or the name of a procedure. I’d rather put in the names of
flag variables.

The 26 variables in this program are also flag variables; each is if the
corresponding letter has been guessed as the cleartext half of a binding. They don’t
have “flag” in their names, but their names aren’t used directly in most of the program
anyway. Instead they are hidden behind data abstraction procedures. and

are used to set any such variable or , respectively; the selector
alerts you by the P in its name that it’s a predicate.

Iteration Over Letters

220 Chapter 11 Example: Cryptographer’s Helper

foreach

showrow

alphabet

forletters

ascii

ascii

foreach "ABCDEFGHIJKLMNOPQRSTUVWXYZ [...]

to alphabet
setcursor [6 6]
forletters "A "Z [ifelse boundp ? [invtype ?] [type ?]]
end

to forletters :from :to :action
for [lettercode [ascii :from] [ascii :to]]

[apply :action (list char :lettercode)]
end

One of the ways in which I simplified the program for this edition was to replace some
recursive helper procedures with invocations of . At several points in the
program, some action must be taken for each letter in a word, or for each word in the
text.

Another kind of iteration problem that was not so easily solved by the standard
higher order procedures in Berkeley Logo was one in which some action must be taken,
not for each letter in a word, but for each letter in the alphabet, or for some subset of
the alphabet, as in the case of , which displays one row of the top part of the
screen, with information about five consecutive letters. Of course these problems could
be solved with instructions like

but that seemed unaesthetic to me. I wanted to be able to specify the starting and ending
letters, as in this example:

(The job of is to generate the middle part of the screen display, which is all
of the letters of the alphabet, in order, with each letter in inverse video if that letter has
been guessed as part of the cleartext.)

The difficulty in implementing is to get from one letter to the next.
How does a program know that the letter after A is B? Here is my solution:

The operation takes a letter (or other character) as input. Its output is
the number that represents that letter in the computer’s memory. Most computers use
the same numbers to represent characters; this standard representation is called ASCII,
for American Standard Code for Information Interchange. (It’s pronounced “ask E.”)
By using to translate the starting and ending letters into numeric codes, I’ve

?
65
?
A

make "var 87

:var

Computed Variable Names

print ascii "A

print char 65

Computed Variable Names 221

for

forletters
Char ascii

char

Forletters
lettercode for

uppercase

word

var

posna posnb
posnc

transformed the problem into one that can be solved using the standard tool that
allows an action to be carried out for each number in a given range.

But in the template input to , I want the question mark to represent a
letter, not its numeric code. is the inverse operation to . Given a number that
is part of the ASCII sequence, outputs the character that that number represents.
For example:

applies the template input to the character corresponding to the number
in the variable controlled by the .

Adding 1 to an ASCII code to get the code for the next letter depends on the fact
that the numbers representing the letters are in sequence. Fortunately, this is true of
ASCII. A is 65, B is 66, C is 67, and so on. Not all computer representations for characters
have this property. The code that was used in the days of punched cards had the slash
(/) character in between R and S!

By the way, the lower case letters have different ASCII codes from the capitals. In
this program I’ve used the primitive operation to translate every character
that the program reads into upper case, just to be sure that each letter has only one
representation.

Another programming technique that is heavily used in this project is the use of to
compute variable names dynamically. Ordinarily, you assign a value to a variable named

with an instruction like

and you look at the value of the variable with the expression

But in this project, there are variables for each letter, with names like , ,
, and so on. To assign a value to these variables, the program doesn’t use 26

separate instructions like

stylistic

222 Chapter 11 Example: Cryptographer’s Helper

setcursor

showrow

Setposn

letter a make

:posna
thing

word

word

make "posna [0 0]

forletters :from :to [setposn ? cursor onetop ?]

to setposn :letter :thing
make (word "posn :letter) :thing
end

make "posna :thing

to posn :letter
output thing (word "posn :letter)
end

to setposn :letter :thing
pprop "posn :letter :thing
end

to posn :letter
output gprop "posn :letter
end

(Each of these variables contains a list of screen coordinates for use with
to find the corresponding letter in the top part of the display.) Instead, the procedure

, which draws that section of the display, contains the instruction

is a data abstraction procedure:

When the variable contains the letter , the instruction has the same effect
as if it were

