
process.snetence

algs

process.word

3 Algorithms and Data Structures

analysis of algorithms. correctness
efficiency

algorithms programs

program verification,

107

to process.sentence :sent
output fput (process.word first :sent) (process.sentence bf :sent)
end

to process.sentence :sent
if emptyp :sent [output []]
output fput (process.word first :sent) (bf :sent)
end

Program file for this chapter:

What’s wrong with this procedure?

If you said “It’s a recursive procedure without a stop rule,” you’ve solved a simple problem
in This branch of computer science is concerned with the
and the of programs.

The field is called analysis of rather than analysis of because
the emphasis is on the meaning of a program (how you might express the program in
English) and not on the details of its expression in a particular language. For example,
the error in the procedure

is just as fatal as the error in the first example, but there isn’t much of theoretical
interest to say about a misspelled procedure name. On the other hand, another branch
of computer science, is concerned with developing techniques to
ensure that a computer program really does correctly express the algorithm it is meant
to express.

The examples I’ve given so far are atypical, it’s worth noting, in that you were able to
see the errors in the procedures without having any real idea of what they do! Without
seeing you can tell that this program is doing something or other to
each word of a sentence, but you don’t know whether the words are being translated

2

2

− ± √ −

Local Optimization vs. Efficient Algorithms

data structures,

not

order of growth,

quadratic formula

x
b b ac

a
x

ax bx c

108 Chapter 3 Algorithms and Data Structures

to quadratic :a :b :c
localmake "x1 (-:b + sqrt (:b*:b - 4*:a*:c))/2*:a
localmake "x2 (-:b - sqrt (:b*:b - 4*:a*:c))/2*:a
print (sentence [The solutions are] :x1 "and :x2)
end

to another language, converted from upper case to lower case letters, translated into a
string of phoneme codes to be sent to a speech synthesizer, or what. (Even what I just said
about doing something to the words of a sentence is an inference based on the names
of procedures and variables, which might not really reflect the results of the program.)
More interesting problems in analysis of algorithms have to do with the specific properties
of particular algorithms.

In this chapter I discuss algorithms along with the different ways in
which information can be represented in a computer program, because these two aspects
of a program interact strongly. That is, the choices you make as a programmer about
data representation have a profound effect on the algorithms you can use to solve your
problem. Similarly, once you have chosen an algorithm, that choice determines the
particular kinds of information your program will need to do its work. Algorithms and
data structures are the central concerns of software engineering, the overall name for the
study of how to turn a problem statement into a working program in a way that uses both
the computer and the programming staff effectively.

When you’re trying to make a computer program run as fast as possible, the most obvious
place to start is with the details of the instructions in the program. But that’s generally
the most effective approach. Rethinking the big picture can give much more dramatic
improvements. To show you what I mean, I’ll give some examples of both. Later I’ll talk
about a more formal way to understand this same idea.

Consider the following procedure that implements the

=
4

2
This formula gives the two values of that solve the equation

+ + = 0

−
−

−

−

2

1
2

2

2

quadratic 2 5 -3

quadratic

quadratic

quadratic

quadratic

x x
x x

x x

x
i i

robust;

common subexpression elimination.

Local Optimization vs. Efficient Algorithms 109

sqrt doesn’t like -1 as input.

sqrt (:b*:b - 4*:a*:c)

to quadratic :a :b :c
localmake "sqrt sqrt (:b*:b - 4*:a*:c)
localmake "x1 (-:b + :sqrt)/2*:a
localmake "x2 (-:b - :sqrt)/2*:a
print (sentence [The solutions are] :x1 "and :x2)
end

Before we talk about the efficiency of this program, is it correct? This is not a simple
yes-or-no question. The procedure gives the correct results for those quadratic equations
that have two real solutions. For example, the equation 2 + 5 3 = 0 has the solutions

= 3 and = ; the instruction will print those solutions. Some
quadratic equations, like 8 + 16 = 0, have only one solution; for these equations,

prints the same solution twice, which is not exactly incorrect but still a little
embarrassing. Other equations, like + 1 = 0, have solutions that are complex numbers.
Depending on our purposes, we might want to print the solutions and
for this equation, or we might want it to print “This equation has no real solutions.” But
since most versions of Logo do not provide complex arithmetic, what will really happen
is that we’ll get the error message

If is used as part of a larger project, getting the Logo error message means
that the program dies altogether in this case without a chance to recover. If we have
several equations to solve, it would be better if the program could continue to the
remaining equations even if no solution is found for one of them. A program that
operates correctly for the kinds of inputs that the programmer had in mind, but blows
up when given unanticipated inputs, is said not to be a robust program should do
something appropriate even if there are errors in its input data.

But my real reason for displaying this example is to discuss its efficiency. It computes
the expression

twice. Multiplication is slower than addition on most computers; this expression involves
three multiplications as well as the even slower square root extraction. The program
would be faster if it were written this way:

This kind of change to a program is called It’s a pretty
easy way to speed up a program; so easy, in fact, that some “optimizing compilers” for
large computers do it automatically. In other words, an optimizing compiler for Logo
would treat the first version of as if it were written like the second version.
(As far as I know, nobody has actually written such a compiler for Logo.)

2

local

n
n

n t nt
nt

n t

110 Chapter 3 Algorithms and Data Structures

quadratic

first butfirst fput
last butlast lput

fput

lput
lput

fput lput

fput
lput

reverse
reverse

first fput

* The actual time depends not only on what model of computer you have but also on how much
memory and what else is in it.

print cascade 1000 [lput # ?] []

print reverse cascade 1000 [fput # ?] []

to reverse :list
if emptyp :list [output []]
output lput first :list reverse bf :list
end

Common subexpression elimination is an example of optimization. This means
that we improved the program by paying attention to one small piece of it at a time. (A
less elegant name for local optimization is “code bumming.”) Is it worth the effort? It
depends how many times this procedure will be run. When I say that multiplication is
slow, I mean that it takes a few millionths of a second. If you are writing a
procedure to do the dozen problems in your high school algebra homework, the extra
time you spend thinking up the second version and typing it into the editor probably
outweighs the saving of time in running the procedure. But if you are trying to predict the
weather and need to solve tens of thousands of equations, the saving may be significant.

