
12 Macros

Localmake

invoked

make its caller

macros,

233

localmake "fred 87

local "fred
make "fred 87

for foreach
stop output

foreach foreach

run

for foreach

localmake

* Readers who are familiar with Lisp macros should take note that Logo macros do not prevent
argument evaluation.

I mentioned that the versions of and shown in Chapter 10 don’t work if
their instruction templates include or commands. The problem is that we
don’t want, say, to stop; we want the procedure that to stop.

What we need to fix this problem is a way for a subprocedure to carry
out some action. That is, we want something like , but the given expression should
be run in a different context. Berkeley Logo includes a mechanism, called to
allow this solution. As I write this in 1996, no other version of Logo has macros, although
this capability is commonly provided in most versions of Logo’s cousin, the programming
language Lisp.*

Before we fix and , and even before I explain in detail what a macro is,
I think it’s best to start with a simple but practical example. Throughout this book I’ve
been using a command called that creates a local variable and assigns it a
value. The instruction

is an abbreviation for the two instructions

trial

inside the
invocation of

234 Chapter 12 Macros

localmake

trial localmake fred
localmake localmake

trial localmake trial
fred

localmake
localmake

.macro to

to localmake :name :value ;; wrong!
local :name
make :name :value
end

to trial
localmake "fred 87
print :fred
end

?
fred has no value in trial
[print :fred]

.macro localmake :name :value
output (list "local (word "" :name) "make (word "" :name) :value)
end

to lmake :name :value
output (list "local (word "" :name) "make (word "" :name) :value)
end

Any version of Logo will allow those two separate instructions. It’s tempting to write a
procedure combining them:

What’s wrong with this solution? If you’re not sure, define as above and
try an example, like this:

When invokes , a local variable named is created
! That variable is then assigned the value 87. Then

returns to , and ’s local variables disappear. Back in , there is
no variable named .

Here’s the solution. If is an ordinary procedure, there’s no way it can
create a local variable in its caller. So we have to define as a special kind of
procedure:

The command is like , except that the procedure it defines is a macro instead
of an ordinary procedure. (It’s a Logo convention that advanced primitives that could
be confusing to beginners have names beginning with a period.)

It’s a little hard to read exactly what this procedure does, so for exploratory purposes
I’ll define an ordinary procedure with the same body:

show lmake "fred 87

evaluated

self-evaluating;

235

?
[local "fred make "fred 87]

erase "localmake

print "fred

local "fred

localmake "greeting "hello

lmake

localmake
localmake
localmake trial localmake

trial local
make localmake

localmake

(word "" :name)
localmake

localmake "fred

localmake fred
fred

trial

localmake

Localmake

As you see from the example, outputs a list containing the instructions that we
would like its caller to carry out.

The macro outputs the same list of instructions. But, because
is a macro, that output is then by the procedure that called

. If is run using the macro version of instead of the
ordinary procedure version that didn’t work, the effect is as if contained a
instruction and a instruction in place of the one invocation. (If you
defined the incorrect version of , you can say

and then the official version will be reloaded from the library the next time you use it.)

You may find the expression that appears twice in the definition
of confusing. At first glance, it seems that there is already a quotation mark
in the first input to , namely, . But don’t forget that that quotation
mark is not part of the word! For example, when you say

Logo doesn’t print a quotation mark. What the quotation mark means to Logo is “use
the word that follows as the value for this input, rather than taking that word as the name
of a procedure and invoking that procedure to find the input value.” In this example,
the first input to is the word itself, rather than the result of invoking a
procedure named . If we want to construct an instruction such as

based on this input, we must put a quotation mark in front of the word explicitly.

In fact, so far I’ve neglected to deal with the fact that a similar issue about quotation
may arise for the value being assigned to the variable. In the example I used
the value 87, a number, which is when a number is typed into Logo as
an expression, the number itself is the value of the expression. But if the value is a
non-numeric word, then a quotation mark must be used for it, too. The version of

shown so far would fail in a case like

Backquote

236 Chapter 12 Macros

hello

make
apply

""make

localmake
list word

[local "greeting make "greeting hello]

.macro localmake :name :value
output (list "local (quoted :name) "make (quoted :name) (quoted :value))
end

to quoted :thing
if numberp :thing [output :thing]
if listp :thing [output :thing]
output word "" :thing
end

.macro localmake :name :value
output (list "local (word "" :name) "apply ""make (list :name :value))
end

[local "NAME apply "make [NAME VALUE]]

because the macro would return the list

which, when evaluated, would try to invoke a procedure named instead of using
the word itself as the desired value.

