1 Automata Theory

Program file for this chapter: £sm

As I explained in the preface to the first volume, one of my purposes in writing this series
of' books has been to urge computer hobbyists away from the view of computer expertise as
the knowledge of obscure characteristics of some particular computer—how to program
it in machine language, what magic numbers can be found where in its memory, how to
overcome the copy protection schemes on its disks, and so on. The trouble with this sort
of machine-specific expertise is that it becomes obsolete when your favorite computer
does. From my point of view, one of the virtues of Logo as a programming language is
that its high level data structures direct your attention away from questions about what
goes where in memory, allowing you to focus instead on a more abstract description of
your problem.

Automata theory is a further step in abstracting your attention away from any
particular kind of computer or particular programming language. In automata theory
we consider a mathematical model of computing. Such a model strips the computational
machinery—the “programming language”—down to the bare minimum, so that it’s easy
to manipulate these theoretical machines (there are several such models, for different
purposes, as you'll soon see) mathematically to prove things about their capabilities.
For the most part, these mathematical models are not used for practical programming
problems. Real programming languages are much more convenient to use. But the very
flexibility that makes real languages easier to use also makes them harder to talk about
in a formal way. The stripped-down theoretical machines are designed to be examined
mathematically.

What’s a mathematical model? You’ll see one shortly, called a “finite-state machine.”

The point of this study is that the mathematical models are, in some important ways,
equivalent to real computers and real programming languages. What this means is that
any problem that can be solved on a real computer can be solved using these models,

and vice versa. Anything we can prove about the models sheds light on the real problems
of computer programming as well.

The questions asked in automata theory include these: Are there any problems that
no computer can solve, no matter how much time and memory it has? Is it possible to
prove that a particular computer program will actually solve a particular problem? If a
computer can use two different external storage devices (disks or tapes) at the same time,
does that extend the range of problems it can solve compared to a machine with only
one such device?

There is also a larger question lurking in the background of automata theory: Does
the human mind solve problems in the same way that a computer does? Are people
subject to the same limitations as computers? Automata theory does not actually answer
this question, but the insights of automata theory can be helpful in trying to work out an
answer. We’ll have more to say about this in the chapter on artificial intelligence.

What is a Computation?

What kinds of problems can we give to our abstract computers? In automata theory we
want to focus our attention on computation itself, not on details of input and output
devices. So we won’t try creating a mathematical model of a video game.

We will play a game, though. In this game the computer has a rule in mind. You type
in strings of letters, using only the letters A, B, and C. The computer tells you whether
each string follows the rule or not. Your job is to guess the rule. For example, suppose
you have done these experiments:

accepted rejected
ABC CBA

AAA BBB
ABCABCABC BCABCABC
A BBBBBBB

ACCcccecececece CAAAAAAAAA
You might guess, from these examples, that the rule is “The string must begin with A.”
Once you’ve made a guess you can test it out by trying more examples.

The program to play the game is called game. It takes one input, a number from 1
to 10. I've provided ten different rules. Rules 1 to 3 should be pretty easy to guess; rules
8 to 10 should be nearly impossible. (Don’t feel too frustrated if you don’t get them.)

2 Chapter 1 ~ Automata Theory

A string can be any length, including length zero (the empty string). Each time you
type a letter the program lets you know whether the string you’ve typed so far obeys the
rule. The program indicates whether the string is accepted or rejected by displaying the
word accept or reject on the screen. In particular, as soon as you start game the
program will tell you whether or not the empty string is accepted by this rule. If you type
the string ABC you’ll really be testing three strings: A, AB, and ABC. You should type one
letter at a time to make sure the program has a chance to respond to it before going on
to the next letter. To start over again with a different string, press the Return key.

You should stop reading now and try the game. In the following paragraphs I'm
going to talk about some of the answers, so this is your last chance. After you've figured
out at least some of the rules, come back to the book.

Finite-State Machines

The point of studying this game is that we’re going to look at a way to design a special-
purpose abstract computer that understands one particular rule. We can then ask
questions about how much information the computer needs to handle the job.

You've seen the word statebefore in connection with the Logo turtle. Itsstate includes
its position and its heading. So one turtle state might be “position [17 82], heading
90.” In principle, the turtle has an ¢nfinite number of possible states, because its position
and heading don’t have to be integers. Its position might be [14.142 14.142], for
instance.

Anything that holds information can be in different states. As another example, an
on-off light switch has two states. Some lamps have four states: off, low, medium, and
high. A computer, too, has a certain number of states. The state of a computer includes
all the information in its memory at some particular time.

A machine that has only a limited number of states, like the example of the light
switch, is called a finite-state machine. For almost all of this chapter we’ll be dealing with
finite-state machines. You might think that that imposes a very severe limit on the kinds
of computations we can do. But note that in the game I asked you to play, a rule can
accept an infinite number of possible strings and reject an infinite number of others.
The accepted or rejected strings can be of any length. (Some rules restrict the length of
a string, but others allow any length at all.) In some sense, a finite-state machine can still
perform infinitely varied computations.

Consider the third game as an example. The rule is “Accept any string that starts
with AB.” Here is a picture of a finite-state machine that implements that rule:

Finite-State Machines 3

START

Each numbered circle represents a state. This machine has three states. The start
arrow indicates that the machine starts out in state 1. State 3 is shown with a double circle
to indicate that it is an accepting state. In other words, when the machine is in state 3 the
screen says accept. The other two states are not accepting states. Every time you type
a character the machine switches from one state to another. The arrow from state 1 to
state 2 has an A next to its tail. This indicates that when the machine is in state 1, an
input of A switches it to state 2. (The arrow from state 3 to itself has the three letters ABC
at its tail. This is a shorthand notation for three separate arrows with heads and tails in
the same place, one for each letter.)

This picture is actually incomplete. For a full description of the machine we have
to indicate what happens on any input in any state. In other words, each circle should
have three arrows coming out from it, one each for A, B, and C. I've chosen to adopt the
convention that every machine has an unmarked state called reject. Any missing arrow
goes to that state; once the machine is in the reject state it stays there forever. Here, then,
is the complete diagram of the machine for game 3:

START

From now on I won’t draw the reject state, but you should remember that it’s really
part of the machine description. So this machine requires four states, not three.

If the first input letter isn’t A, the machine goes to the reject state. If the first
letter is A, the machine goes to state 2. Then, if the second letter is B, the machine ends
up in state 3 and accepts the string AB. This is the shortest acceptable string.

Each of the three arrows from state 3 loops right back into state 3 itself. (Remember,
although only one arrow appears in the picture, it is labeled with three letters, so officially
it represents three arrows.) This means that once the machine is in state 3 it stays there
no matter what inputs it gets. Any string that starts AB is acceptable.

4 Chapter 1 ~ Automata Theory

Here is a machine for game number 2:

START
ABC

ABC

In this machine the start state is also an accepting state. (Every machine has exactly one
start state, but it may have any number of accepting states.) This machine never gets into
the reject state. That doesn’t mean it doesn’t reject any strings; all odd-length strings
are rejected in state 2. But a rejected string can redeem itself by adding another input
character, so state 2 allows a return to the accepting state 1.

Here is a machine for game number 5. (Notice that I'm saying “a machine” and not

“the machine”; it is always possible to design other machines that would follow the same
rule.)

START

You probably had more trouble discovering rule 5 than rule 2, and it takes longer to
say the rule in English words. But the machines for the two rules are almost identical.
(Remember, though, that the rule-b machine really has a third state, the reject state,
which is not shown in the diagram.)

Here are machines for rules 7 and 9. With these machines as hints, can you figure
out the rules? Go back to the game program to test your hypotheses.

START START

Game 7

Game 9

You should also get some practice translating in the other direction, from English
rules to machine diagrams. Here are a couple to work on: Rule 4 is “To be accepted a
string must be composed of doubled letters (AA, BB, and CC) strung together.” Rule 8 is
“To be accepted a string must contain an even number of As.”

