
plot

steady-state

periodic

245

13 Example: Fourier Series Plotter

Program file for this chapter:

A particular musical note (middle C, say) played on a piano and played on a violin sound
similar in some ways and different in other ways. Two different notes played on the violin
also have similarities and differences. How do you hear which note is being played, and
how do you know what instrument you’re listening to?

To do justice to these questions would fill up an entire book. For example, a piano
produces sound when a felt-covered wooden hammer hits metal wires, or strings. Each
piano key controls one hammer, but each hammer may hit from one to three strings. It
turns out that the strings for a particular note are not tuned to exactly the same pitch.
Part of the richness of the piano’s sound comes from the interplay of slightly different
pitches making up the same note.

Another contributing factor to the recognition of different instruments is their
differences in attack and decay. Does the sound of a note start abruptly, or gradually?
The differences are not only a matter of loudness, though. A few instruments start out
each note with a very pure, simple tone like a tuning fork. Gradually, the tone becomes
more complex until it finally reaches the timbre you associate with the instrument. But a
bowed violin, a more typical example, starts out each note almost as a burst of pure noise,
as the bow hits the strings, and gradually mellows into the sound of a particular note. If
you are experimentally inclined, try tape recording the same note as played by several
instruments. Then cut out the beginnings and ends of the notes, and retain only the
middle section. Play these to people and see how well they can identify the instruments,
compared to their ability to identify the complete recorded notes.

For this chapter, though, I’m going to ignore these complications, and concentrate
on the differences in the central part of a note as played by a particular
instrument. What all such steady musical sounds have in common is that they are largely

. This means that if you graph the air pressure produced by the instrument over

fundamental

frequency

waveform.

246 Chapter 13 Example: Fourier Series Plotter

time (or the voltage when the sound is represented electrically in a hifi system), the same
pattern of high and low pressures repeats again and again. Here is an example. In this
picture, the motion of your eye from left to right represents the passing of time.

The height of the squiggle on the page, at any particular moment, represents the sound
pressure at that moment. So what this picture shows is that there are many small up-and-
down oscillations superimposed on one large, regular up-and-down motion. (This one
large oscillation is called the frequency.) You can see that the entire picture
consists of five repetitions of a smaller squiggle with just one of the large oscillations.

From what I’ve said about oscillations, you might get the impression that this is a
picture of something like a foghorn or siren, in which you can hear an alternation of loud
and soft moments. But this is actually the picture of what sounds like a perfectly steady
tone. The entire width of the page represents about one one-hundredth of a second.
There are a few hundred repetitions of the single large up-and-down cycle in each second
of a musical note. The exact number of repetitions is the of the note, and is the
same for every instrument. For example, the note A above middle C has a pitch of 440
cycles per second, or 440 Hertz.

All instruments playing A above middle C will have a picture with the same funda-
mental frequency of 440 Hertz. What is different from one instrument to another is the
exact shape of the squiggle. (By the way, the technical name for a squiggle is a
You can see the waveform for a note by connecting a microphone to an oscilloscope, a
device that shows the waveform on a TV-like screen.)

Here is a picture of the simplest, purest possible tone:

to circle
fd 1
rt 1
circle
end

sine wave.

Chapter 13 Example: Fourier Series Plotter 247

This is the waveform you’d get from an ideal tuning fork, with no impurities or bumps.
It is called a This particular kind of oscillation turns up in many situations,
not just musical sounds. For example, suppose you write a program that starts a turtle
moving in a circle forever.

Think about the motion of the turtle, and concentrate only on its vertical position on the
screen. Never mind its motion from left to right. The up-and-down part of the turtle’s
motion over time looks just like this sine wave.