If you want to write locally optimized Logo programs, it’s important to know that
, , and take a constant amount of time regardless of the length of

the input list, whereas , , and take an amount of time proportional
to the length of the list. If you add items to a list, one by one, using , the length
of time required is times the constant amount of time for each item. But if you add
the same items using , if the first item takes microseconds, the last takes .
On the average, each takes something like /2 microseconds, so the total time is

/2. The gain in efficiency from using instead of isn’t significant if your
list has only a few items, but the gain gets more and more significant as the size of the
list increases. Suppose you want to create a list of the numbers from 1 to 1000. One
straightforward way would be

On my home computer this instruction takes about 26 seconds.* If you just use in
place of the list will come out in the wrong order, but it’s possible to reverse the
order of that list to get the same result as the first version:

You might think this would be slower, because it has the extra step. But in
fact this instruction took about 12 seconds. (It’s important that the tool in the
Berkeley Logo library uses and to do its work. If we used the more obvious

⋅ ⋅

6
2

4
2

10
2

6
3

6
2

4
1

4
3

4
2

6
1

lput cascade lput

lock

simplex

simp

lock 10
simplex 10 simp 10

global

recursive function

programming
mathematics.

three

Local Optimization vs. Efficient Algorithms 111

then the elimination of in the template would be offset by the in
the reversal.)

At the other extreme, the broadest possible optimization of a program is to
think of an entirely new algorithm based on a different way of thinking about the original
problem. As an example, in Chapter 2 there are three different programs to solve the
Simplex lock problem. The first program, , works by enumerating explicitly all
the different patterns of possible combinations. That algorithm is not fundamentally
recursive; although my Logo implementation includes recursive subprocedures, the
number of combinations for a five-button lock is not determined on the basis of the
number for a four-button lock. (The program does compute the number of combinations
that use four out of the five available buttons, but that isn’t the same thing.) The second
program, , is based on a mathematical argument relating the number of
combinations to a fairly simple —that is, a mathematical function with
an inductive definition. Because the function is computationally simple, the intellectual
energy I invested in doing the mathematics paid off with a significantly faster program.
The third version, , uses a closed form formula that solves the problem in no time!

To illustrate more sharply the differences among these three programs, I tried each
of them on a ten-button version of the Simplex lock. To compute took 260
seconds on my computer; took 80 seconds; and took less than half
a second. For this size lock, understanding the mathematical idea of a recursive function
sped up the program by a factor of three, and using the mathematical technique called
generating functions achieved an additional speedup by a factor of almost 200! What’s
important to understand about this example is that it wasn’t better skill that
made the difference, but greater knowledge of (In the next section, though,
you’ll learn a programming trick that can sometimes achieve similar speedups.)

Many “trick” math problems involve a similar shift in thinking about the fundamental
algorithm to be used. For example, in Chapter 2 we computed the probability of picking
a matching pair of socks out of a drawer containing six brown and four blue socks this
way:

pairs of 2 browns + pairs of 2 blues
total pairs

=
() + ()

()
=

21
45

Suppose we ask this question: Out of the same drawer of six browns and two blues, we
pick socks at random; what is the probability that at least two of the socks match?

The number of triples of socks in which at least two are brown is the number in
which all three are brown, (), plus the number in which two are brown and one is blue,
() (). The number in which at least two are blue is, similarly, () + () (). The

⋅ ⋅ ⋅ ⋅

socks

Memoization

10
3

6
3

6
2

4
1

4
3

4
2

6
1

10
3

112 Chapter 3 Algorithms and Data Structures

to haspair :triple
output or (memberp first :triple butfirst :triple) ~

(equalp (item 2 :triple) last :triple)
end

to t :n :k
if equalp :k 0 [output 1]
if equalp :n 0 [output 0]
output (t :n :k-1)+(t :n-1 :k)
end

total number of triples is of course (). So the probability of a matching pair within the
chosen triple is

() + () () + () + () ()

()
=

20 + 15 4 + 4 + 6 6
120

=
120
120

= 1

which is 100% probability. We could modify the procedure to get the same result
by listing all the possible triples and then filtering all the ones containing a matching
pair, using a filter like

But the problem becomes entirely trivial if you notice that there are only two possible
colors, so obviously there is no way that three randomly chosen socks can have three
distinct colors! Of course there has to be a matching pair within any possible triple.
A problem like this, that invites a messy arithmetic solution but is obvious if properly
understood, is the mathematician’s idea of a joke. (Did you get it?)

Some efficiency tricks are applicable to a number of different problems and become
part of the “toolkit” of any professional programmer. One example is relevant to many
inductively defined functions; the trick is to have the program remember the result of
each invocation of the function. For example, in Chapter 2 we defined the number of
terms in a multinomial expansion to be

1
2

t 4 7

t

t 4 7

t 8 10
t 12 12

t

t

t
t

t
t
t

t t
t
t

t

t
t t

t
t

t

t
t
t

t
t

t
t

minutes
seconds.

hours

Memoization 113













{





{









{

{

to t :n :k
localmake "result gprop :n :k
if not emptyp :result [output :result]
make "result realt :n :k
pprop :n :k :result
output :result
end

to realt :n :k
if equalp :k 0 [output 1]
if equalp :n 0 [output 0]
output (t :n :k-1)+(t :n-1 :k)
end

What happens when we compute ?

(4, 7)

(4, 6)

(4, 5)
(4, 4) . . .

(3, 5)
(3, 4) . . .
(2, 5) . . .

(3, 6) (3, 5)
(3, 4) . . .
(2, 5) . . .

(2, 6) . . .

(3, 7)
(3, 6) (3, 5)

(3, 4) . . .
(2, 5) . . .

(2, 6) . . .

(2, 7)
(2, 6) . . .
(1, 7) . . .

Many calculations are performed repeatedly. In the chart above I’ve underlined three
places where (3, 5) is computed. Each of those in turn involves repeated computation
of (3, 4) and so on. This computation took me about 18 seconds.

Here is a version of that uses property lists to remember all the values it’s already
computed. This version will calculate (3, 5) only the first time it’s needed; a second
request for (3, 5) will instantly output the remembered value.

Computing isn’t really a big enough problem to show off how much faster this
version is; even the original program takes only 2 seconds on my home computer. But
the amount of time needed grows quickly as you try larger inputs. Using the original
procedure from Chapter 2, my computer took just under five to compute ;
the program shown here took less than two This program computed in
about three seconds; I estimate that the original procedure would take five to solve
that problem! (As you can imagine, I didn’t try it.)