Finite-State Machines 5

Nondeterministic Machines

Here is rule 6: “To be accepted a string must begin with A and end with C.” Strings
accepted by this rule include AC (the shortest possible), ABC, AACC, ACAC, ABCABC, and
so on. Between the initial A and the final C an accepted string can have any combination
of As, Bs, and Cs. It’s natural to think of the string as having three parts: a fixed beginning,
avariable middle, and a fixed end. The three parts of the input strings can be represented
conveniently with three states in the machine, like this:

START

1A 5(2)C @
oo

The machine starts in state 1. To be accepted a string must start with A. Therefore, an A
arrow leads from state 1 to state 2. Any other input at state 1 leads to the reject state.

Once the machine is in state 2 it is ready for the middle part of the string. In this
middle part any combination of letters is allowed. Therefore, there are three arrows from
state 2 to itself, one for every possible letter.

Finally, a C arrow leads from state 2 to state 3, signaling the end of an acceptable
string. A string must end with C to be accepted.

There is a problem with this machine: There are {wo C arrows leading out from state
2. One is a loop back into state 2; the other goes on to state 3. This situation reflects the
fact that C serves two different functions in this rule: C is an optional part of the middle
section of the string, and it’s also the required final input in the string.

A machine with two arrows from the same state for the same input is called a
nondeterministic machine. Here is how such a machine could work: Whenever there are
two choices for the machine’s current state and input, the machine clones itself. One of
the copies follows each arrow. From then on, if either machine is in an accepting state the
string is accepted.

Nondeterministic finite-state machines are more complicated than deterministic
ones. Does the added complexity “buy” any added power? In other words, can a
nondeterministic machine solve problems that a deterministic machine can’t? It turns
out that the answer to this question is no. Deterministic machines are just as powerful as
nondeterministic ones. This is an important theorem in automata theory. I’'m not going
to prove it formally in this book, but to illustrate the theorem, here is a deterministic
machine that carries out game 6:

6 Chapter 1 ~ Automata Theory

START

ABC
OO =
o

This machine is similar to the nondeterministic version. It has the same number of states
and some of the connections are identical. State 3 is more complicated, though. Also, in
this machine, it is no longer the case that each state of the machine corresponds exactly
to one of three parts of the input string. Specifically, when the machine is in state 3 the
string may or may not be finished.

Representing Machines as Logo Lists

The game program uses finite-state machines to represent the rules by which it accepts
or rejects strings. (The machines must be deterministic for the program to work.) Logo
programs can’t read circles and arrows, so a machine is represented as a list. What
information is actually contained in an FSM diagram? The diagram shows that there are a
certain number of states (the circles), that there are certain transitions from one state to
another (the arrows), that one particular state is the start state (the start arrow), and that
certain states are accepting ones (the double circles). As in any programming project, I
could have chosen many different ways to represent that information in the program.

In the particular representation I chose, the list form of a machine has three
members. The first member is the number of the start state. The second member is a
list of arrows; each arrow is itself a list, as I’ll explain in a moment. The third member of
a machine list is a list of the accepting states of the machine. For example, here is the
machine for game 3 again, in both forms:

[1 [[1 A 2] [2 B 3] [3 ABC 31] [3]]

START

The number 1 is the start state; the list [3] is the list of accepting states. (This machine
happens to have only one accepting state.) Everything else is the list of arrows. Each
arrow is also a list with three members: the initial state (the tail of the arrow), the input
letter or letters, and the final state (the head of the arrow). The first arrow in this
machine is

Representing Machines as Logo Lists 7

[1 A 2]

This is the arrow from state 1 to state 2 associated with the input A.

The list [3 ABC 3] in this machine represents three arrows, using the same short-
hand as in the circle-and-arrow diagrams. I could equally well have represented these
arrows separately:

[1 [[1A2] ([2B3] [3A3] [3B3] [3C3]][3]]

As in the circle-and-arrow diagrams, I haven’t explicitly represented the transitions
to the reject state in these lists. The program is written so that if it doesn’t find
a transition for the current state and input in the list of transitions, it goes into state
number —1, its representation for the reject state.

Here are some more machine lists:

Game 2: [1 [[1 ABC 2] [2 ABC 1]1] [1]]
Game7: [1 [[1 AB 1] [1 C 2] [2 C 1]] [11]
Game9: [1 [[1 AB 1] [1 C 2] [2 A 3] [2B 1] [3 A 1]] [1]]

At this point you should stop and play with the program. Make up your own rules.
The procedure fsm takes a machine list as input and accepts strings based on that
machine. (Game uses £smwith particular machines as inputs.) Try out your new rules to
make sure you've designed the machines correctly. Then get a friend to play with your
rules. If both of you are reading this book together you can have a competition. (It’s
easy to design rules that are impossible to guess because there are too many details. If
you have a competition you should limit yourselves to three states per machine.)

You might be interested in reading through the fsm program, which simulates a
finite-state machine when given the machine’s description as its input. It’s a pretty simple
program. If you think of a machine’s state diagram as a kind of “wiring diagram” that
might be used in building a real version of that particular machine, this Logo program is
a kind of universal finite-state machine implementation.

Text Editors: a Use for Acceptors

It may seem to you that accepting or rejecting strings isn’t much like what you usually
do with computers. You may wonder how this mathematical model is related to real
computer programming. There are two answers to this question. One is that it’s possible
to design finite-state machines that have more versatile outputs than simply yes or no. I'll

8 Chapter 1 ~ Automata Theory

give an example shortly. But the other answer is that there are real situations in which
accepting or rejecting a string of symbols does come up in practical computation.

One example is in the implementation of programming languages. When you say
that

print 2+2

is a legal Logo instruction but

print 2+

is illegal, you’re doing a more complicated version of what a finite-state acceptor does.

The search command in a good text editor uses finite-state machines. Most text
editors have a command that allows you to look through a file for a particular string of
characters. Fancier editors allow searching not just for one particular string, but for any
string that follows a rule the user can provide. The editor finds a string that matches the
rule using a finite-state machine. Of course, people who use editors don’t have to specify
their search rules in the form of a finite-state machine! The editing program accepts
search rules in a simpler form and translates them into FSM form. Here is an example,
the notation used by ed, a standard editor in the Unix operating system.

A string like
spaghetti

just matches an identical string in the file you're editing. A slightly more interesting case
is

[Ss]paghetti
which matches either “Spaghetti” or “spaghetti” (with a capital or lower case “s”). The
square brackets indicate that any of the letters inside the brackets will be accepted. In
the expression

[Ss]paghet*i

the asterisk matches any number (including zero) of the letter before it (in this case, the
letter t). This example would match any of these:

Text Editors: a Use for Acceptors 9

Spaghei
Spaghettttti
spaghetti
spagheti

You might use this in a search command if you’re a bad speller! The bracket and asterisk
can be combined;

C[AD]+*R
will match any of
CAR
CDR

CADDR
CR

Or you could use
M[is]#*p*i

to match the name of a famous river.

Some of the rules from the game I presented earlier can be represented as ed search
strings according to these rules. In the first game the machine accepted any string made
up of As and Bs. The corresponding ed expression is

[AB]*

The third game called for strings beginning with the sequence AB, followed by whatever
you like. This can be represented as

AB[ABC]*

Game 10, which I’'m sure you didn’t solve, accepts any string that includes the sequence
ABCBA within it. In ed terms, that’s

[ABC]*ABCBA[ABC]*

I haven’t given you a complete description of the ed search rules. I included this
much only because I want you to see how a “real” program uses the idea of finite-state

10 Chapter 1 ~ Automata Theory

machines. But in the remaining part of this chapter I want to use a different notation
based on Logo words and lists.

Regular Expressions

The notation I'm about to describe allows an acceptance rule, like the rules in the game
program or the rules for ed searches, to be represented in Logo. The representation of
such arule is called a regular expression. I'm going to tell you some rules for what a regular
expression can look like. Don’t be confused: Any particular regular expression is a rule
that accepts strings of letters. I'm giving you rules that accept regular expressions—rules
about rules. As a rough analogy, “one player is X and the other is 0” is a rule about the
specific game Tic Tac Toe; “each player should have a fair chance to win” is a rule about
what kinds of game rules are acceptable.