This says more than simply that the turtle alternates moving up and down. For
example, the turtle’s vertical motion might have looked like this over time:

any

Fourier series.

amplitude

harmonics overtones

248 Chapter 13 Example: Fourier Series Plotter

If this were the picture of the turtle’s motion, it would mean that the turtle’s vertical
position climbed at a steady rate until it reached the top of the circle, then abruptly
turned around and started down again. But in fact what happens is that the height of the
turtle changes most quickly when the turtle is near the “Equator” of its circle. The turtle’s
vertical speed gets less and less as the turtle gets near the “poles.” This speed change
corresponds to the gradual flattening of the sine wave near the top and bottom. (You
may find it confusing when I say that the turtle’s vertical motion slows down, because
the turtle’s speed doesn’t seem to change as it draws. But what happens is that near the
Equator, the turtle’s speed is mostly vertical; near the poles, its speed is mostly horizontal.
We aren’t thinking about the horizontal aspect of its motion right now.)

What makes sine waves most important, though, is that periodic waveform can
be analyzed as the sum of a bunch of sine waves of different frequencies. (Sometimes
an infinite number of since waves must be added together.) The frequencies of the
sine waves will always be multiples of the fundamental frequency. This important
mathematical result was discovered by the French mathematician Jean-Baptiste-Joseph
Fourier (1768–1830). The representation of a mathematical function as a sum of sine
waves is called a

For example, when a violin plays A above middle C, the waveform that results will
include a sine wave with frequency 440 Hertz, one with frequency 880 Hertz, one at 1320
Hertz, and so on. Not all of these contribute equally to the complete waveform. The

of each sine wave (the amount of swing, or the vertical distance in the picture)
will be different for each. Typically, the fundamental frequency has the largest amplitude,
and the others (which are called or) have smaller amplitudes. The
precise amplitudes of each harmonic are what determine the steady-state timbre of a
particular instrument.

Square Waves

square wave

Square Waves 249

Two traditional musical instruments, the clarinet and the pipe organ, share a curious
characteristic: their Fourier series contain only odd harmonics. In other words, if a
clarinet is playing A above middle C, the waveform includes frequencies of 440 Hertz,
1320 Hertz (3 times 440), 2200 Hertz (5 times 440), and so on. But the waveform does
not include frequencies of 880 Hertz (2 times 440), 1760 Hertz (4 times 440), and so on.
(I’m oversimplifying a bit in the case of the pipe organ. What I’ve said about only odd
harmonics is true about each pipe, but the organ can be set up to combine several pipes
in order to include even harmonics of a note.)

In recent times, a third musical instrument has come to share this peculiar Fourier
series: the computer. (Perhaps you were wondering where computers come into this.)
Today there are computer-controlled musical instruments that can generate any possible
sound. Musicians have even used computers to create new instrument timbres that
are not possible with ordinary instruments. But the particular timbre that most people
associate with computer music is the one produced by the simplest possible computer
sound generator. Instead of a steady oscillation in sound pressure, this simple device can
only be on or off at a given moment. The computer produces sound by flipping the
device from on to off and back at a particular rate. Such a device produces a ,
like this:

No sound that occurs in nature has a waveform that turns corners so abruptly. But what
is “natural” in nature isn’t necessarily what’s “natural” for a computer. For many years,
computer-generated music invariably meant square waves except in very fancy music
research centers.

More recently, new integrated circuit technology has made it relatively inexpensive
to equip computers with “music chips” that generate sine waves. The stereotyped sound
of computer music is becoming uncommon. But I still find square waves fascinating for
several reasons.

⋅ ⋅ ⋅

ringing

quite

partial series

removing
more

f

fx fx fx

250 Chapter 13 Example: Fourier Series Plotter

One place where square waves are still used is in the hifi magazines, in their tests
of amplifiers. The testing laboratories feed a square wave into an amplifier, and show
oscilloscope pictures of the waveform going into the amp and the waveform coming out.
Here is an example:

The oscillation that is visible in the output near the corners of the input is called .
A lot of ringing indicates that the amplifier doesn’t have good high-frequency response.