⋅
−

∑()1

=0

n

i

n
i

[t 120 h 83]

t
t 4 7 t 4 6 t 3 7

f n
n
i

f i

f n n
f i

f i

t h

114 Chapter 3 Algorithms and Data Structures

round ?1 ?2

0 [1] [1 1]
1 [1 1] [1 2 1]
2 [3 1 1] [1 3 3 1]
3 [13 3 1 1] [1 4 6 4 1]
4 [75 13 3 1 1] [1 5 10 10 5 1]
5 [541 75 13 3 1 1] [1 6 15 20 15 6 1]

t* I’ve used property lists of numbers to hold the remembered values of the function. If I
wanted to use the same technique for some other function in the same workspace, I’d have to find
a way to keep the values for the two functions from getting in each other’s way. For example, if

and some other function , then I might store the value

on the appropriate property list.

The memoized version of has the same structure as the original. That is, in order
to compute , the program must first carry out the two subtasks and .
The only difference between the original version and the memoized version is that in the
latter, whenever a second invocation is made with inputs that have already been seen, the
result is output immediately without repeating that subtask. Any recursive function can
be memoized in the same way.*

Sometimes, though, the same general idea—remembering the results of past
computations—can be used more effectively by changing the program structure so
that just the right subproblems are solved as they’re needed to work toward the overall
solution. Rearranging the program structure isn’t called memoization, but we’re still
using the same idea. For example, the Simplex lock function

() = ()

from Chapter 2 is a combination (sorry about the pun) of values of two functions. It
isn’t exactly helpful to remember every possible value of () because each value is used
only once. But the calculation of () uses the entire th row of Pascal’s Triangle, and
it’s easy to compute that if we remember the row above it. The values of () are used
repeatedly, so it makes sense to keep a list of them. So my plan is to have two lists, the
first of which is a list of values of () and the second a row of Pascal’s Triangle:

(4, 7) = 120 (4, 7) = 83

1
2

?1

simplex

simp

Sorting Algorithms

f
f

dynamic programming:

Sorting Algorithms 115

to simplex :buttons
output 2 * first (cascade :buttons

[fput (sumprods bf ?2 ?1) ?1] [1]
[fput 1 nextrow ?2] [1 1])

end

to sumprods :a :b
output reduce "sum (map "product :a :b)
end

to nextrow :combs
if emptyp butfirst :combs [output :combs]
output fput (sum first :combs first butfirst :combs) ~

nextrow butfirst :combs
end

The solution to the problem is twice the first member of the last value of .

Instead of starting with a request for (5) and carrying out subtasks as needed, the
new program will begin with (0) and will work its way up to larger input values until the
desired result is found. This technique is called

I tried both versions of for a 12-button lock. The version in Chapter 2 took about
5 minutes to get the answer (which is that there are about 56 billion combinations); this
version took about one second, comparable to the closed form procedure.

If you just read this program with no prior idea of what algorithm it’s using, it
must be hard to see how it reflects the original problem. But if you think of it as a
quasi-memoization of the earlier version it should make sense to you.

Every textbook on algorithms uses sorting as one of its main examples. There are several
reasons for this. First of all, sorting is one of the most useful things to do with a computer,
in a wide variety of settings. There are many different known sorting algorithms, ranging
from obvious to subtle. These algorithms have been analyzed with great care, so a lot is
known about their behavior. (What does that mean? It means we can answer questions
like “How long does this algorithm take, on the average?” “How long does it take, at
worst?” “If the things we’re sorting are mostly in order to begin with, does that make
it faster?”) And all this effort pays off, in that the cleverest algorithms really are much
faster than the more obvious ones.

> =
lessthanp

sort

show sort [5 20 3 5 18 9]

116 Chapter 3 Algorithms and Data Structures

to lessthanp :a :b
if not namep "comparisons [make "comparisons 0]
make "comparisons :comparisons+1
output :a < :b
end

to howmany
print :comparisons
ern "comparisons
end

?
[3 5 5 9 18 20]

The problem we want to solve is to take a list in unknown order and rearrange it to
get a new list of the same members in some standard order. This might be alphabetical
order if the members of the list are words, or size order if they’re numbers, or something
else. For the most part, the exact ordering relation isn’t very important. As long as we
have a way to compare two items and find out which comes first (or that they’re equal,
sometimes) it doesn’t matter what the details of the comparison are. To make things
simple, in this chapter I’ll assume we’re always sorting numbers.

Because the length of time per comparison depends on the nature of the things
being compared, and because that length isn’t really part of what distinguishes one
sorting algorithm from another, analyses of the time taken by a sorting program are
usually expressed not in terms of seconds but in terms of number of comparisons. This
measure also eliminates the effect of one computer being faster than another. To help
make such measurements, we’ll compare two numbers using this procedure:

Of course, if we want to use or comparisons in a sorting algorithm, we should write
analogous procedures for those. But in fact I’ll only need for the algorithms
I’m going to show you. After trying out a sort program, we can find out how many
comparisons it made using this convenient little tool:

After telling us the number of comparisons, this procedure erases the counter variable to
prepare for the next experiment.

If you haven’t studied sort algorithms before, it will be a good exercise for you to
invent one yourself before you continue. Your procedure should take a list of
numbers as input, and should output a list of the same numbers in order from smallest
to largest.

Sorting by Selection

unique

selection

Sorting by Selection 117

make "list cascade 100 [fput random 100 ?] []

[11 41 50 66 41 61 73 38 2 94 43 55 24 1 77 77 13 2 93 35
43 69 9 46 88 20 43 73 11 74 69 33 28 4 5 1 15 17 13 94
88 42 12 31 67 42 30 30 13 91 31 8 55 6 31 84 57 50 50 31
36 52 5 12 10 19 69 0 9 81 62 14 39 54 45 72 18 47 48 35
76 44 77 34 75 52 61 86 34 44 64 53 25 39 4 55 55 54 53 64]

Notice that it’s allowable for two (or more) equal numbers to appear in the input.

So that we can compare different algorithms fairly, we should try them on the same
input data. You can make a list of 100 random numbers this way:

You should try out both your sort procedures and mine on your random list. In case you
want to try your algorithm on my data, to compare the exact numbers of comparisons
needed, here is the list I used:

Notice in passing that this is a list of 100 random numbers, but not a list of the first 100
numbers in random order. Some numbers, like 43, appear more than once in the list,
while others don’t appear at all. This is perfectly realistic for numbers that occur in real
life, although of course some situations give rise to lists of items.