Alphabet rule. Any symbol in a machine’s alphabet is a regular expression. We
represent the symbol as a one-letter Logo word. In our guessing game the alphabet
contains three symbols: A, B, and C. So

B

is a regular expression.

Concatenation rule. A list whose members are regular expressions represents those
expressions one after another. For example, since A is a regular expression and B is a
regular expression,

[A B]

is a regular expression representing the string AB. (Notice that the Logo word AB does
not represent that string; the alphabet rule requires that each letter be represented as a
separate word.)

Alternatives rule. A list whose first member is the word or and whose remaining mem-
bers are regular expressions represents any string that matches any of those expressions.
For example,

[OR [A A] B]

matches either the sequence AA or the single symbol B. As a convenience, a Logo word
containing more than one letter (other than the word or) is taken as an abbreviation for
the oring of the individual letters. For example, ABC is equivalent to [OR A B C].

Regular Expressions 11

Repetition rule. A list containing exactly two members, in which the first is the asterisk
(*) symbol and the second is a regular expression, represents a string containing any
number (including zero) of substrings that match the regular expression. So

[* [OR [A A] B]]
matches any of these:

B
BB
BAAB
AAAAAA
AABAA
(the empty string)
AABBBBBAA

The number of consecutive As must be even for a string of As and Bs to match this
expression.

These four rules constitute the definition of a regular expression. It’s a recursive
definition. Just as the effect of a recursive Logo procedure is defined in terms of a simpler
case of the same procedure, a complex regular expression is defined in terms of simpler
ones.

Here are the ten game rules from the beginning of this chapter in the form of
regular expressions:

[a—

[* AB]

[* [ABC ABC]]

[AB [* ABC]]

[* [OR [AA] [BB] [CC]]]

[* [ABC B]]

[A [* ABC] C]

[* [ORAB [CC]]]

[[* BC] [* [A [* BC] A [* BC]]]]
[[* AB] [* [C [ORB [AA]]] [* AB]]]
[[* ABC] ABCBA [* ABC]]

© XN OUs 0N

[—
e

You should go through these examples carefully, making sure you understand how the
regular expression represents the same idea as the English description or the machine
diagram you saw earlier.

12 Chapter 1 ~ Automata Theory

Rules That Aren’t Regular

You may be thinking that any rule for accepting or rejecting strings of symbols can be
represented as a regular expression. But that’s not so. For example, consider the rules
for recognizing ordinary arithmetic expressions:

accepted rejected
2+3 23+

2% (3+4) 2%)3+4(
-5 /6

Think for a moment just about the matter of balancing parentheses. Sometimes you have
parentheses within parentheses, as in

((3+4)/(5+6))

How would you represent this part of the arithmetic expression rule in the form of a
regular expression? You can’t just say something like

[[* (] something-or-other [*)]]

to mean “any number of open parentheses, something, then any number of close
parentheses.” That would allow strings like

(C(7)))))

But this string should be rejected because it has too many close parentheses. You're not
allowed to use a close parenthesis unless you've already used a matching open parenthesis.
You can have any number of nested parentheses you want as long as they’re balanced.

It is possible to invent other kinds of formal notation, more powerful than regular
expressions, that will allow us to give the rules for well-formed arithmetic expressions. In
this section I’ll introduce briefly a formal notation called production rules that’s powerful
enough to describe arithmetic expressions. For now, in this chapter, I don’t want to
discuss production rules in great detail; my only reason for introducing them at this point
is to give you a sense of how regular expressions fit into a larger universe of possible
formal systems. In the following sections I'll have more to say about regular expressions
and finite-state machines. But we’ll return to production rules in Chapters 5 and 6, in
which we’ll need formal notations with which to discuss more interesting languages than

Rules That Aren’t Regular 13

the A-B-C language of this chapter. (In Chapter 5 we’ll be talking about Pascal; in Chapter
6 we’ll take on English.)

The key ingredient that’s missing from regular expression notation is a way to
name a kind of sub-expression so that the name can be used in defining more complex
expressions. In particular, a sub-expression name can be used in its own definition to
allow a recursive definition of the rule.

A production rule has the form

name : expansion

Each rule is a definition of the name on the left in terms of smaller units, analogous to
the definition of a Logo procedure in terms of subprocedures. The expansion part of
the rule is a string of symbols including both members of the “alphabet” of the system
(like the alphabet that underlies a regular expression language) and names defined by
production rules.

As an example, here is a set of production rules that defines the language of
arithmetic expressions. These rules take into account the “order of operations” for
arithmetic that you learned in elementary school: multiplication before addition. An
expression like

2/3+1/6

is ordinarily interpreted as the sum of two ferms, namely two thirds and one sixth. An
expression can be a single term, a sum of terms, or a difference of terms. Here’s how
that idea is expressed in a set of production rules; I’ll discuss the notation in more detail
in a moment.

expr : term | expr [+] term | expr [-] term

term : factor | term [*] factor | term [/] factor

factor : number | [(] expr [)]

number : digit | number digit

digit e[| [af | 2] | (3] | Tal | [s] | el | [7] | [8] | [9]

The vertical bars separate alternatives. The first rule, the one that defines expr, contains
three alternatives. First, an expression can be just a single term. Second, an expression
can be a smaller expression plus a term. Third, an expression can be a smaller expression
minus a term. The symbols inside boxes are the members of the alphabet of the
arithmetic expression language. (I've put them in boxes to make it easier not to confuse

14 Chapter 1 ~ Automata Theory

them with the punctuation characters—the colons and vertical bars—that are part of the
production rule notation itself.)

Do you see how parentheses fit in? If a string like 4+5 is an expression, then (4+5)
is a factor, so 3* (4+5) is a term, and so on. Since a factor is a kind of term, and a term
is a kind of expression, the factor (4+5) can be considered an expression, and so it too
can be putinside parentheses. So ((4+5)) is also acceptable as a factor.

Regular Expressions and Finite-State Machines

I’'ve hinted at something that I haven’t actually made explicit: Regular expressions are
equivalent to finite-state machines. In other words, if you can express a rule as a regular
expression, you can design a finite-state machine that carries out the rule. If you can’t
write a regular expression for the rule, you can’t design a finite-state machine either.

You may be thinking, “so what?” I've introduced two different formal notations,
finite-state machines and regular expressions, and now I'm telling you that the two are
equivalent. So why didn’t I just pick one in the first place and forget about the other? I
have a general answer and a specific answer to these questions.

The general answer is that comparing different formal systems is what automata
theory is all about. By the end of this book you’ll have been introduced to half a dozen
or so different formal systems. Some are more powerful than others. The bare assertion
that one formal system is equivalent to another, or more powerful than another, isn’t very
interesting; but if we can understand the reasons behind those assertions then we may be
able to put the knowledge to work in practical situations. At the very end of this book,
in Chapter 6, we’ll talk about a particular formal system that’s often used in artificial
intelligence programs to recognize English sentences. By then you should know enough
about formal systems to be able to understand why that particular one is a good choice.

The specific answer is that finite-state machines and regular expressions are different
from each other in an interesting way. A finite-state machine is an algorithm, a sequence
of steps, or a procedure that can be followed to test whether some string matches a given
rule. It says, “start here, then if this happens do this, then...” just like a procedure in
Logo or most other programming languages. (But we’ve seen that a finite-state machine
is like a procedure written in a restricted programming language that isn’t as flexible
as Logo.) A regular expression, though, is not a sequence of steps. It’s more like a
description of the result that we want, leaving open the precise recipe for how to get there.
People often pose problems in a similar way. They call the plumber and say, “the drain
in my bathtub is backing up.” Part of the plumber’s expertise is to be able to translate

Regular Expressions and Finite-State Machines 15

that declarative problem statement into a procedural form, a sequence of steps needed to
clear up the problem. An early stumbling block in artificial intelligence research was
the seeming gulf between the procedural knowledge embodied in a computer program
and the declarative knowledge needed for human-like behavior. Recently people have
invented declarative programming languages (the best known is Prolog, but any commercial
spreadsheet program is also in this category) that allow the user to state a problem in
declarative form. The programming language interpreter then automatically translates
this problem statement into a sequence of steps for the computer to perform.