Similarly, the dots notation () isn’t used to examine the values of these
variables. Instead, is invoked explicitly:

Another point to consider is that I could have used a different approach altogether,
instead of using to piece together a variable name. For instance, I could have used
property lists:

As it happens, I first wrote this project in Atari 800 Logo, which didn’t have property list
primitives. So the question didn’t arise for me. In a version of Logo that does support
property lists, I see no reason to prefer one approach over the other. It’s entirely
a question of which is more efficient. Which is faster, searching through a list of 26 times
2 members (times 2 because each property has a name and a value) or concatenating
strings with to generate the name of a variable that can then be examined quickly?

Further Explorations

is

Further Explorations 223

if letterp thing :from [stop]

posn

posn setposn

Qbind

showclear

showcode

I’d have to experiment to find out. Alternatively, instead of using as the name of
a property list and the letters as names of properties, I could reverse the two roles. That
would give me more lists, but shorter lists.

What a stylistic issue is that using procedures like and to isolate
the storage mechanism from the rest of the program makes the latter easier to read.

I have three suggestions about how to extend this project. The first is to put in more
rules by which the program can make guesses automatically. For example, a three-letter
word that isn’t THE might be AND. Sequences of letters within a word can also be tallied;
TH is a common two-letter sequence, for example. A double letter in the cryptogram is
more likely to represent OO than HH.

If you have many rules in the program, there will be situations in which two rules
lead to contradictory guesses. One solution is just to try the most reliable rule first, and
ignore a new guess if it conflicts with an old one. (applies this strategy by means
of the instruction

which avoids adding a guess to the data base if the cryptogram letter is already bound to
a cleartext letter.)

Another solution would be to let the rules “vote” about guesses. If the program had
many rules, it might happen that three rules suggest that F represents E, while two rules
suggest that W represents E. In this case, three rules outvote two rules, and the program
would guess that F represents E.

The second direction for exploration in this program is to try to make it more
efficient. For example, every time you make a guess, is invoked to redisplay
the partially decoded text. Much of this redisplay is unnecessary, since most of the
guesses haven’t changed. How can you avoid the necessity to examine every letter of
the cryptogram text? One possibility would be to keep a list, for every letter in the text,
of the screen positions in which that letter appears. Then when a new guess is made,
the program could just type the corresponding cleartext letter at exactly those positions.
The cost of this technique would be a lot of storage space for the lists of positions, plus a
slower version of , which would have to create these position lists.

Program Listing

224 Chapter 11 Example: Cryptographer’s Helper

to crypto :text
make "text map "uppercase :text
make "fulltext :text
make "moretext []
make "textstack []
copydef "letterp "namep
forletters "A "Z "initvars
make "maxcount 0
initcount "single
initcount "triple
cleartext
histogram :text
redisplay "false
if or guess.single guess.triple [showclear :text]
parseloop
end

;; Initialization

to initcount :type
setlist. :type []
setcount. :type 0
end

to initvars :letter
setcnt :letter 0
make :letter "| |
setunbound :letter
end

The third direction for further exploration is to find out about more complicated
ciphers. For example, suppose you started with a simple substitution cipher, but every
time the letter A appeared in the cleartext you shifted the corresponding cryptogram
letters by one. That is, if E is initially represented by R, the first time an A appears you’d
start using S to represent E. The second time A appears you’d switch to T representing
E. And so on. The effect of this technique would be that a particular cleartext letter is
no longer represented by a single cryptogram letter all the way through. Therefore, you
can’t just count the frequencies of the cryptogram letters and assume that frequently-used
letters represent E and T. How could you possibly decipher such a message?