Here is why a square wave is a good test of high frequencies: The Fourier series
corresponding to the square wave includes an infinite number of odd-harmonic sine wave
components. In other words, a perfect square wave includes infinitely high frequencies.
(In practice, the input picture isn’t a perfect square wave. You can see that the vertical
segments aren’t truly vertical, for example.) No amplifier can reproduce infinitely
high frequencies faithfully. The result is that the output from the amplifier includes only
some of the harmonics that make up the input. It turns out that such a ,
with relatively few of the harmonics included, produces a waveform in which the ringing
phenomenon at the corners is clearly visible.

If you think about it, that’s a bit unexpected. Normally, the more harmonics, the
more complicated the waveform. For example, the simplest waveform is the one with
only the fundamental, and no added harmonics. Yet, harmonics from the
square wave produces a complicated picture. I like paradoxes like that. I wanted to
write a computer program to help me understand this one.

Before you can look into the square wave in detail, you have to know not only the
fact that it uses odd harmonics, but also the amplitude of each harmonic. A square wave
with fundamental frequency has this formula:

sin()
1

+
sin(3)

3
+

sin(5)
5

+

plot 1

plot 5

Square Waves 251

The dots at the end indicate that this series goes on forever. The amplitude of each sine
wave is the reciprocal of the harmonic number (one divided by the number).

This project draws pictures of waveforms containing some number of terms of this
series. (Each sine wave is called a term.) The program allows many different ways of
controlling exactly what is drawn.

To start with something very simple, try this instruction:

The effect of this command is to draw one cycle of a pure sine wave:

This is the first term of the series for the square wave. Now try this:

plot

plot 23

plot 45

252 Chapter 13 Example: Fourier Series Plotter

The input to is the harmonic number of the highest harmonic. In this example,
we’ve drawn three sine waves added together: the fundamental, third harmonic, and
fifth harmonic.

To see a plot looking somewhat more like the pictures in the amplifier tests, try

This contains the first 12 odd harmonics. (Remember to use an odd number as input,
if you want to see something that looks like a square wave.) You can see that the result
still includes some oscillation in the horizontal sections, but does have an overall square
shape.

A mediocre hifi amp has a frequency response that is good to about 20,000 Hertz.
This is about the 45th harmonic of 440 Hertz. To see how A above middle C would come
out on such an amplifier, try

plot

Square Waves 253

plot 77

plot [maxharm 77 yscale 140 deltax 1]

There is still some ringing near the corners, but the middle of the horizontal segment is
starting to look really flat. A better amplifier might be good to 30,000 Hertz. To see how
that would look, try

(The drawing of the picture takes longer when you use a larger input to , because
the program has to calculate more terms of the series.)

So far, we have only changed one of the possible parameters controlling the
waveform, namely the highest harmonic. The program allows you to control several
other elements of the picture. For example, try this:

∆

plot [11 cycles 5]

names values.

default

254 Chapter 13 Example: Fourier Series Plotter

Plot

Maxharm
Yscale

yscale deltax

Deltax

Cycles cycles 5

maxharm
maxharm

Plot

deltax

takes one input, but this time the input is a list instead of a single number. The
members of the list are used as sort of “sub-inputs.” The odd-numbered members are the

of parameters, for which the even-numbered members provide

stands for “maximum harmonic”; it is the parameter you were setting when
you used a single number as the input. is an adjustment for the height of the plot.
(To “scale” a bunch of numbers means to multiply all of them by some constant value,
the “scale factor.”) You may have noticed that as the number of harmonics has increased,
the pictures have been getting smaller in the vertical direction; by increasing the value of

we can expand the height of the plot to show more detail. Similarly,
allows us to show more horizontal detail, not by widening the picture but by computing
the value for every dot. Ordinarily, the program saves time by calculating every second
dot. This approximation is usually good enough, but sometimes not. (means
“change in X.” Delta is the name of the Greek letter D (), which mathematicians use to
represent a small change in something.)

Here’s another example:

indicates the number of complete cycles you want to see. By saying
in this example, I drew a picture like the ones near the beginning of this chapter, with
five repetitions of the fundamental oscillation.