Writing a Prolog interpreter raises many issues beyond the scope of this book. But
we can take a smaller step in the realm of translation from a declarative notation to
a procedural one. I've written a Logo program, listed at the end of the chapter, that
translates from a regular expression to an equivalent finite-state machine. Its top-level
procedure, machine, takes a regular expression as input and outputs a machine list in
the format I showed earlier.

How to Translate

The general claim that regular expressions are equivalent in power to finite-state machines
is called Kleene’s Theorem, named after the mathematician Stephen C. Kleene, its
discoverer. You can find a proof of this theorem in any textbook on automata theory.
I'm not going to give a proof here, but I'll indicate how the translation is done in my
program. The same kinds of ideas are used in the proof.

Remember that there are four parts to the definition of a regular expression. The
alphabet rule provides the fundamental building blocks; the concatenation, alternatives,
and repetition rules build large regular expressions recursively out of smaller ones. The
translation process follows the same pattern: We start with a procedure to build a trivial
two-state machine that only accepts a single letter, then we add three rules for combining
smaller machines into a large machine. In the following paragraphs I’ll show how each
rule is reflected in the machine program.

This construction process often produces machines with more states than necessary.
The machine program eliminates redundant states as its final step.

The alphabet rule says that any member of the machine’s alphabet is a regular
expression. In the program, a symbol can be any one-letter word other than *. The
symbol X is translated into the machine

(1 001X 2]] [2]]

16 Chapter 1 ~ Automata Theory

(You’ll see that the program works by combining little machines into bigger ones. Every
time the program has to invent a new machine state it uses the next free number. So
the state numbers might not be 1 and 2 in a real example.) The procedure ndletter
handles this rule.

Next comes the concatenation rule. The regular expression
[A B]

matches a string with two parts; the first substring matches the A and the second matches
the B. In this simple example each “substring” matches only a single letter. In a more
complicated concatenation like

[[OR A C] [* B]]

there are different choices for each substring. For example, that regular expression is
matched by the string

CBBB
in which the letter C matches the first part of the expression and the substring BBB
matches the second part.

To translate a regular expression of this kind (a concatenation) into a finite-state
machine, we begin by recursively translating the subexpressions into smaller machines.
Then we have to “splice” the two machines together. Procedure ndconcat does this
splicing.

We’ll begin with the simplest possible example. Suppose we want to translate the
regular expression

[A B]

We have already translated the two symbols A and B into machines:

START START

=) Op
[1[[1AZ2]] [2]] [3[[3B4]] [4]]

The combined machine must start at the start state of the first component machine,
state 1. The combined machine should be in an accepting state when both component

How to Translate 17

machines have been satisfied; in other words, the accepting states of the combined
machine should be those of the second component machine. In this case that means only
state 4.

To splice the component machines together we must add transitions (arrows)
between them. Specifically, whenever the first component machine gets into an accepting
state, the combined machine should follow the same transitions that apply to the start
state of the second component machine. In this case, when the combined machine gets
into state 2 (the accepting state of the first component machine) it should follow the
same transitions that apply to state 3 (the start state of the second machine). There is
only one such transition, a B arrow into state 4. That means we must add the arrow

[2 B 4]

to the combined machine.

START

-

B/

[1[[1A2] [2B4] [3B4]] [4]]

State 3, although it is still in the machine, is now useless. There is no way for the machine
to get into state 3. Later in the translation process another procedure removes such
“orphaned” states from the machine.

As a slightly more complicated example, consider the translation of the regular
expression

[[OR A C] [* B]]

We start by supposing that we’ve already translated the two subexpressions separately:

@) e
o

[ORAC [* B]
[1[[1A2] [1C3]] [23]] [4[[4B5] [5B5]] [45]]

18 Chapter 1 ~ Automata Theory

(We haven’t yet discussed the alternatives rule or the repetition rule, so I haven’t yet
explained how these subexpressions are translated. For now, please just take on faith that
this picture is correct. We’ll get to those other rules shortly.)

The start state of the combined machine is the start state of the first component,
state 1. At every accepting state of the first machine we must duplicate the transitions
from the start state of the second machine. In this example the start state of the second
machine has only the transition

[4 B 5]
but there are two accepting states in the first machine, so we must add two new arrows:

[2 B 5] [3 B 5]

A final detail is that in this example the start state of the second component machine,
state 4, is an accepting state. That means that the second substring can be empty.
Therefore the accepting states of the first component machine should also be accepting
states of the combined machine. Here is the result:

START) @
©

[1[[1A2] [1C3] [2B5] [3B5] [4B5] [5B5]] [2345]]

Again, state 4 is now an “orphan” and will be eliminated later in the program.

The alternatives rule combines two machines in parallel, so to speak, rather than in
series. It works by inventing a new state that becomes the start state of the combined
machine. Arrows leaving from the new state duplicate the arrows from the start states of
the component machines. Procedure ndor handles this rule.

As an example, here is the translation process for

[OR A B]

Houw to Translate 19

(or its abbreviation AB). We start with two separate machines:

START

(DA
START

[1[[1A2]] [2]]

[3[[3B4]] [4]]
We combine them by inventing a new state 5:

START

A -

~

B ~~

o0

[5[5A2] [5B4] [1A2] [3B4]] [24]]
I haven’t explained all the details of the construction process. For example, should the
new state, state 5, be an accepting state? In this example it shouldn’t be. See if you can
think of a case where it might be; then read the program listing to see the exact algorithm
that makes this decision. Again, this construction process may leave unused states for
later cleanup.

A much more serious problem is that an or construction is likely to produce a
nondeterministic machine. For example, here is the machine for

[OR [A B] [A C]]

20 Chapter 1 ~ Automata Theory

START @A (2B @
A

OO0 0

[7[[7A2] [TA5] [1A2] [2B3] [4A5] [5C6]] [36]]

Like the unused states, the problem of nondeterminism is left for the end of the
program, when procedure determine translates the nondeterministic machine into a
deterministic one. (The concatenation rule can also make nondeterministic machines,
although it’s not as likely.)

The final case to be considered is the repetition rule. This rule acts on only one smaller
machine, not two machines as in the previous two cases. The rule doesn’t require any
new states. It has two effects. One is to add the start state to the list of accepting states.
The second is to add arrows from the (old) accepting states that mimic the arrows from
the start state. (This is exactly like the splicing of two machines in the concatenation
rule, but in this case we concatenate a single machine with itself!) Procedure ndmany
makes this transformation. It, too, can result in a nondeterministic machine.

Here is an example of the rule:

START

DO ©

[ABl - [1[[1A2] [2B3]] [3]]

START

oG

[*[ABl] - [1[[1A2] [2B3] [3A2]] [13]]

These four rules are combined by nondet, a procedure whose input is a regular

expression and whose output is a (possibly nondeterministic) machine.

Houw to Translate 21

to nondet :regexp

if and (wordp :regexp) (equalp count :regexp 1) [output ndletter :regexp]
if wordp :regexp [output ndor reduce "sentence :regexp]

if equalp first :regexp "or [output ndor butfirst :regexp]

if equalp first :regexp "* [output ndmany last :regexp]

output ndconcat :regexp

end

The top-level procedure machine does a little initialization and then does its work with
the instruction

output optimize determine nondet :regexp

That is, first it creates what may be a nondeterministic machine, then if necessary it
translates that into a deterministic one (eliminating orphan states in the process), then
it gets rid of any redundant states that may have been created.

Making the Machine Deterministic

In the first volume of this series we explored the techniques of depth-first and breadth-first
tree traversal. Given a tree structure, these algorithms allow us to “visit” every node of
the tree once.

A finite state machine can be viewed as a structure almost like a tree. The machine’s
start state corresponds to the root node; the states that can be reached by an arrow from
a given state are the children of that state. But there is one important difference between
trees and machines: In a tree, every node (except for the root node) has exactly one
parent. The tree search algorithms depend on that fact to ensure that each node is visited
only once. In a machine, arrows from several different states can lead to the same state,
so a state may have several “parents.” The technical name for an arbitrary collection of
nodes with connections among them is a graph. If the connections are one-way, as in the
finite state machine diagrams, it’s called a directed graph.