The most straightforward solution is to write a procedure that will include a quotation
mark only when it’s needed:

A somewhat less obvious solution, but one I find more appealing, is to avoid the
entire issue of quotation by putting the inputs to in a list, which we can do by using

:

On the other hand, it may take some thinking to convince yourself that the in
that version is correct!

Even a simple macro like is very hard to read, and hard to write correctly,
because of all these invocations of and to build up a structure that’s partly
constant and partly variable. It would be nice if we could use a notation like

for an “almost constant” list in which only the words in capital letters would be replaced
by values of variables.

`
, run

:name fred :value
`

`
,@

run

backquote,

members

Backquote 237

show `[start ,[list "a "b] middle ,@[list "a "b] end]

`[local ,[word "" :name] apply "make [,[:name] ,[:value]]]

[local "fred apply "make [fred 87]]

to ` :backq.list
if emptyp :backq.list [output []]
if equalp first :backq.list ", ~

[output fput run first butfirst :backq.list
` butfirst butfirst :backq.list]

if equalp first :backq.list ",@ ~
[output sentence run first butfirst :backq.list

` butfirst butfirst :backq.list]
if wordp first :backq.list ~

[output fput first :backq.list ` butfirst :backq.list]
output fput ` first :backq.list ` butfirst :backq.list
end

?
[start [a b] middle a b end]

That particular notation can’t work, because in Logo the case of letters doesn’t
matter when a word is used as the name of something. But we do have something almost
as good. We can say

The first character in that line, before the opening bracket, is a which is
probably near the top left corner of your keyboard. To Logo, it’s just an ordinary
character, and happens to be the name of a procedure in the Berkeley Logo library. The
list that follows the backquote above is the input to the procedure.

What the procedure does with its input list is to make a copy, but wherever a word
containing only a comma () appears, what comes next must be a list, which is to
provide the value for that position in the copy. I’ve put the commas right next to the lists
that follow them, but this doesn’t matter; whenever Logo sees a bracket, it delimits the
words on both sides of the bracket, just as if there were spaces around the bracket.

So if has the value and has the value 87, then this sample
invocation of has the value

Like macros, backquote is a feature that Berkeley Logo borrows from Lisp. It’s not
hard to implement:

This procedure implements one feature I haven’t yet described. If the input to
contains the word (comma atsign), then the next member of the list must be a list,
which is as for comma, but the of the result are inserted in the output,
instead of the result as a whole. Here’s an example:

nested

238 Chapter 12 Macros

Implementing Iterative Commands

localmake

list word

for
foreach foreach

for

foreach

foreach

.macro localmake :name :value
output `[local ,[word "" :name] apply "make [,[:name] ,[:value]]]
end

foreach [a b c] [print ?]

[print "a print "b print "c]

[apply [print ?] [a] apply [print ?] [b] apply [print ?] [c]]

.macro foreach :data :template
output map.se [list "apply :template (list ?)] :data
end

Using backquote, we could rewrite a little more readably:

In practice, though, I have to admit that the Berkeley Logo library doesn’t use backquote
in its macro definitions because it’s noticeably slower than constructing the macro with
explicit calls to and .

By the way, this implementation of backquote isn’t as complex as some Lisp versions.
Most importantly, there is no provision for backquotes, that is, for an invocation of
backquote within the input to backquote. (Why would you want to do that? Think about
a macro whose job is to generate a definition for another macro.)

It’s time to see how macros can be used to implement iterative control structures like
and correctly. I’ll concentrate on because it’s simpler to implement,
but the same ideas apply equally well to .

Perhaps the most obvious approach is to have the macro output a long
instruction list in which the template is applied to each member of the list. That is, if we
say

then the macro should output the list

To achieve precisely this result we’d have to look through the template for question marks,
replacing each one with a possibly quoted datum. Instead it’ll be easier to generate the
uglier but equivalent instruction list

this way:

Implementing Iterative Commands 239

foreach

map.se

foreach
foreach

foreach

foreach

foreach

foreach [a b c] [print ?]

[apply [print ?] [a] foreach [b c] [print ?]]