Program Listing 225

;; Histogram

to histogram :text
foreach :text [localmake "word filter "letterp ?

foreach :word "histlet
prepare.guess :word]

end

to histlet :letter
localmake "cnt 1+cnt :letter
setcursor list (index :letter) (nonneg 24-:cnt)
type :letter
setcnt :letter :cnt
if :maxcount < :cnt [make "maxcount :cnt]
end

;; Guessing letters

to prepare.guess :word
if equalp count :word 1 [tally "single :word]
if equalp count :word 3 [tally "triple :word]
end

to tally :type :word
localmake "countvar word :type :word
if not memberp :word list. :type ~

[setlist. :type fput :word list. :type make :countvar 0]
localmake "count (thing :countvar)+1
make :countvar :count
if :count > (count. :type) ~

[setcount. :type :count setmax. :type :word]
end

to guess.single
if emptyp (list. "single) [output "false]
if emptyp butfirst (list. "single) ~

[qbind first (list. "single) "A output "true]
qbind (max. "single) "A
qbind (ifelse equalp first (list. "single) (max. "single)

[last (list. "single)]
[first (list. "single)]) ~

"I
output "true
end

226 Chapter 11 Example: Cryptographer’s Helper

to guess.triple
if emptyp (list. "triple) [output "false]
if :maxcount < (3+cnt last (max. "triple)) ~

[qbind first (max. "triple) "T
qbind first butfirst (max. "triple) "H
qbind last (max. "triple) "E
output "true]

output "false
end

;; Keyboard commands

to parseloop
forever [parsekey uppercase readchar]
end

to parsekey :char
if :char = "@ [fullclear stop]
if :char = "+ [moretext stop]
if :char = "- [lesstext stop]
if not letterp :char [beep stop]
bind :char uppercase readchar
end

;; Keeping track of guesses

to bind :from :to
if not equalp :to "| | [if not letterp :to [beep stop]

if boundp :to [beep stop]]
if letterp thing :from [dark thing :from]
make :from :to
fixtop :from
if letterp :to [light :to]
showclear :text
end

to qbind :from :to
if letterp thing :from [stop]
make :from :to
fixtop :from
light :to
end

Program Listing 227

;; Maintaining the display

to redisplay :flag
cleartext
showtop
alphabet
showcode :text
if :flag [showclear :text]
end

;; Top section of display (letter counts and guesses)

to showtop
setcursor [0 0]
showrow "A "E
showrow "F "J
showrow "K "O
showrow "P "T
showrow "U "Y
showrow "Z "Z
end

to showrow :from :to
forletters :from :to [setposn ? cursor onetop ?]
print []
end

to onetop :letter
localmake "count cnt :letter
if :count = 0 [type word :letter "| | stop]
localmake "text (word :letter "- twocol :count "- thing :letter)
ifelse :maxcount < :count+3 [invtype :text] [type :text]
type "| |
end

to twocol :number
if :number > 9 [output :number]
output word 0 :number
end

to fixtop :letter
setcursor posn :letter
onetop :letter
end

228 Chapter 11 Example: Cryptographer’s Helper

;; Middle section of display (guessed cleartext letters)

to alphabet
setcursor [6 6]
forletters "A "Z [ifelse boundp ? [invtype ?] [type ?]]
end

to light :letter
setcursor list 6+(index :letter) 6
invtype :letter
setbound :letter
end

to dark :letter
setcursor list 6+(index :letter) 6
type :letter
setunbound :letter
end

;; Bottom section of display (coded text)

to showcode :text
make "moretext []
showcode1 8 0 :text
end

to showcode1 :row :col :text
if emptyp :text [make "moretext [] stop]
if :row > 22 [stop]
if and equalp :row 16 equalp :col 0 [make "moretext :text]
if (:col+count first :text) > 37 [showcode1 :row+2 0 :text stop]
codeword :row :col first :text
showcode1 :row (:col+1+count first :text) butfirst :text
end

to codeword :row :col :word
setcursor list :col :row
invtype :word
end

;; Bottom section of display (cleartext)

to showclear :text
showclear1 8 0 :text 2
end

Program Listing 229

to showclear1 :row :col :text :delta
if emptyp :text [stop]
if :row > 23 [stop]
if keyp [stop]
if (:col+count first :text) > 37 ~

[showclear1 :row+:delta 0 :text :delta stop]
clearword :row :col first :text
showclear1 :row (:col+1+count first :text) butfirst :text :delta
end

to clearword :row :col :word
setcursor list :col :row+1
foreach :word [ifelse letterp ? [type thing ?] [type ?]]
end

;; Windowing commands

to fullclear
cleartext
showclear1 0 0 :fulltext 1
print []
invtype [type any char to redisplay]
ignore readchar
redisplay "true
end

to moretext
if emptyp :moretext [beep stop]
push "textstack :text
make "text :moretext
redisplay "true
end

to lesstext
if emptyp :textstack [beep stop]
make "text pop "textstack
redisplay "true
end