Searching a graph is just like searching a tree, except that we have to keep track of
which nodes we’ve already visited, to avoid examining the same node twice. Procedure
determine creates a list named states, initially empty, into which each state number
is added as the program examines that state. The depth first traversal of the machine is
carried out by procedure nd.traverse; although this procedure looks different from
the depth.first procedure in Volume 1, it uses the same basic algorithm. Given a
state as input, it processes that state and invokes itself recursively for all of the children of
that state—the states reachable by arrows from the input state. Unlike depth.first,

22 Chapter 1 ~ Automata Theory

though, nd.traverse is an operation. It outputs a new list of moves (arrows) for the
deterministic version of the machine.

What does it mean to process a state? Nd.traverse first checks whether this state
has already been processed; if so, it outputs an empty list, because this state will contribute
no new moves to the machine. Otherwise, it remembers this state number as having been
processed, finds all the moves starting from this state, and calls check.nd to look for
nondeterminism. Check.nd takes the first available arrow whose tail is at the state we’re
processing, and looks for all arrows with the same tail and with the same letter.* The
local variable heads will contain a list of all the state numbers reachable by these arrows.
(The state numbers are sorted into increasing order, and duplicates eliminated. If the
machine has two completely identical arrows, that doesn’t result in nondeterminism.)

There are three cases for what check.nd must do. First, if there is only one state
number in :heads, then there is no nondeterminism for this letter, and check.nd
includes the arrow from the original machine as part of the deterministic machine.
Second, if there is more than one state number, check.nd looks to see if we’ve already
seen the same combination of result states. If so, then we’ve already created a new state
equivalent to that combination of old states, and check.nd creates a new arrow pointing
to that existing new state. Finally, the third case is that this combination of states is one
we haven’t seen before. In that case, check.nd must create a new state, with arrows
duplicating those from all of the original states.

In other words, if there are arrows

[[3 B 4] [3 B 7]1]

then check.nd will invent a new state that is an “alias” for “four-and-seven.” If the same
machine also contains arrows

[[8 C 4] [8 C 7]]

then check.nd will use the same alias state for this pair, not inventing a new one. The
new state is given arrows matching those of all its component states (4 and 7 in this

* By the way, nondet always creates arrows with only a single letter; if two or more letters
lead from the same state to the same state, a separate arrow is created for each of them. This
makes for a longer machine list, but makes steps like this one—looking for two arrows with the
same letter—easier. Once the deterministic machine has been created, procedure optimize will
combine such arrows into the abbreviated form with more than one letter per arrow.

Making the Machine Deterministic 23

example). The new state might itself contain a nondeterministic branch, but that’s okay
because the new state will eventually be processed as we continue to traverse the machine
graph.

You might think that this process could go on forever: that each new state check.nd
invents will turn out to include nondeterminism, which will require yet another new state
to resolve. Fortunately, that doesn’t happen; the process does always end eventually. (In
the next chapter we’ll see what the limit is on the number of necessary states for the
deterministic machine.)

Because determine uses a graph traversal algorithm to examine the original
machine’s states, it will never find “orphan” states that can’t be reached by arrows from
some other state. That’s why the process of making the machine deterministic also
eliminates orphan states, with no extra effort.

Eliminating Redundant States

The machines produced by determine are runnable, but often ugly; they contain many
more states than necessary. Procedure optimize eliminates many redundancies and
also combines arrows with the same head and tail but with different letters. First it goes
through the machine’s arrow list, creating a list for each state representing the exits from
that state:

START

[[* [A B]] C]

State 1: [[A 2] [C 4]]
State 2: [[B 3]]
State 3: [[A 2] [C 4]]
State 4: []

24 Chapter 1 ~ Automata Theory

In this machine, states 1 and 3 have the same exit list. (In these lists, each arrow is
represented with only two members; the arrow’s tail is not included. That’s because states
1 and 3 would not have identical lists if the tails were included. State 1’s list would be

[[1 A 2] [1C4]]

and state 3’s list would have arrows starting with 3. In the program, the two-member form
of an arrow is called a stubd.)

The program must be careful about the order in which it puts stubs in each state’s
list, so it doesn’t end up with

[[C 4] [A 2]]

for one of the states. That’s why stub.add takes trouble to insert each stub in a
well-defined position, rather than just adding each new stub at the beginning or end
of the list. It’s also in stub.add that arrows connecting the same two states but with
different letters are combined into a single arrow.

Since states 1 and 3 also agree in their acceptingness (namely they aren’t accepting
states), they can be combined into one state. Optimize.state can replace every
reference to state 3 with a reference to state 1.

A Finite-State Adder

I promised earlier to show you a use for finite-state machines other than accepting or
rejecting strings. In this section I'll fulfill that promise by designing a machine to add two
numbers. We’ll represent the numbers in binary notation, in which each digit represents
a power of 2 instead of a power of 10.

If you’ve come across binary numbers before, you can skip this paragraph. Just as
the ordinary notation for numbers is based on the ten digits 0 to 9, binary notation is
based on {wo digits, 0 and 1. In ordinary (“decimal”) notation, the amount that each
digit contributes to the total depends on where it is in the number. For example, in the
number 247, the digit 2 contributes two hundred, not just two, because it’s in the third
position counting from the right. Each digit’s contribution is the value of the digit itself
multiplied by a power of ten:

2%x10%2+4x10" +7x10°

A Finite-State Adder 25

(102 is 100; 10" is 10; 10° is just 1.) In binary, the contribution of each digit is multiplied
by a power of {wo, so the binary number 10101 represents

1x2*+0x2%+1x224+0%x20+1x9°

which is 16+ 4+ 1 (2% +22 +2°) or 21. Computers use binary notation because it’s easy to
build electrical circuits in which each wire is either on or off. In Chapter 2 we’ll talk about
an example. Right now I want to show something different—mnot an actual electronic
machine but an abstract machine based on the ideas we’ve been using in this chapter.

The machine will add two binary numbers, one digit position at a time, just the way
you add multi-digit numbers yourself. When you see a problem like

376
+572

you start at the right and say, “6 plus 2 is 8; 7 plus 7 is 14, which is 4 carry 1; 1 plus 3 plus
5is 9.” The finite-state adder works the same way except that the digits are always 0 or 1.

The machine will add any numbers, but to explain how it works I want to consider
a specific example. Let’s say we want to add 52 and 21. (By the way, I didn’t pick these
numbers because they name card games, but because the pattern of digits in their binary
forms is convenient for the explanation I want to give.) 52 in binary is 110100 (32+16+4)
and 21 is 10101 (16+4+1). I'm going to write these one above the other, with a couple of
extra zeros on the left to leave room for a possible carry:

00110100
00010101

Remember how a finite-state machine works: At a given moment it’s in some state, then
it reads some input symbol and goes to another state. In this problem, since we have two
numbers to add, the most natural way to think about it would be to give the machine two
inputs at a time. This idea doesn’t quite fit in with the formal definition of a finite-state
machine, but we can let the machine’s “alphabet” consist of pairs of digits, so something
like 01 would be a single input. (By the way, the word bit is commonly used as an
abbreviation for “binary digit.”) Just as you added vertical pairs of digits (first 6 and 2,
then 7 and 7, and so on) in the earlier example, we’ll use vertical pairs of bits as the
inputs to the finite-state adder, starting from the right end. So the first input will be 01,
then 00, then 11, then 00, then 11 again, then 10, and then 00 twice. From now on, in
this section, when you see something like 10 you should remember that it is a single input
to the finite-state machine, a single symbol, not two in a row. (In the diagram below, an

26 Chapter 1 ~ Automata Theory

arrow labeled 01/10 represents two arrows, one for the input 01 and one for the input
10. These two arrows will always go to the same state because 0+ 1 =1+0.)

We need to make one change in the notation used in machine diagrams. We no
longer want to mark each state as accepting (double circle) or rejecting (single circle).
Instead, each state produces an oufput that can be any arbitrary symbol. In this machine
the outputs will be 0 or 1, representing the binary digits of the sum. Inside each state
circle, instead of just a state number you’ll see something like “3/1”; this means that it’s
state number 3 and that the output from that state is 1.