Notice also that we didn’t have to say . If a number appears in the input
list where a name should be, it’s automatically assigned to .

allows you to specify any of six parameters. Each parameter has a value,
the value that is used if you don’t say anything about it. For example, the default value
for is 2. Here are all the parameters:

plot 6

name default purpose

sawtooth

Square Waves 255

maxharm
deltax
yscale
cycles
xrange
skip

maxharm yscale deltax cycles

Xrange

Xrange plot

Skip

skip

maxharm

5 highest harmonic number included in series
2 number of turtle steps skipped between calculations

75 vertical motion is multiplied by this number
1 number of cycles of fundamental shown

230 highest X coordinate allowed
2 number of harmonics skipped between terms

You’ve already seen what , , , and are for. Now I’ll
explain the others.

is mainly changed when moving the program from one computer to another.
Each computer allows a particular number of turtle steps to fit on the screen in each
dimension, horizontal and vertical. is the largest horizontal position is
allowed to use. This is set a little below the largest possible X coordinate, just to make
sure that there is no problem with wrapping around the screen.

is the number of harmonics skipped between terms. To get odd harmonics,
which we need for the square wave, we have to skip by 2 each time, from 1 to 3, from 3 to
5, and so on. Different values for will give very different shapes.

For example, if you are at all adventurous, you must have tried an even value of
a while ago, getting a result like this:

What you see is two cycles of an approximation to another shape, the :

plot 6
plot

plot [3 skip 1]

skip
plot [16 skip 3]

all twice the fundamental frequency

256 Chapter 13 Example: Fourier Series Plotter

Why two cycles? Well, uses the second, fourth, and sixth harmonics. Supposing
that the fundamental frequency is 440 again, this means that added frequencies of
880, 1760, and 2640 Hertz. But these are also the fundamental, second harmonic, and
third harmonic of 880 Hertz. By choosing only even harmonics, you’ve essentially chosen

the harmonics of you had in mind. It is this doubling of
the fundamental frequency that produces two cycles on the screen. You could get one
cycle of the same waveform by saying :

You can see much more bizarre waveforms by using other values of . The best
one I’ve found is :

Keyword Inputs

keyword

positional

perfectly

Keyword Inputs 257

maxharm
maxharm

plot
plot

item

keyword Keyword

plot keyword

keyword

keyword

Keyword
keyword

plot 5 2 75 1 230 2

print item [index 2 list [vanilla chocolate strawberry]]

[maxharm 5 deltax 2 yscale 75 cycles 1 xrange 230 skip 2]

I chose a of 16 because it includes the fundamental plus five additional
harmonics (4, 7, 10, 13, 16). If I’d made 15 or 17, I wouldn’t have included
the fundamental.

There are two different points of interest about this project. One is the whole business of
waveforms and Fourier series. The second is the use of inputs, which is the name
for this system of giving information to . The more usual style of Logo programming
would have been to make a procedure with six inputs. To draw a default graph,
you would then have had to say

Since most of the time you want to use the default values for most of the inputs, all this
typing would be an annoyance. It would also be easy to make a mistake about the correct
order of the inputs. (This more usual Logo technique is called inputs.) The
combination of many necessary inputs with standard values for most of them makes the
keyword technique appropriate here. It isn’t always appropriate. You wouldn’t want to
have to say

because you have no trouble remembering which input to is which, and you always
want to provide both of them.

The procedure that interprets the keyword inputs is called . was
written to be a general tool, not limited to this particular program. It takes two inputs.
The first is the input that you, the user, provide. The second is a list of defaults. When

invokes , the second input is this:

This input tells the names of all the keyword inputs as well as their default
values. It’s in the same form as the actual input you give (a list of alternating names and
values), and in fact uses a single subprocedure, first to process the default list
and then to process your input.

is actually not general because it uses the assumption that all the
values it gets are numeric. The virtue of this assumption is that it allows to