Although there are many known sorting algorithms, most fall into two main groups.
There are the ones that order the input items one at a time and there are the ones that
divide the problem into roughly equal-sized smaller problems. I’ll show you one of each.
Within a group, the differences between algorithms have to do with details of exactly how
the problem is divided into pieces, what’s where in computer memory, and so on. But
these details are generally much less important than the basic division between the two
categories. If you took my advice and wrote your own sort procedure, and if you hadn’t
studied sorting before, the one you wrote is almost certainly in the first category.

My sample algorithm in the first group is a sort. Expressed in words, the
algorithm is this: First find the smallest number, then find the next smallest, and so
on. This idea can be put in recursive form; the output from the procedure should be
a list whose first member is the smallest number and whose remaining elements are the
sorted version of the other numbers. I’ll show you two versions of this algorithm: first a
straightforward but inefficient one, and then a version that’s improved in speed but not
quite so obvious. Here’s the first version:

118 Chapter 3 Algorithms and Data Structures

ssort

remove

min

ssort

Ssort
ssort1

:in :out
:min

to ssort :list
if emptyp :list [output []]
localmake "smallest reduce "min :list
output fput :smallest (ssort remove.once :smallest :list)
end

to remove.once :item :list
if equalp :item first :list [output butfirst :list]
output fput first :list (remove.once :item butfirst :list)
end

to ssort :list
if emptyp :list [output []]
output ssort1 (first :list) (butfirst :list) []
end

to ssort1 :min :in :out
if emptyp :in [output fput :min ssort :out]
if lessthanp :min (first :in) ~

[output ssort1 :min (butfirst :in) (fput first :in :out)]
output ssort1 (first :in) (butfirst :in) (fput :min :out)
end

In this version of , we start by finding the smallest number in the list. Then we
remove that number from the list, sort what’s left, and put the smallest number back at
the front of the sorted list. The only slight complication is that I had to write my own
variant of that, unlike the standard Berkeley Logo library version, removes only
one copy of the chosen number from the list, just in case the same number appears more
than once.

By using to find the smallest number, I’ve interfered with my goal of counting
the number of comparisons, but I didn’t worry about that because I’m about to rewrite

anyway. The problem is that this version goes through the list of numbers twice
for each invocation, first to find the smallest number and then again to remove that
number from the list that will be used as input to the recursive call. The program will be
much faster if it does the finding and the removing all at once. The resulting procedure
is a little harder to read, but it should help if you remember that it’s trying to do the same
job as the original version.

is invoked once for each time a smallest number must be found. For each of
those iterations, is invoked once for each member of the still-unsorted list; the
numbers in the list are moved from to except that the smallest-so-far is singled
out in .

⋅ ⋅ ⋅

−

−

•
•
•

•
•
•

Sorting by Partition

ssort

ssort

ssort

first

isort

ssort

n
n

n n

insertion sort,

Sorting by Partition 119

Suppose we try out on our list of 100 numbers. How many comparisons will
be needed? To find the smallest of 100 numbers we have to make 99 comparisons; the
smallest-so-far must be compared against each of the remaining ones. To find the next
smallest requires 98 comparisons, and so on. Finally we have two numbers remaining
to be sorted and it takes one comparison to get them in order. The total number of
comparisons is

99 + 98 + 97 + + 2 + 1 = 4950

It makes no difference what order the numbers were in to begin with, or whether some
of them are equal, or anything else about the input data. It takes 4950 comparisons for

to sort 100 numbers, period. You can try out the program on various lists of 100
numbers to make sure I’m right.

In general, if we want to sort a list of length with the number of comparisons
required is the sum of the integers from 1 to 1. It turns out that there is a closed form
definition for this sum:

(1)
2

Selection sort uses these three steps:

Pull out the smallest value.
Sort the other values.
Put the smallest one at the front.

It’s the first of those steps that does the comparisons. A similar but different algorithm is
which defers the comparisons until the last step:

Pull out any old value (such as the).
Sort the other values.
Put the chosen one where it belongs, in order.

Try writing a procedure to implement this algorithm. How many comparisons
does it require? You’ll find that for this algorithm the answer depends on the input data.
What is the smallest possible number of comparisons? The largest number? What kinds
of input data give rise to these extreme values?

There is one fundamental insight behind all methods for sorting with fewer comparisons:
Two small sorting jobs are faster than one large one. Specifically, suppose we have 100
numbers to sort. Using requires 4950 comparisons. Instead, suppose we split up

•
•
•

•
•
•

ssort

ssort

ssort

partition sort

120 Chapter 3 Algorithms and Data Structures

to psort :list
if (count :list) < 2 [output :list]
localmake "split guess.middle.value :list
output sentence psort filter [? < :split] :list

psort filter [not (? < :split)] :list
end

to guess.middle.value :list
output ((first :list) + (last :list)) / 2
end

the 100 numbers into two groups of 50. If we use on each group, each will require
1225 comparisons; the two groups together require twice that, or 2450 comparisons.
That’s about half as many comparisons as the straight of 100 numbers.

But this calculation underestimates how much time we can save using this insight,
because the same reasoning applies to each of those groups of 50. We can split each into
two groups of 25. Then how many comparisons will be required altogether?

The basic idea we’ll use is to pick some number that we think is likely to be a
median value for the entire list; that is, we’d like half the numbers to be less than this
partition value and half to be greater. There are many possible ways to choose this
partition value; I’m going to take the average of the first and last numbers of the (not yet
sorted!) input. Then we run through the input list, dividing it into two smaller pieces by
comparing each number against the partition value. (Notice that compares pairs
of numbers within the input list; the partition sort compares one number from the list
against another number that might or might not itself be in the list.) We use the same
technique recursively to sort each of the two sublists, then append the results.

Note the similarities and differences between this selection sort algorithm:

Pull out the smallest value.
Sort the other values.
Put the smallest one at the front.

and the following algorithm:

Divide the input into the small-value half and the large-value half.
Sort each half separately.
Put the sorted small values in front of the sorted large ones.

Again, I’ll write this program more than once, first in an overly simple version and
then more realistically. Here’s the simple one:

1
2

:split

filter
count

median average

Sorting by Partition 121

[3 2 1000 5 1 4]

[3 2 5 1 4] [1000]

to psort :list
if emptyp :list [output []]
if emptyp butfirst :list [output :list]
localmake "split ((first :list) + (last :list)) / 2
output psort1 :split :list [] []
end

and

* That isn’t quite true; there is a clever algorithm that can find the median after only a partial
sorting of the values. But it’s true enough that we can’t use a sorting algorithm whose first step
requires that we’ve already done some sorting.