Here is the machine:

START

01/ 10

=/
~

State 1, the start state, has no output. When the machine is in start state it hasn’t
seen any digits of the addends yet, so it can’t compute a digit of the sum. States 2 and
4 output a zero digit, while states 3 and 5 output a one. (Like the inputs, the number
that the machine outputs is presented with its rightmost bit first. The machine works this
way for the same reason that you add numbers from right to left: That’s the direction in
which a “carry” digit moves from one column to another.)

Why are there two zero-output states and {wo one-output states? The reason is that
the machine is in state 4 or 5 when there is a carry into the next digit of the sum.

Let’s trace through my example. We start in state 1. The first input symbol is 01,
representing a 0 in the rightmost (binary) digit of 52 and a 1 in the rightmost digit of 21.
The machine enters state 3 and outputs a 1.

The next input is 00 because both numbers have zero as the second digit. The
machine enters state 2 and outputs 0.

The next input is 11. The machine enters state 4 and outputs 0. Being in state 4
means that there is a carry from this position into the next.

A Finite-State Adder 27

You can finish the example yourself. The sum should be 01001001, or 73.

Counting and Finite-State Machines

Earlier we saw that you can’t write a regular expression for a rule that requires balanced
parentheses. Since regular expressions are equivalent to finite-state machines, you won’t
be surprised to learn that finite-state machines can’t count.

Actually, they can count up to a point; it’s just that each finite-state machine can only
count up to a fixed limit. For example, here is a finite-state machine that accepts strings
of balanced parentheses up to four deep:

START

This machine will accept strings like these:

@) (0)) 00
(00 (CCey)))y CecO))))

There is no limit to the length of the string this machine can handle. For example, it will
accept this:

O0000000000000
But there can be no more than four parentheses open at once; the machine will reject
(CCCe))))

Even this limited counting ability of finite-state machines is of great practical value.
Real computers, after all, are finite-state machines. Any real computer has a finite amount
of memory, and this memory can be in a finite number of states. But the number is quite
huge. If a real computer includes a parenthesis-counting program that is limited to, say,
20,000 levels of parentheses, nobody will ever notice that the limit isn’t infinite.

(The number of states in a real computer may be even larger than you’re thinking.
Each bit of computer memory isn’t a state. Instead, if a computer has » bits of memory
it has 2" states! For example, a computer with three bits of memory can use those bits to
represent eight states:

28 Chapter 1 ~ Automata Theory

PR, RPPOOOO
PP, OORKrHEKFE OO
RPORKFPORKr O+ O

The number of possible states in a typical large computer is greater than the number of
atoms in the galaxy.)

In a moment I’'m going to talk about a theoretical model of a machine with infinite
memory. You might wonder why it pays to study such machines, since any real machine
has to be limited in memory. The answer has to do with my example about the 20,000
levels of parentheses. It is theoretically possible to write a regular expression for such
strings. To show you how it’s done, here is a regular expression for up to three levels:

[+ (L] 1+ t[d t+ tLd Dl Dl D

(I’'ve drawn boxes around the actual alphabet-rule symbols just to make it a little easier
for you to distinguish between the parentheses, which are symbols in the input strings,
and the brackets, which are part of the glue that holds a regular expression together.)

There is no theoretical problem about extending this regular expression to allow
up to 20,000 parentheses. But a machine based on this technique would be very large
and complicated. Instead, it makes more sense to pretend that the computer has an
infinite amount of memory available and use a formal system (like the production rules
I mentioned briefly) that depends on an infinite memory. Such a formal system leads to
a shorter, more elegant expression of the balanced parentheses rule. In practice, we can
provide enough memory for any of the strings our program will actually meet.

Turing Machines

One way we might explore infinite machines is to imagine that they’re represented by
state diagrams, like those of finite-state machines, but with an infinite number of states.
For example, here is a picture of an infinite-capacity parenthesis counter:

Turing Machines 29

The trouble with this idea is that it’s hard to model precisely what’s meant by that
row of dots on the right. There’s no way we can have a complete formal description of an
infinitely complex machine.

Instead, consider what you do when you have to solve a problem too complex to fit
in your own memory. You don’t build yourself a bigger brain; you get a pencil and some
paper. That is, you use external storage. You can imagine that your brain is a finite-state
machine but that it has access to an infinite supply of paper.

Of course, this division of a problem’s necessary information into a finite ¢nternal
state and an infinite external memory also models actual computers in an obvious way.
The internal state in the model represents the internal memory of the computer, while
the external memory in the model represents such storage devices as disks and tapes. To
solve a bigger problem you don’t have to buy a bigger computer; you just have to switch
floppy disks occasionally.

You might think that the mathematical model I’'m talking about was based on the
analogy with real computers and that my story about the finite-state brain is just a
coincidence. Butin fact this model was invented by Alan M. Turing in 1936, before there
were any computers! It was human problem-solving that Turing wanted to model with a
machine.

What is a Turing machine? Start by imagining a finite-state machine with different
possible outputs, like the adder we saw earlier. Attached to this machine is a tape of
limitless length. Symbols from some alphabet, like the machine’s input and output
symbols, can be written on the tape. There is a reading and writing mechanism, like the
heads of a magnetic tape recorder, that can travel along the tape.

Just as each state of the machine can have an output associated with it, each state can
also take action to affect the tape: It can move the head by one symbol in either direction
and it can change the symbol at the head’s current position.

In fact, we simplify the formal description of the machine by using the tape as
the input/output device as well as the storage device. That is, we can start with some
sequence of symbols already written on the tape. That sequence serves as the input to
the machine; state transitions are based on the symbol under the tape head, not a symbol
from some other source. Likewise, the output from a state (if any) is written on the tape.

30 Chapter 1 ~ Automata Theory

Somewhat analogous to the concept of an accepting state in our earlier examples,
a Turing machine can have halting states. When the machine enters a halting state it
stops its operation. There are no more state transitions. The output from the machine is
whatever sequence of symbols it leaves written on the tape.

Turing’s Thesis

Turing invented his abstract machine because he was trying to formalize the idea of an
effective procedure: What does it mean to specify a technique for solving some problem well
enough that we can be sure it will really work? As an analogy, think about directions for
driving from here to somewhere. Someone can hand you a piece of paper with a list of
instructions like “When you get to the gas station on the left, turn right.” But sometimes
you get directions that weren’t careful enough. There may be a sharp right turn and a
mild right turn available near the gas station. There may be a fork in the road before you
even get to the gas station.

Turing’s idea is that any problem for which there is any effective procedure can be
modeled by a Turing machine. The phrase “any effective procedure” is taken to include
the workings of the human mind. If Turing is right, any problem that a person can solve
can be programmed for a computer.

This claim isn’t something that can be proved or disproved mathematically because
there is no prior formal definition of “effective procedure” to which Turing machines can
be compared. Also, it may be that the idea of a procedure somehow doesn’t cover all the
different kinds of thinking that people do. Maybe it’s true, for example, that computers
are potentially as powerful as people at solving problems, but “solving problems” might
not turn out to be an appropriate description of what’s going on when we feel emotions.
If that turned out to be true, we should expect a computer to become the world’s chess
champion someday, but we shouldn’t expect one to become the world’s champion poet.

But this possible conclusion has been attacked from both sides. Some people think
that emotions really are a matter of computable procedures. Kenneth Colby’s program
called Parry attempts to model the behavior of a paranoid human being by manipulating
variables for emotions like anger and fear. On the other hand, some people think that
even chess doesn’t fall within the realm of things that people do by carrying out effective
procedures in Turing’s sense. A chess master, these people say, doesn’t analyze the chess
board in a step-by-step fashion like a computer. He looks at the board as a single, whole
entity, and the important features just spring to mind by some process that is still rather
mysterious.

Turing’s Thesis 31

What is known is that several other mathematical models of effective procedures
have been shown to be equivalent to Turing machines, in the same sense in which regular
expressions are equivalent to finite-state machines. For example, all of the popular
programming languages are Turing-equivalent. There’s no such thing as a computation
that can be done in Logo but not in Pascal, or vice versa. (Of course, one language may
be more convenient than another for a given problem.)