Making the Variables Local

258 Chapter 13 Example: Fourier Series Plotter

maxharm
maxharm

keyword

plot maxharm

:xrange

:deltax
:deltax

keyword

keyword

Keyword plot 5
maxharm

to keyword :inputs :defaults
if or (wordp :inputs) (numberp first :inputs) ~

[make "inputs sentence (first :defaults) :inputs]
setup.values :defaults
setup.values :inputs
end

to setup.values :list
if emptyp :list [stop]
make first :list first butfirst :list
setup.values butfirst butfirst :list
end

recognize a number without a name as implicitly referring to the keyword.
(The name is not built into the procedure. Instead, the first name in the list of
default values is used.) To use in a context in which non-numeric words could
be values as well as names, this assumption would have to be removed.

I didn’t have keyword inputs in mind from the beginning. When I started working on
this project, the only input to was what I now call , the highest harmonic
number to include. All the other numbers were “wired in”; if I wanted to change
something like what is now called , I’d edit all the procedures and change the
numbers in the editor.

Editing all the procedures wasn’t too difficult, since without the keyword-processing
procedures everything fits in a single screenful. Changing the resolution (what is now

) was a bit annoying, since I had to edit three different parts of the program.
(You can see that appears three times in the final version.) When I finally got
tired of that editing process, I decided to use keyword inputs.

The job of is to create variables, one for each keyword, and assign a value to
each variable. If the user provides a value for a particular keyword, that’s the value to
use; if not, the default value is used.

When I first did this project, I wrote a version of that creates global
variables for the keywords:

checks for the special cases of a single number (as in) or a list beginning
with a number; in either case, a new list is made with the first keyword () inserted
before the number. Then the default values are assigned to all the keyword variables, and

Indirect Assignment

Indirect Assignment 259

local filter [not numberp ?] :defaults

plot
plot

plot keyword

keyword

keyword plot
localmake

keyword

plot keyword
setup.values

to plot :inputs
local [maxharm deltax yscale cycles xrange skip]
keyword :inputs [maxharm 5 deltax 2 yscale 75 cycles 1 xrange 230 skip 2]
...

to keyword :inputs :defaults

if or (wordp :inputs) (numberp first :inputs) ~
[make "inputs sentence (first :defaults) :inputs]

setup.values :defaults
setup.values :inputs
end

.macro keyword :inputs :defaults
if or (wordp :inputs) (numberp first :inputs) ~

[make "inputs sentence (first :defaults) :inputs]
output ‘[local ,[filter [not numberp ?] :defaults]

setup.values ,[:defaults]
setup.values ,[:inputs]]

end

finally the user’s values are assigned to whatever keywords the user provided, replacing
the defaults.

Since these keyword variables are only used within the program, it would be
cleaner to make them local to , just as ordinary positional inputs are automatically
local to a procedure. I could have had take care of this before calling :

but I thought it would be unaesthetic to have to type the names twice! What I really want
is for to be able to make the variables local. But I can’t just say

because that would make the variables local to itself, not to its caller, .
This is the same problem I had in writing in Chapter 12, and the solution is
the same: Make a macro!

Now it will be , instead of , that creates the local variables and calls
.

The actual assignment of values to the keywords is a good illustration of indirect
assignment in Logo. The instruction that does the assignment is this:

⋅ ⋅ ⋅

make

Numeric Precision

make first :list first butfirst :list

fx fx fx

significant digits

would

260 Chapter 13 Example: Fourier Series Plotter

Usually the first input to is an explicit quoted word, but in this program the
variable names are computed, not explicit. This technique would be impossible in most
programming languages.

It’s important that the program computes the Fourier series starting with the higher
harmonic numbers, adding in the fundamental term last. Recall the formula for the
series:

sin()
1

+
sin(3)

3
+

sin(5)
5

+

The value of the sine function for each term is divided by the harmonic number of the
term. In general, this means that the terms for higher numbered harmonics contribute
smaller values to the sum.