.macro foreach :data :template
output `[apply ,[:template] [,[first :data]]

foreach ,[butfirst :data] ,[:template]]
end

.macro foreach :data :template
output (list "apply :template (list (first :data))

"foreach (butfirst :data) :template)
end

(To simplify the discussion, I’m writing a version of that only takes two
inputs. You’ll see in a moment that the implementation will be complicated by other
considerations, so I want to avoid unnecessary complexity now. At the end I’ll show you
the official, complete implementation.)

This version works correctly, and it’s elegantly written. We could stop here.
Unfortunately, this version is inefficient, for two reasons. First, it uses another higher
order procedure, , to construct the list of instructions to evaluate. Second, for a
large data input, we construct a very large instruction list, using lots of computer memory,
just so that we can evaluate the instructions once and throw the list away.

Another approach is to let the macro invoke itself recursively. This is a
little tricky; you’ll see that does not actually invoke itself within itself. Instead,
it constructs an instruction list that contains another use of . For example, the
instruction

will generate the instruction list

Here’s how to write that:

In this case the desired instruction list is long enough so that I’ve found it convenient to
use the backquote notation to express my intentions. If you prefer, you could say

This implementation (in either the backquote version or the explicit list constructor
version) avoids the possibility of constructing huge instruction lists; the constructed list
has only the computation for the first datum and a recursive that handles the
entire rest of the problem.

But this version is still slower than the non-macro implementation of given
in Chapter 10. Constructing an instruction list and then evaluating it is just a slower

240 Chapter 12 Macros

foreach
stop output local

stop output

catch
simpler.foreach1

foreach.done
simpler.foreach1

throw catch

.macro foreach :data :template
catch "foreach.catchtag

[output foreach.done runresult [foreach1 :data :template]]
output []
end

to foreach1 :data :template
if emptyp :data [throw "foreach.catchtag]
apply :template (list first :data)
.maybeoutput foreach1 butfirst :data :template
end

to foreach.done :foreach.result
if emptyp :foreach.result [output [stop]]
output list "output quoted first :foreach.result
end

.macro simpler.foreach :data :template
catch "foreach.catchtag

[this.stuff.never.invoked run [simpler.foreach1 :data :template]]
output []
end

to simpler.foreach1 :data :template
if emptyp :data [throw "foreach.catchtag]
apply :template (list first :data)
simpler.foreach1 butfirst :data :template
end

process than simply doing the necessary computation within itself. And that
earlier approach works fine unless the template involves , , or . We
could have our cake and eat it too if we could find a way to use the non-macro approach,
but notice when the template tries to stop its computation. This version is quite a bit
trickier than the ones we’ve seen until now:

To help you understand how this works, let’s first consider what happens if the
template does not include or . In that case, the program structure is
essentially this:

The instruction list that’s evaluated by the runs a smaller instruction list that
invokes . That procedure is expected to output a value, which
is then used as the input to some other computation (namely, in the
actual version). But when reaches its base case, it doesn’t output
anything; it s back to the instruction after the , which outputs an empty list.

Implementing Iterative Commands 241

local map [word "num ?] :numranks
foreach :numranks [make word "num ? 4]

foreach :numranks [localmake word "num ? 4]

foreach
foreach

simpler foreach
stop output foreach1

throw
.maybeoutput foreach1 foreach1

Foreach foreach1 runresult
Runresult run

runresult
runresult

runresult foreach.done
foreach

foreach.done stop
foreach stop

output foreach
output

stop output
local foreach1

foreach local
onegame

foreach

So all of the work of is done within these procedures; the macro outputs an
empty instruction list, which is evaluated by the caller of , but that evaluation
has no effect.

Now forget about the version and return to the actual . What if
the template carries out a or ? If that happens, will never reach
its base case, and will therefore not . It will either stop or output a value. The
use of in is what makes it possible for to function
either as a command (if it stops) or as an operation (if it outputs) without causing an
error when it invokes itself recursively. If the recursive invocation stops, so does the outer
invocation. If the recursive invocation outputs a value, the outer invocation outputs that
value.

invoked using Berkeley Logo’s primitive opera-
tion. is just like , except that it always outputs a value, whether or
not the computation that it runs produces a value. If so, then outputs a
one-member list containing the value. If not, then outputs an empty list.

The output from is used as input to , whose job is to
construct an instruction list as the overall output from the macro. If the input
to is empty, that means that the template included a , and so

should generate a instruction to be evaluated by its caller. If the input
isn’t empty, then the template included an instruction, and should
generate an instruction as its return value.