To minimize the number of comparisons, we want to split the input list into two
equal-size halves. It’s important to note that this program is only guessing about which
value of would achieve that balanced splitting. You may wonder why I didn’t
take the average of all the numbers in the list. There are two reasons. One is that that
would add a lot of time to the sorting process; we’d have to look at every number to
find the average, then look at every number again to do the actual splitting. But a more
interesting reason is that the average isn’t quite what we want anyway. Suppose we are
asked to sort this list of numbers:

The average of these numbers is about 169. But if we use that value as the split point,
we’ll divide the list into these two pieces:

Not a very even division! To divide this list of six values into two equal pieces, we’d need
a split point of 3 . In general, what we want is the value rather than the
value. And if you think about it, you pretty much have to have the numbers already
sorted in order to find the median.* So we just try to make a good guess that doesn’t
take long to compute.

Just as in the case of selection sort, one problem with this simple program is that it
goes through the input list twice, once for each of the calls to . And the call to

in the end test adds a third walk through the entire list. Here’s a version that fixes
those inefficiencies:

show psort [4 4 4 4 4]

psort
psort

psort1

psort
ssort

psort

high

high

quite

so all

122 Chapter 3 Algorithms and Data Structures

to psort1 :split :in :low :high
if emptyp :in [output sentence (psort :low) (psort :high)]
if lessthanp first :in :split ~

[output psort1 :split (butfirst :in) (fput first :in :low) :high]
output psort1 :split (butfirst :in) :low (fput first :in :high)
end

?

This version of has one good attribute and one bad attribute. The good attribute
is that it’s very cleanly organized. You can see that it’s the job of to choose the
partition value and the job of to divide the list in two parts based on comparisons
with that value. The bad attribute is that it doesn’t work as it stands.

As for any recursive procedure, it’s important that the input get smaller for each
recursive invocation. If not, could end up invoking itself over and over with the
same input. It’s very easy to see that avoids that danger, because the input list is
shorter by exactly one member for each recursive invocation. But divides its input
into two pieces, each of which ought to be about half the length of the original if we’re
lucky. We’re lucky if the partition value we choose is, in fact, the median value of the
input list. If we’re less lucky, the two parts might be imbalanced, say 1/4 of the members
below the partition and 3/4 of them above it. Can we be unlucky that of the input
numbers are on the same side of the partition? See if you can think of a case in which
this will happen.

The partition value is chosen as the average of two members of the input list. If
those two members (the first and last) are unequal, then one of them must be less than
the partition value and the other greater. So there will be at least one number on each
side of the partition. But if the two averaged numbers are equal, then the partition value
will be equal to both of them. Each of them will be put in the bucket. If all the
other numbers in the list are also greater than or equal to the partition, then they’ll all
end up in the bucket, and nothing will be accomplished in the recursion step. The
simplest failing example is trying to sort a list of numbers all of which are equal, like

We could take various approaches to eliminating this bug. See how many ways you can
think of, and decide which you like best, before reading further.

Since the problem has to do with the choice of partition value, you could imagine
using a more complicated means to select that value. For example, you could start with
the first member of the input list, then look through the list for another member not
equal to the first. When you find one, average the two of them and that’s the partition
value. If you get all the way to the end of the list without finding two unequal members,

three

Sorting by Partition 123

low high equal
equal

lessthanp

equaltop
lessthanp

lessthanp psort
psort1

low

if equalp first :list last :list [...]

if lessthanp first :in :split [...]
if equaltop first :in :split [...]

to psort :list
if emptyp :list [output []]
if emptyp butfirst :list [output :list]
localmake "split ((first :list) + (last :list)) / 2
if lessthanp first :list :split ~

[output psort1 :split (butfirst :list) (list first :list) []]
output psort1 :split (butlast :list) (list last :list) []
end

declare the list sorted and output it as is. The trouble with this technique is that many
extra comparisons are needed to find the partition value. Those comparisons don’t really
help in ordering the input, but they do add to the time taken just as much as the “real”
comparisons done later.

Another approach is to say that since the problem only arises if the first and last
input members are equal, we should treat that situation as a special case. That is, we’ll
add an instruction like

Again, this approach adds a comparison that doesn’t really help to sort the file, although
it’s better than the first idea because it only adds one extra comparison per invocation
instead of perhaps several.

A more straightforward approach that might seem to make the program more
efficient, rather than less, is to divide the list into buckets, , , and .
This way, the problem gets shorter faster, since the bucket doesn’t have to be
sorted recursively; it’s already in order. The trouble is that it takes two comparisons,
one for equality and one for , to know how to direct each list member into
a three-way split. Some computers can compare numbers once and branch in different
directions for less, equal, or greater; one programming language, Fortran, includes that
kind of three-way branching through an “arithmetic IF” statement that accepts different
instructions for the cases of a given quantity being less than, equal to, or greater than
zero. But in Logo we’d have to say

with two comparisons for each list member. (I’m imagining that would keep
track of the number of comparisons just as does.)

What I chose was to do the first test for the list in instead of
, and use it to ensure that either the first or the last member of the list starts out

the bucket.

Psort1

psort ssort

ssort

round size

1 100
2 50
3 25
4 12,13
5 6,7
6 3,4
7 1,2

worst

124 Chapter 3 Algorithms and Data Structures

is unchanged.

How many comparisons should require to sort 100 numbers? Unlike ,
its exact performance depends on the particular list of numbers given as input. But we
can get a general idea. The first step is to divide the 100 numbers into two buckets, using
100 comparisons against the partition value. The second step divides each of the buckets
in two again. We can’t say, in general, how big each bucket is; but we do know that each of
the original 100 numbers has to be in one bucket or the other. So each of 100 numbers
will participate in a comparison in this second round also. The same argument applies to
the third round, and so on. Each round involves 100 comparisons. (This isn’t quite true
toward the end of the process. When a bucket only contains one number, it is considered
sorted without doing any comparisons. So as the buckets get smaller, eventually some of
the numbers “drop out” of the comparison process, while others are still not in their final
position.)