;; Iteration tool for letters

to forletters :from :to :action
for [lettercode [ascii :from] [ascii :to]] ~

[apply :action (list char :lettercode)]
end

230 Chapter 11 Example: Cryptographer’s Helper

;; Data abstraction (constructors and selectors)

to setbound :letter
make word "bound :letter "true
end

to setunbound :letter
make word "bound :letter "false
end

to boundp :letter
output thing word "bound :letter
end

to setcnt :letter :thing
make (word "cnt :letter) :thing
end

to cnt :letter
output thing (word "cnt :letter)
end

to setposn :letter :thing
make (word "posn :letter) :thing
end

to posn :letter
output thing (word "posn :letter)
end

to setcount. :word :thing
make (word "count. :word) :thing
end

to count. :word
output thing (word "count. :word)
end

to setlist. :word :thing
make (word "list. :word) :thing
end

to list. :word
output thing (word "list. :word)
end

Program Listing 231

to setmax. :word :thing
make (word "max. :word) :thing
end

to max. :word
output thing (word "max. :word)
end

;; Miscellaneous helpers

to index :letter
output (ascii :letter)-(ascii "A)
end

to beep
tone 440 15
end

to invtype :text
type standout :text
end

to nonneg :number
output ifelse :number < 0 [0] [:number]
end

;; Sample cryptograms

make "cgram1 [Dzynufqyjulli, jpqhq ok yr hoxpj qnzeujory qceqwj xhrtoyx
zw oyjr u trhjptpolq trhln. oynqqn, rzh qceqkkogq eryeqhy tojp
whrvlqfk rd qnzeujory uj whqkqyj kofwli fquyk jpuj jpq |xhrty-zwk| nr
yrj pugq kzep u trhln. u nqeqyj qnzeujory uofk uj, whqwuhqk drh, u
frhq trhjptpolq dzjzhq, tojp u noddqhqyj erffzyoji kwohoj, noddqhqyj
reezwujoryk, uyn frhq hqul zjoloji jpuy ujjuoyoyx kjujzk uyn kuluhi.]

make "cgram2 [Lvo vfkp lfzj md opaxflimn iz lm gitokflo fnp zlkonblvon f
hmalv’z inilifliuo, fnp fl lvo zfyo liyo lm zoo lm il lvfl vo jnmwz
wvfl iz noxozzfkh lm xmco wilv lvo mnbminb fxliuilioz fnp xaglako md
zmxiolh, zm lvfl viz inilifliuo xfn to kogoufnl. il iz ftzakp lm
lvinj lvfl lviz lfzj xfn to fxxmycgizvop th zm yaxv zillinb in f tms
dfxinb dkmnl, yfnicagflinb zhytmgz fl lvo pikoxlimn md pizlfnl
fpyinizlkflmkz. lviz iz kflvok f wfh lm kobiyonl fnp tkfinwfzv.]

232 Chapter 11 Example: Cryptographer’s Helper

make "cgram3 [Pcodl hbdcx qxdrdlh yihcodr, hbd rzbiier gxd lih ziyqdhdlh
hi hdgzb gwhbdlhcz echdxgzf, xdgnclp gr g ydglr ia ecudxghcil gln
zwehcoghcil. gln c niwuh hbgh yirh ia wr jbi rdxciwref xdgn gln jxchd
hbd dlpecrb eglpwgpd dodx edgxldn ch uf hbd xiwhd ia "xwl, rqih, xwl"
hi rcegr ygxldx.]

make "cgram4 [Jw btn xnsgsyp ejke gfebbcg, dtyjbn fbccsksg, ryu fbccsksg
nswcsfpsu pes usgjns, wnssuba, ryu wtptns bw pes qbtyk, pesns zbtcu
ls yb knrujyk, yb psgpjyk svfsxp rg r psrfejyk aspebu, ryu yb
lcrfilbrnu dtykcsg. jy wrfp, zs rns ksppjyk cbfigpsx gfesutcjyk ryu
knrujyk pb pes xbjyp bw pbnptns.]