This version is quite fast, and handles and correctly. It does not,
however, handle correctly; the variable will be local to , not to the
caller. It was hard to decide which version to use in the Berkeley Logo library, but slowing
down every use of seemed too high a price to pay for . That’s why,
for example, procedure in the solitaire program of Chapter 4 includes the
instructions

instead of the more natural

That single instruction would work with the first implementation of in this
chapter, but doesn’t work with the actual Berkeley Logo implementation!

Debugging Macros

evaluated,

242 Chapter 12 Macros

foreach show

stop foreach
foreach

macroexpand

foreach
show

trace "foreach
foreach [a b c] [print ?]

foreach [a b 7 c] [if numberp ? [stop] print ?]

show macroexpand [foreach [a b 7 c] [if numberp ? [stop] print ?]]

show foreach ...

?
?
(foreach [a b c] [print ?])
a
b
c
foreach outputs []
?
(foreach [a b 7 c] [if numberp ? [stop] print ?])
a
b
foreach outputs [stop]
Can only use stop inside a procedure

?
a
b
[stop]

It’s easy to make mistakes when writing a macro, because it’s hard to keep straight what
has to be quoted and what doesn’t, for example. And it’s hard to debug a macro, because
you can’t easily see the instruction list that it outputs. You can’t say

because the output from is not passed on to .

One solution is to trace the macro.

In this case, I got an error message because, just as the message says, it doesn’t make sense
to use in a template unless this invocation of is an instruction inside a
procedure definition. Here I invoked directly at the Logo prompt.

The Berkeley Logo library provides another solution, a operation
that takes as its input a Logo expression beginning with the name of a macro. It outputs
the expression that the macro would output, without causing that expression to be
evaluated:

This time I didn’t get an error message, because the instruction list that outputs
wasn’t actually evaluated; it became the input to , which is why it appears at the end
of the example.

The Real Thing

The Real Thing 243

Macroexpand define text

.defmacro
define
text

macrop
true

foreach

to macroexpand :expression
define "temporary.macroexpand.procedure text first :expression
...
end

.macro foreach [:foreach.inputs] 2
catch "foreach.catchtag ~

[output foreach.done runresult [foreach1 butlast :foreach.inputs
last :foreach.inputs 1]]

output []
end

to foreach1 :template.lists :foreach.template :template.number
if emptyp first :template.lists [throw "foreach.catchtag]
apply :foreach.template firsts :template.lists
.maybeoutput foreach1 butfirsts :template.lists ~

:foreach.template :template.number+1
end

to foreach.done :foreach.result
if emptyp :foreach.result [output [stop]]
output list "output quoted first :foreach.result
end

works by using and to define, temporarily, a new
procedure that’s just like the macro it wants to expand, but an ordinary procedure
instead of a macro:

You might enjoy filling in the rest of this procedure, as an exercise in advanced Logo
programming, before you read the version in the library.

(What if you want to do the opposite, defining a macro with the same text as an
ordinary procedure? Berkeley Logo includes a command, which is just like

except that the resulting procedure is a macro. We don’t need two versions of
, because the text of a macro looks just like the text of an ordinary procedure. To

tell the difference, there is a primitive predicate that takes a word as input, and
outputs if that word is the name of a macro.)

Here is the complete version of , combining the macro structure developed in
this chapter with the full template flexibility from Chapter 10.

for

244 Chapter 12 Macros

And here, without any discussion, is the actual library version of . This, too,
combines the ideas of this chapter with those of Chapter 10.

.macro for :for.values :for.instr
localmake "for.var first :for.values
localmake "for.initial run first butfirst :for.values
localmake "for.final run item 3 :for.values
localmake "for.step forstep
localmake "for.tester (ifelse :for.step < 0

[[(thing :for.var) < :for.final]]
[[(thing :for.var) > :for.final]])

local :for.var
catch "for.catchtag [output for.done runresult [forloop :for.initial]]
output []
end

to forloop :for.initial
make :for.var :for.initial
if run :for.tester [throw "for.catchtag]
run :for.instr
.maybeoutput forloop ((thing :for.var) + :for.step)
end

to for.done :for.result
if emptyp :for.result [output [stop]]
output list "output quoted first :for.result
end

to forstep
if equalp count :for.values 4 [output run last :for.values]
output ifelse :for.initial > :for.final [-1] [1]
end