Each round involves 100 comparisons, more or less. How many rounds are there?
This is where the original ordering of the input data makes itself most strongly felt. If
we’re lucky, each round divides each bucket exactly in half. In that case the size of the
buckets decreases uniformly:

There is no round 8, because by then all of the buckets would be of length 1 and there is
no work left to do. So if all goes well we’d expect to make about 700 comparisons, really
a little less because by round 7 some of the numbers are already in length-1 buckets.
Maybe 650?

What is the case? That would be if each round divides the numbers into buckets
as unevenly as possible, with one number in one bucket and all the rest in the other.
In that case it’ll take 99 rounds to get all the numbers into length-1 buckets. You may
be tempted to estimate 9900 comparisons for that situation, but in fact it isn’t quite so
bad, because at each round one number falls into a length-1 bucket and drops out of the
sorting process. So the first round requires 100 comparisons, but the second round only
99, the third 98, and so on. This situation is very much like the way works, and so
we’d expect about 5000 comparisons.

worse

more

Sorting by Partition 125

make "bad cascade 100 [fput 20 ?] []

make "inorder cascade 100 [lput # ?] []

psort

Psort
Psort

Psort
ssort

reverse
psort

:inorder

psort

psort

:inorder

psort

Now try some experiments. Try on your random list, then try to find input
lists that give the best and worst possible results.

required 725 comparisons for my random list. That’s somewhat more than
we predicted for the best case, but not too much more. seems to have done pretty
well with this list. The simplest worst-case input is one in which all the numbers are the
same; I said

to make such a list. required 5049 comparisons to sort this list, slightly than
at 4950 comparisons.

What would a best-case input look like? It would divide evenly at each stage; that
is, the median value at each stage would be the average of the first and last values. The
simplest list that should meet that criterion is a list of all the numbers from 1 to 100 in
order:

(Or you could use the trick discussed earlier, but for only 100 numbers it didn’t
seem worth the extra typing to me.) Using to sort this list should require, we said,
somewhere around 650 to 700 comparisons. In fact it took 734 comparisons when I tried
it, slightly than my randomly ordered list (725 comparisons).

Even 734 comparisons isn’t terrible by any means, but when an algorithm performs
worse than expected, a true algorithm lover wants to know why. Test cases like these
can uncover either inefficiencies in the fundamental algorithm or else ways in which the
actual computer program doesn’t live up to the algorithm as described in theoretical
language. If we could “tune up” this program to sort in fewer than 700
comparisons, the change might well improve the program’s performance for any input.
See if you can figure out what the problem is before reading further. You can try having

print out its inputs each time it’s called, as a way to help gather information.

Here’s a very large hint. I tried using the original version of , before fixing the
bug about the recursion sometimes leaving all the numbers in one basket, and it sorted

in only 672 comparisons. (I knew the bug wouldn’t make trouble in this case
because none of the numbers in this particular input list are equal.) Can you devise a
better that both works all the time and performs optimally for the best-case input?

This partition sorting scheme is essentially similar to a very well-known algorithm
named quicksort, invented by C. A. R. Hoare. Quicksort includes many improvements
over this algorithm, not primarily in reducing the number of comparisons but in

•
•
•

•
•
•

Order of Growth

ssort

ssort psort

psort ssort

mergesort:

Merge

126 Chapter 3 Algorithms and Data Structures

decreasing the overhead time by, for example, exchanging pairs of input items in their
original memory locations instead of making copies of sublists. Quicksort also switches
to a more straightforward -like algorithm for very small input lists, because the
benefit of halving the problem is outweighed by the greater complexity. (In fact, for a
two-item input, makes one comparison and two.)

Here’s the partition sort algorithm again:

Divide the input into the small-value half and the large-value half.
Sort each half separately.
Put the sorted small values in front of the sorted large ones.

The idea of cutting the problem in half is also used in the following algorithm, called

Divide the input arbitrarily into two equal size pieces.
Sort each half separately.

the two sorted pieces by comparing values.

In a way, mergesort is to partition sort as insertion sort is to selection sort. Both insertion
sort and mergesort defer the comparisons of numbers until the final step of the algorithm.

There is one important way in which mergesort is better than partition sort. Since
mergesort doesn’t care how the input values are separated, we can ensure that the two
pieces are each exactly half the size of the input. Therefore, the number of comparisons
needed is always as small as possible; there are no bad inputs. Nevertheless, quicksort
is more widely used than mergesort, because the very best implementations of quicksort
seem to require less overhead time, for the average input, than the best implementations
of mergesort.

If you want to write a mergesort program, the easiest way to divide a list into two
equal pieces is to select every other member, so the odd-position members are in one
half and the even-position members in the other half.

I’ve mentioned that the complete quicksort algorithm includes several optimization
strategies to improve upon the partition sort I’ve presented here. How important are
these strategies? How much does overhead contribute to the cost of a program? I did
some experiments to investigate this question.

First I timed and with inputs of length 300. Here are the results:

Order of Growth 127

program comparisons time comparisons per second

program 20 numbers 100 numbers 300 numbers

psort
ssort

Ssort
psort psort

ssort

ssort lessp
lessthanp psort

Count reduce filter
ssort

slowsort
ssort

Ssort
slowsort

to slowsort :list
if (count :list) < 2 [output :list]
localmake "split (reduce "sum :list)/(count :list)
output (sentence slowsort filter [? < :split] :list

filter [? = :split] :list
slowsort filter [? > :split] :list)

end

2940 29 seconds 100
44850 313 seconds 143

seems to have much less overhead, since it can do more comparisons per second
than . Nevertheless, always seems to be faster, for every size input I tried.
The number of comparisons outweighs the overhead. (By the way, these numbers don’t
measure how fast the computer can compare two numbers! A typical computer could
perform more than a million comparisons per second, if only comparisons were involved.
Most of the time in these experiments is actually going into the process by which the Logo
interpreter figures out what the instructions in the program mean. Because Berkeley
Logo is an interpreter, this figuring-out process happens every time an instruction is
executed. By contrast, I tried on a list of length 300 in Object Logo, a compiled
version in which each instruction is figured out only once, and the total time was 3.6
seconds.)