The Halting Theorem

I'm not going to get into specific examples of Turing machine programming here. That
would take too much space for a single chapter; if you’re interested you should pursue
the topic in a book on automata theory. ButI want to give one example of the theoretical
value of Turing machines.

You’ve undoubtedly had the experience of writing a Logo program with a bug that
causes an “infinite loop”—you run the program and it just sits there forever, when instead
it’s supposed to compute and print some results. That’s a frustrating kind of bug because
you’re never quite sure if the program is really broken or if it’s just very slow. Maybe if
you waited another minute it would come up with the answer. Wouldn’t it be great if,
when you started the program running, Logo could print an error message like This
program has an infinite loop, just as it does for other errors?

It turns out that infinite loops can’t, in general, be detected automatically. Certainly
some infinite loops are very easy to spot, and we can write programs that catch certain
categories of infinite loop. But we can’t write a program that’s guaranteed to catch infinite
loops in programs, in Logo or any other Turing-equivalent language. The fact that it’s
impossible is called the halting theorem.

It’s a little tricky understanding just what the halting theorem says because it involves
Turing machines that manipulate Turing machines as data, which is a kind of self-
reference akin to recursion. Self-reference is always hard to talk about and can lead to
paradoxes like the classic “This statement is false.” (Is the sentence in quotes true or
false? Ifit’s true, then it must be false, because it says so. But if it’s false, and it says it’s
false, it must really be true!) So let’s proceed carefully.

The data recorded on a Turing machine’s tape is a string of symbols. Generally we
choose the symbols to represent something meaningful; for example, a string of digits
can represent a number. Earlier in this chapter we used strings of symbols like

[1 [[1A2] [2B3] [3A2]] [13]]

32 Chapter 1 ~ Automata Theory

to represent a finite-state machine. There’s no reason we couldn’t put that string of
symbols on the tape of a Turing machine as its input. For example, we could build
a Turing machine that would work like my fsm program, simulating the finite-state
machine that it found written on its tape when it started.

Letting a Turing machine simulate a finite-state machine doesn’t raise questions
of self-reference. But a Turing machine, too, is a formal structure; it, too, can be
represented as a string of symbols.

Because a representation of a Turing machine can be the input to another Turing
machine, we can design Turing machines that answer questions about Turing machines.
For example, we can write a universal Turing machine, one that simulates any Turing
machine the way £sm simulates any finite-state machine.

A universal Turing machine (a Turing machine simulator) sort of halfsolves the
halting problem. Suppose we want to know whether a given machine will halt after it
is started with a given input. (This is like asking whether a certain Logo procedure
will terminate if it’s invoked with a particular input.) We can use the universal Turing
machine to simulate the one we’re interested in. If the machine does halt, we’ll find out
about it. But if the machine in question doesn’t halt, then the simulator won’t halt either.
We’ll still have the problem we had in the first place—how can we be sure it won’t finally
halt if we give it another minute?

To solve the halting problem, what we need is a Turing machine that accepts a
representation of any Turing machine as input, just like the universal Turing machine.
But this one has to be guaranteed to halt, even if the input machine wouldn’t halt. That’s
what the halting theorem says we can’t do.

Proving the Halting Theorem in Logo

What makes it possible to raise the question of whether a Turing machine can decide
whether another Turing machine would halt for a given input tape is the fact that one
Turing machine’s “program” can be represented as data for another Turing machine.
This is also true of Logo procedures. In particular, the higher-order procedures like map
and filter manipulate other procedures by accepting their names as inputs. We can,
therefore, use Logo procedures to illustrate the proof of the halting theorem.

We’ll consider a Logo procedure with an input as analogous to a Turing machine
with its input tape. We want to prove that there can’t be a Logo procedure that could tell
whether such a procedure stops for a given input. The technique we use is called proof by

Proving the Halting Theorem in Logo 33

contradiction. In this technique we assume that there is such a procedure, then show that
this assumption leads to a paradox.

So let’s imagine that someone has written a Logo predicate haltp that takes two
inputs: the name of a procedure and an input value for that procedure. Haltp will
output true if the procedure it’s testing would eventually stop, given the specified input;
haltp outputs false if the procedure it’s testing would get into an infinite loop, like
a recursive procedure without a stop rule. (In practice, if you think about your own
experience debugging programs, it’s easy to tell if a procedure doesn’t have a stop rule at
all, but not so easy to be sure that the stop rule will always eventually be satisfied. Think
about a Pig Latin program given a word of all consonants as input. We want

to piglatin :word

if memberp first :word [a e i o u] [output word :word "ay]
output piglatin word bf :word first :word

end

? print haltp "piglatin "salami
true

? print haltp "piglatin "mxyzptlk
false

Remember that haltp itself must always stop, even in the case where piglatinwouldn’t
stop.)
Now consider this Logo procedure:
to try :proc
if haltp :proc :proc [loop]
end
to loop

loop
end

Since haltp works, we’re assuming, on any Logo procedure with one input, it must work
on try in particular. What happens if we say

? try "try
Does this stop or loop? Suppose it stops. try begins its work by evaluating the expression

haltp "try "try

34 Chapter 1 ~ Automata Theory

Since we’ve said try will stop, given try as input, haltp will output true. It follows,
from the definition of try, that try will invoke loop and will not stop. Similarly, if
we start with the assumption that try will loop, then haltp must output false and
so, from the definition of try, you can see that try will stop. Whatever value haltp
outputs turns out to be incorrect.

It was the assumption that we could write an infallible haltp that led us into this
contradiction, so that assumption must be wrong. We can’t write a Logo procedure that
will automatically detect infinite loops in our programs. A similar proof could be made
in any language in which one program can manipulate another program as data—that is,
in any Turing-equivalent language.

Program Listing

;77 Finite State Machine Interpreter (FSM)

to game :which
fsm thing word "mach :which
end

to fsm :machine

cleartext

setcursor [0 3]

localmake "start startpart :machine
localmake "moves movepart :machine
localmake "accept acceptpart :machine
fsml :start

end

to fsml :here

ifelse memberp :there :accept [accept] [reject]
fsml (fsmnext :here readchar)

end

to fsmnext :here :input

blank
if memberp :input (list char 13 char 10) -~
[print ifelse memberp :here :accept ["| ACCEPT|] ["| REJECT]|]

output :start]
type :input
catch "error [output last find [fsmtest :here :input ?] :moves]
output -1
end

Program Listing 35

to fsmtest :here :input :move

output and (equalp :here arrowtail :move) -~
(memberp :input arrowtext :move)

end

;; Display machine state

to accept
display "accept
end

to reject
display "reject
end

to blank
display "|
end

to display :text
localmake "oldpos cursor
setcursor [15 1]

type :text

setcursor :oldpos

end

;; Data abstraction for machines

to startpart :machine
output first :machine
end

to movepart :machine
output first bf :machine
end

to acceptpart :machine
output last :machine
end

to make.machine :start :moves :accept

output (list :start :moves :accept)
end

36

Chapter 1 ~ Automata Theory

;; Data abstraction for arrows

to arrowtail :arrow
output first :arrow
end

to arrowtext :arrow
output first butfirst :arrow
end

to arrowhead :arrow
output last :arrow
end

to make.arrow :tail :text :head
output (list :tail :text :head)
end

;7 Machine descriptions for the guessing game

make "machl [1 [[1 AB 1]] [1]]

make "mach2 [1 [[1 ABC 2] [2 ABC 1]] [11]

make "mach3 [1 [[1 A 2] [2 B 3] [3 ABC 3]] [31]
make "mach4 [1 [[1 A 2] [1 B 3] [1 C 4] [2 A 1]
make "mach5 [1 [[1 ABC 2] [2 B 1]] [1]]

[3B 1] [4C 1]]

make "mach6 [1 [[1 A 2] [2 AB 2] [2 C 3] [3 AB 2] [3 C 3]]

make "mach7 [1 [[1 AB 1] [1 C 2] [2 C 1]] [1]]

make "mach8 [1 [[1 A 2] [1 BC 1] [2 A 1] [2 BC 2]] [1]]

make "mach9 [1 [[1 AB 1] [1 C 2] [2 A 3] [2 B 1]