Theoretically, it shouldn’t matter in what order you add up a bunch of numbers. But
computers carry out numeric computations with only a limited precision. Usually there
is a particular number of that the computer can handle. It doesn’t matter
how big or small the number is. The numbers 1234, 1.234, and 0.00000001234 all have
four significant digits.

To take a slightly oversimplified case, suppose your computer can handle six
significant digits. Suppose that the value of the fundamental term is exactly 1. Then
the computer could add 0.00001 to that 1 and get 1.00001 as the result. But if you tried
to add 0.000001 to 1, the result (1.000001) would require seven significant digits. The
computer would round this off to exactly 1.

Now suppose that the 23rd term in some series is 0.000004, the 24th term is 0.000003,
and the 25th is 0.000002. (I just made up these values, but the general idea that they’d be
quite small is true.) Suppose we are adding the terms from left to right in the formula,
and the sum of the first 22 terms is 2.73. Adding the 23rd term would make it 2.730004,
which is too many significant digits. This sum would be rounded off to 2.73 again.
Similarly, the 24th and 25th terms would make absolutely no difference to the result.

But now suppose we add up the terms from right to left. The sum of the 25th and
24th terms is 0.000005, and adding in the 23rd term give 0.000009. If we were to add this
to 2.73 the result would be 2.730009. Although this is still too many significant digits, the
computer would round it off to 2.73001. The three terms at the end make a small
difference in the result.

Dynamic Scope

operation

Dynamic Scope 261

series
x

make
for map

foreach

accumulate

:xscale
:x

X plot term

to series
localmake "result 0
for [harmonic :maxharm 1 [-:skip]] ~

[make "result :result + (term :harmonic)]
output :result
end

to series
output accumulate "sum [harmonic :maxharm 1 [-:skip]] [term :harmonic]
end

to term :harmonic
output (sin :xscale * :harmonic * :x) / :harmonic
end

In the square wave series, the successive terms get smaller quite slowly. You’d have to
add very many terms before the problem I’m describing would really be important. But
other series have terms that get smaller quickly, so that even for a small number of terms
it’s important to add in the smaller terms before the larger ones.

By the way, the procedure that computes the value of the series for some
particular value is written recursively, but its task is iterative. I could have said

but the use of to change the value of a variable repeatedly isn’t very good Logo
style. What I really want is an corresponding to , analogous to as the
operation corresponding to . Then I could say

You might enjoy using the techniques of Chapter 10 to implement .

One final point about the programming style of this project has to do with the use of
Logo’s dynamic scope. Every procedure has access to the variables of its superprocedures,
and this project takes advantage of the fact. Many people think it’s better style if every
procedure is given all the information it needs as inputs. I didn’t follow that rule in this
project because, as I’ve said, many of the variables were invented late in the development
process, and I did as little rewriting as possible.

For example, here is the procedure that computes one term of the Fourier series:

Of the three numbers that are used in this computation, is constant throughout
the program, so it’s not unreasonable for it to be used globally. But changes for every
point. is, in fact, a local variable, but it’s local to rather than to .

Further Explorations

its

262 Chapter 13 Example: Fourier Series Plotter

x for
term plot

x term
term x

term term
series series

series
plot

:harmonic

to term :x :harmonic :xscale
output (sin :xscale * :harmonic * :x) / :harmonic
end

to series :x :harmonic :skip :xscale
if :harmonic < 1 [output 0]
output (term :harmonic)+(series :harmonic-:skip)
end

Why does it matter? One reason is that people find it easier to understand a program
if it’s made very clear where each variable gets its value. In this example, it’s easy to miss
the fact that is the index variable in a loop. The second reason is that as written,

can be used only within . If we wanted to compute the value of a Fourier
series for some reason other than plotting it, we couldn’t easily use the same procedures.

I decided to leave the program as it is, instead of cleaning it up for publication, so
that you could see an example of a style that, after all, Logo makes possible by choosing to
use dynamic scope. In some ways, this style is simpler than one in which each procedure
would have several more inputs. You can decide for yourself if you find it easier or harder
to read the program this way, compared to the officially approved style:

In this version of the procedure, I’ve made the first input to . This seems most
natural to me, considering that ’s job is to compute an algebraic function of . The
argument to a function is very naturally represented in a computer program as the input
to a procedure.