I wanted to give local optimization the best possible chance to win the race, and so I
decided to make selection sort as fast as I could, and partition sort as slow as I could. I
modified to use the Logo primitive for comparison instead of doing the
extra bookkeeping of , and I replaced with this implementation:

This version examines every member of the input list six times on each recursive call!
(is invoked twice; looks at every list member once; and is called
three times to do the actual partition.) Under these conditions I was able to get
to win the race, but only for very small inputs:

2.7 seconds 18 seconds 63 seconds
1.2 seconds 20 seconds 182 seconds

wins when sorting 20 numbers, but both programs take less than three seconds.
For 100 numbers, is already winning the race, and its lead grows as the input
list grows. This is a common pattern: For small amounts of data, when the program is
fast enough no matter how you write it, local optimization can win the race, but once

−

Θ

2

2 2 2

2

2 2

2

2

2

2 2

2

ssort

ssort

psort

and

n

n n

n

O n n n
n n

n
n

n n n

O

n
n n

O n
n O

n n O n
O

n

128 Chapter 3 Algorithms and Data Structures

* Strictly speaking, the fact that an algorithm’s time requirement is doesn’t mean that
it’s even approximately proportional to , because only establishes an upper bound. The
time requirement could be proportional to , which would be better than , and still be .
But usually people use notation to mean that no smaller order of growth would work, even
though there’s an official notation with that meaning, , pronounced “big theta.”

the problem is large enough so that you actually care about efficiency, choosing a better
overall algorithm is always more important. (Of course the very best results will come
from choosing a good algorithm optimizing the program locally.)

What does “a better algorithm” actually mean? How do we measure the quality of an
algorithm? We’ve made a good start by counting the number of comparisons required
for our two sorting algorithms, but there is a formal notation that can make the issues
clearer.

Earlier I said that for a list of numbers, makes

(1)
2

comparisons. But in a sense this tells us more than we want to know, like saying that a
certain program took 1,243,825 microseconds instead of saying that it took somewhat over
a second. The important thing to say about is that the number of comparisons is
roughly proportional to ; that is, doubling the size of the input list will quadruple the
time needed to sort the list. More formally, we say that the time required for selection
sorting is (), pronounced “big-oh of ” or “order .” This is an abbreviation for the
statement, “for large enough , the time is bounded by times a constant.” The part
about “for large enough ” is important because the running time for some algorithm
might, for example, involve a large constant setup time. For small that setup time might
contribute more to the overall time required than the part of the algorithm proportional*
to , but once becomes large enough, the part will overtake any constant.

I’d like to have a similar representation, (something), for the number of com-
parisons used by in the typical case. We said that for 100 numbers, each round
of sorting involves about 100 comparisons, and the number of rounds required is the
number of times you have to divide 100 by 2 before you get down to 1, namely between
6 and 7. The number of comparisons expected is the product of these numbers. In the
general case, the first number is just . But what is the general formula for the number
of times you have to divide by 2 to get 1? The answer is log . For example, if we had
128 numbers in the list instead of 100, we would require exactly 7 rounds (in the best

()
(. . .)

()
(. . .)

()

≈

n

n

i

7
2 2

2

2

2 2

2

1
2

2

3

Data Structures

ssort
psort

t
simplex

simplex 10 simplex 12
Simplex 16

* Don Knuth has written an sort program, just as an example of especially bad
programming.

O n
O n n O n n

O
n n proven

O n n typical

O n linear O n quadratic. O n n

O
exponential n

O n
really

O intractable,
O n i tractable.

O n

Data Structures 129

case) because 2 = 128 and so log 128 = 7. (By the way, log 100 6.65, so the theoretical
best case for 100 numbers is 665 comparisons.)

In general, all the obvious sorting algorithms are () and all the clever ones are
(log).* (I don’t have to say (log) because the difference between logarithms

to different bases is just multiplication by a constant factor, which doesn’t count in
(. . .) notation, just as I don’t have to worry about the fact that the formula for

comparisons is nearer /2 than .) By the way, I haven’t really that is
(log) in the case, only that it is in the best case. It’s much harder to prove

things about the typical (or average) performance of any sorting algorithm, because what
is an “average” input list? For some algorithms there is no proven formula for the average
run time, but only the results of experiments with many randomly chosen lists.

An () algorithm is called and an () one (log) is in
between those, better than quadratic but not as good as linear. What other orders of
growth are commonly found? As one example, the pre-memoized procedures for the
and functions in Chapter 2 have time requirements that are (2); these are
called algorithms. This means that just adding one to makes the program
take twice as long! The experimental results I gave earlier agree with this formula:

took 80 seconds, while took 5 minutes, about four times as
long. would take over an hour. (Start with 80 seconds, and double it six
times.) The memoized versions in this chapter are () (can you prove that?), which
is much more manageable. But for some hard problems there is no known way to
make them any faster than (2); problems like that are called while ones that
are merely polynomial— () for any constant —are called

One of the reasons computers are so useful is that they can contain a tremendous amount
of information. An important part of writing a large computer program is figuring out
how to organize the information used in the program. Most of the time, a program
doesn’t have to deal with a bunch of unrelated facts, like “Tomatoes are red” and “7
times 8 is 56.” Instead there will be some kind of uniformity, or natural grouping, in the
information a program uses.

()

external
internal

Data Structures in Real Life

sorted list,
hash table.

spending space buy time.

adding

storage time retrieval

130 Chapter 3 Algorithms and Data Structures

* Why doesn’t the phone company have to do that whenever they get a new customer? The
answer is that they maintain the directory information in two forms. The printed directory is the

representation, used only for looking up information; inside their computers they use an
representation that allows for easier insertion of new entries.

We’ll see, too, that the data structures you choose for your program affect the
algorithms available to you. Organizing your data cleverly can reduce the execution time
of your procedures substantially.

Why should there be different kinds of organization? It might help to look at some
analogies with data structures outside of computers. First of all, think about your personal
address book. It probably has specific pages reserved for each letter of the alphabet.
Within a letter, the names and addresses of people starting with that letter are arranged
in no particular order; you just add a new person in the first free space on the page.

Now think about the printed telephone directory for your city. In this case the
names are not arranged randomly within each letter; they’re in strict alphabetical order.
In computer science terminology, the printed directory is a while your personal
directory is a

Obviously, if the entries in the printed directory weren’t in order it would take much
too long to find an address. You can get away with random ordering within each letter
in your personal directory because you know a small enough number of people that it
doesn’t take too long to look through each one. But you probably do know enough
people to make the separate page for each letter worthwhile, even though the page for
Q may be practically empty. By using separate pages for each letter, with unused slots on
each page reserved for expansion, you are to That is, your address
book is bigger than it would be if it were just one long list, but looking up a number is
faster this way. This tradeoff between time and space is typical of computer programming
problems also.