[3 A 1]]

make "machlO [1 [[1 A 2] [1 BC 1] [2 A 2] [2 B 3] [2 C 1]

[3A2] [3B1] [3C 4] [4 A 2]
[5A 6] [5 BC 1] [6 ABC 6]]
[6]1]

[4 B 5] [4C 1]

;17 Regular Expression to FSM Translation (MACHINE)

to machine :regexp

localmake "nextstate 0

output optimize determine nondet :regexp
end

Program Listing

(311

(111

(111

;; First step: make a possibly nondeterministic machine

to nondet :regexp
if and (wordp :regexp) (equalp count :regexp 1) ~
[output ndletter :regexp]
if wordp :regexp [output ndor reduce "sentence :regexp]
if equalp first :regexp "or [output ndor butfirst :regexp]
if equalp first :regexp "* [output ndmany last :regexp]
output ndconcat :regexp
end

;+ Alphabet rule

to ndletter :letter

localmake "from newstate

localmake "to newstate

output (make.machine :from
(list (make.arrow :from :letter :to))
(list :to))

end

;; Concatenation rule

to ndconcat :exprs
output reduce "string (map "nondet :exprs)
end

to string :machinel :machine2
output (make.machine (startpart :machinel)
(sentence (movepart :machinel)
(splice acceptpart :machinel :machine2)
(movepart :machine2))
(stringa (acceptpart :machinel)
(startpart :machine2)
(acceptpart :machine2)))
end

to stringa :acceptl :start2 :accept2

if memberp :start2 :accept2 [output sentence :acceptl :accept2]
output :accept2

end

38 Chapter 1 ~ Automata Theory

;; Alternatives rule

to ndor :exprs
localmake "newstart newstate
localmake "machines (map "nondet :exprs)
localmake "accepts map.se "acceptpart :machines
output (make.machine :newstart
(sentence map.se "movepart :machines
map.se "or.splice :machines)
ifelse not emptyp find [memberp (startpart ?)
(acceptpart ?)]
:machines
[fput :newstart :accepts]
[:accepts])
end

to or.splice :machine
output map [newtail ? :newstart] (arrows.from.start :machine)
end

;; Repetition rule

to ndmany :regexp
localmake "machine nondet :regexp
output (make.machine (startpart :machine)
sentence (movepart :machine)
(splice (acceptpart :machine) :machine)
fput (startpart :machine) (acceptpart :machine))
end

Generate moves from a bunch of given states (:accepts) duplicating
the moves from the start state of some machine (:machine).

Used for concatenation rule to splice two formerly separate machines;
used for repetition rule to "splice" a machine to itself.

Ne Ne Neo ~e
~e Ne Ne ~e

to splice :accepts :machine
output map.se [copy.to.accepts ?] (arrows.from.start :machine)
end

to arrows.from.start :machine

output filter [equalp startpart :machine arrowtail ?] movepart :machine
end

Program Listing 39

to copy.to.accepts :move
output map [newtail :move ?] :accepts
end

to newtail :arrow :tail
output make.arrow :tail (arrowtext :arrow) (arrowhead :arrow)
end

;; Make a new state number

to newstate

make "nextstate :nextstate+l
output :nextstate

end

Second step: Turn nondeterministic FSM into a deterministic one
Also eliminates "orphan" (unreachable) states.

~e ~e
~e ~e

to determine :machine
localmake "moves movepart :machine
localmake "accepts acceptpart :machine
localmake "states []
localmake "join.state.list []
localmake "newmoves nd.traverse (startpart :machine)
output make.machine (startpart :machine) -~
tnewmoves -~
filter [memberp ? :states] :accepts
end

to nd.traverse :state

if memberp :state :states [output []]

make "states fput :state :states

localmake "newmoves (check.nd filter [equalp arrowtail ? :state] :moves)
output sentence :newmoves map.se "nd.traverse (map "arrowhead :newmoves)
end

40 Chapter 1 ~ Automata Theory

to check.nd :movelist
if emptyp :movelist [output []]
localmake "letter arrowtext first :movelist
localmake "heads sort map "arrowhead -~
filter [equalp :letter arrowtext ?] :movelist
if emptyp butfirst :heads ~
[output fput first :movelist
check.nd filter [not equalp :letter arrowtext ?]
tmovelist]
localmake "check.heads member :heads :join.state.list
if not emptyp :check.heads ~
[output fput make.arrow :state :letter first butfirst :check.heads ~
check.nd filter [not equalp :letter arrowtext ?]
:movelist]
localmake "join.state newstate
make "join.state.list fput :heads fput :join.state :join.state.list
make "moves sentence :moves -~
map [make.arrow :join.state
arrowtext ?
arrowhead ?] ~
filter [memberp arrowtail ? :heads] :moves
if not emptyp find [memberp ? :accepts] :theads ~
[make "accepts sentence :accepts :join.state]
output fput make.arrow :state :letter :join.state ~
check.nd filter [not equalp :letter arrowtext ?] :movelist
end

to sort :list

if emptyp :1list [output []]

output insert first :list sort butfirst :list
end

to insert :value :sorted

if emptyp :sorted [output (list :value)]

if :value = first :sorted [output :sorted]

if :value < first :sorted [output fput :value :sorted]
output fput first :sorted insert :value butfirst :sorted
end

Program Listing 41

;7 Third step: Combine redundant states.
;; Also combines arrows with same head and tail:
i [1A2] [1B2] ->[1AB 2].

to optimize :machine
localmake "stubarray array :nextstate
foreach (movepart :machine) "array.save
localmake "states sort fput (startpart :machine) ~
map "arrowhead movepart :machine
localmake "start startpart :machine
foreach reverse :states [optimize.state ? ?rest]
output (make.machine :start
map.se [fix.arrows ? item ? :stubarray] :states
filter [memberp ? :states] acceptpart :machine)
end

to array.save :move
setitem (arrowtail :move) :stubarray ~

stub.add (arrow.stub :move) (item (arrowtail :move) :stubarray)
end

to stub.add :stub :stublist
if emptyp :stublist [output (list :stub)]
if (stub.head :stub) < (stub.head first :stublist) ~

[output fput :stub :stublist]
if (stub.head :stub) = (stub.head first :stublist) ~

[output fput make.stub letter.join (stub.text :stub)

(stub.text first :stublist)
stub.head :stub
butfirst :stublist]

output fput first :stublist (stub.add :stub butfirst :stublist)
end

to letter.join :this :those

if emptyp :those [output :this]

if beforep :this first :those [output word :this :those]
output word (first :those) (letter.join :this butfirst :those)
end

42 Chapter 1 ~ Automata Theory

to optimize.state :state :others
localmake "candidates ~
filter (ifelse memberp :state acceptpart :machine
[[memberp ? acceptpart :machine]]
[[not memberp ? acceptpart :machine]]) -~
tothers
localmake "mymoves item :state :stubarray
localmake "twin find [equalp (item ? :stubarray) :mymoves] :candidates
if emptyp :twin [stop]
make "states remove :state :states
if equalp :start :state [make "start :twin]
foreach :states -~
[setitem ? :stubarray
(cascade [emptyp ?2]
[stub.add (change.head :state :twin first ?22)
?21]
filter [not equalp stub.head ? :state]
item ? :stubarray
[butfirst ?2]
filter [equalp stub.head ? :state]
item ? :stubarray)]
end

to change.head :from :to :stub

if not equalp (stub.head :stub) :from [output :stub]
output list (stub.text :stub) :to

end

to fix.arrows :state :stublist
output map [stub.arrow :state ?] :stublist
end

;; Data abstraction for "stub" arrow (no tail)

to arrow.stub :arrow
output butfirst :arrow
end

to make.stub :text :head
output list :text :head
end

to stub.text :stub

output first :stub
end

Program Listing 43

to stub.head :stub
output last :stub
end

to stub.arrow :tail :stub

output fput :tail :stub
end

44

Chapter 1 ~ Automata Theory