All I’ve changed in itself is the title line. But of course the invocation of ,
which is in the procedure , must be changed also. And to be consistent,
should get needed values as explicit inputs, too:

We’re up to four inputs, and it’d be easy to get them out of order when is
invoked by . You can see why “inheriting” variables from a procedure’s caller can
simplify its use.

The fact that each term in the series is divided by limits this program to a
particular family of waveforms, the family that includes square waves and sawtooth waves.
In general, real musical instruments don’t have such regularity in the extent to which
each term contributes to the sum. For example, I started by saying that clarinets and

Further Explorations 263

maxharm skip
timbre

plot 5

timbre

term

[1 0 0.3333 0 0.2]

to term :harmonic
op (sin :xscale * :harmonic * :x)/(:harmonic * :harmonic)
end

pipe organs are made of odd harmonics, just as square waves are. But clarinets don’t
sound like organs, and neither sound like square waves. There is a family resemblance,
but there are definite differences too. The differences are due to the different “weights”
that each instrument gives to each harmonic.

Instead of the and variables in the program as I’ve written it, you
could have an input called (a French word for the characteristic sound of an
instrument, pronounced sort of like “tamper” with a B instead of the P) that would be a
list of weighting factors. The equivalent of would be this timbre list:

This list says that the fundamental has a weight of 1, the second harmonic has a weight
of 0 (so it’s not used at all), the third harmonic has a weight of 1/3, and so on.

The version of the program would be perfectly general. You could create
any instrument, if you could find the right weighting factors. But so much generality
makes it hard to know where to begin exploring all the possibilities. Another thing you
could do would be to try different kinds of formulas for weighting factors. For example,
you could write this new version of :

What waveforms would result from this change?

If you’re really interested in computer-generated music, you’ll want to hear what
these waveforms sound like. Unfortunately, it’s hard to do that with the standard sound
generators in personal computers, which allow little or no control of timbre. But if you
have one of the computer-controllable musical instruments that have become available
recently, you may be able to program them to reproduce the timbre of your choice.

On the other hand, you can hear the effect of different waveforms without a
computer if you visit the Exploratorium in San Francisco, the world’s best museum.
Among their exhibits are several that let you experiment with different ways of generating
sounds. One of these exhibits is a machine that does audibly the same thing we’ve been
doing graphically, adding up selected harmonics of a fundamental pitch. If you don’t
live near San Francisco, the Exploratorium is well worth the trip, no matter how far away
you are!

xrange

Program Listing

264 Chapter 13 Example: Fourier Series Plotter

As mentioned in the text, the appropriate value of may be different depending
on which computer you’re using.

to plot :inputs
keyword :inputs ~

[maxharm 5 deltax 2 yscale 75 cycles 1 xrange 230 skip 2]
localmake "xscale :cycles*180/:xrange
splitscreen clearscreen hideturtle penup
setpos list (-:xrange) 0
pendown
for [x :deltax [2*:xrange] :deltax] ~

[setpos list (xcor+:deltax) (:yscale * series :maxharm)]
end

;; Compute the Fourier series values

to series :harmonic
if :harmonic < 1 [output 0]
output (term :harmonic)+(series :harmonic-:skip)
end

to term :harmonic
output (sin :xscale * :harmonic * :x) / :harmonic
end

;; Handle keyword inputs

.macro keyword :inputs :defaults
if or (wordp :inputs) (numberp first :inputs) ~

[make "inputs sentence (first :defaults) :inputs]
output `[local ,[filter [not numberp ?] :defaults]

setup.values ,[:defaults]
setup.values ,[:inputs]]

end

to setup.values :list
if emptyp :list [stop]
make first :list first butfirst :list
setup.values butfirst butfirst :list
end