Why don’t you keep your personal directory in strict alphabetical order, like the
printed phone book? If you did that, looking up a number would be even faster. The
problem is that a new number would be terribly painful; you’d have to erase all
the names on the page below where the new name belongs and rewrite each of them one
line below where it was.* In this case there is a tradeoff between and

world

Beijing Guangzhou SuzhouShanghai

China

Dijon AvignonParis

France

Ottawa WindsorToronto

Ontario

Montreal Lachine

Quebec Manitoba

Winnipeg

Canada

Trees

tree.map

time;

heap.

hierarchical

tree

node.

Trees 131

* Unfortunately, there are two things called a “heap” in computer science. I’m thinking of the
storage allocation heap, not the special tree structure used in the “heapsort” algorithm.

you pay a small price in retrieval time to avoid a large price in storage time. This,
too, is a common aspect of data structure design in computer programs.

Other kinds of real-life data structures also have computer analogues. If your desk
looks like mine, with millions of little slips of paper all over the place, it is what computer
scientists call a * This might be an appropriate data structure for those cases in
which the program must deal with a large mass of unrelated facts. On the other hand,
in a large business office there will be a filing system. A file cabinet labeled
“Personnel Records” might contain a drawer labeled “Inactive A-H”; that drawer would
contain a file folder for each former employee whose name starts with an appropriate
letter. This kind of hierarchy might be represented as a in a computer program.

We’ve used the idea of trees before. In Volume 1, the program to solve pitcher pouring
problems was designed in terms of a tree of possible solution steps, although that tree
was not represented as actual data in the program. In Volume 2, I wrote as
an example of a higher order function operating on trees in which the leaf nodes are
words and the branch nodes are phrases. In this chapter we’ll work toward a general
representation of trees as an abstract data type.

Here is a hierarchical grouping of some of the world’s cities:

Recall that a diagram like this is called a tree because it resembles a real tree turned
upside-down. Each place where a word or phrase appears in the tree is called a

world

France

thing

show locate "Montreal

root node
branches. leaf
nodes. branch nodes.

binary

132 Chapter 3 Algorithms and Data Structures

?
[world Canada Quebec Montreal]

[Paris Dijon Avignon]

to worldtree
make "world [France China Canada]
make "France [Paris Dijon Avignon]
make "China [Beijing Shanghai Guangzhou Suzhou]
make "Canada [Ontario Quebec Manitoba]
make "Ontario [Toronto Ottawa Windsor]
make "Quebec [Montreal Lachine]
make "Manitoba [Winnipeg]
end

At the top of the diagram is the (). The lines between nodes are called
The cities, which do not have branches extending below them, are called

The in-between nodes, the countries and provinces, are called (The
root node is also considered a branch node since it, too, has branches below it.) This
tree tells us that Toronto is in Ontario, which is in Canada, which is in the world.

A tree is a very general data structure because its shape is very flexible. For example,
in the part of this tree that represents Canada I’ve included a level of tree structure,
representing the provinces, that isn’t included in the subtree that represents France. As
we’ll see later, some algorithms deal with restricted categories of trees. For example, a

tree is a tree with at most two branches below each branch node.

So far this data structure is just a graphic representation on paper. There are many
ways in which a tree can be implemented in a computer program. Let’s say that I want to
represent the tree of cities in a computer so that I can ask questions from this data base.
That is, I’d like to write a program that will allow interactions like

Let’s pick a particular way to represent a tree in Logo. (I should warn you that later
in the chapter I’m going to invent different representations, but I want to start with a
simple one to meet our immediate needs. So what you’re about to see is not the final
version of these procedures.) Here’s the way I’m going to do it: Each branch node will
be represented as a Logo variable whose name is the name of the node, containing as its
value a list of the names of the nodes immediately below it. For example, this tree will
include a variable named with the value

A leaf node is just a word that appears in a node list but isn’t the name of a variable. For
a branch node, of the node’s name will provide a list of the names of its children.
I can set up the tree with this procedure:

locate filter

forest,

Trees 133

show locate "Shanghai

show locate "Montreal

show cities "France

show cities "Canada

In principle, is a lot like , in the sense that we’re looking through
a data structure for something that meets a given condition. But the implementation is
a bit trickier than looking through a sequential list, because each invocation gives rise
to several recursive invocations (one per child), not merely one recursive invocation as
usual. The program will be easier to understand if we introduce the term which
means a list of trees.

Once we’ve set up this data base, we can write procedures to ask it other kinds of
questions, too.

to locate :city
output locate1 :city "world
end

to locate1 :city :subtree
if equalp :city :subtree [output (list :city)]
if not namep :subtree [output []]
localmake "lower locate.in.forest :city (thing :subtree)
if emptyp :lower [output []]
output fput :subtree :lower
end

to locate.in.forest :city :forest
if emptyp :forest [output []]
localmake "child locate1 :city first :forest
if not emptyp :child [output :child]
output locate.in.forest :city butfirst :forest
end

?
[world China Shanghai]
?
[world Canada Quebec Montreal]

to cities :tree
if not namep :tree [output (list :tree)]
output map.se [cities ?] thing :tree
end

?
[Paris Dijon Avignon]
?
[Toronto Ottawa Windsor Montreal Lachine Winnipeg]

Improving the Data Representation

make "Quebec [Montreal Quebec Lachine]

level

134 Chapter 3 Algorithms and Data Structures

locate cities

world
France Canada

world1 France2
Ontario3

Quebec3
Quebec4

cities
locate

locate
locate1 highest

true cities
false locate

There’s a problem with the representation I’ve chosen for this tree. Suppose we want
to expand the data base to include the city of Quebec. This city is in the province of
Quebec, so all we have to do is add the name to the appropriate list:

If you try this, however, you’ll find that and will no longer work. They’ll
both be trapped in infinite loops.

The problem with this program can’t be fixed just by changing the program. It’s
really a problem in the way I decided to represent a tree. I said, “a leaf node is just a word
that appears in a node list but isn’t the name of a variable.” But that means there’s no
way to allow a leaf node with the same name as a branch node. To solve the problem I
have to rethink the conventions I use to represent a tree.

Being lazy, I’d like to change as little as possible in the program, so I’m going to try
to find a new representation as similar as possible to the old one. Here’s my idea: In
my mind I associate a with each node in the tree. The node is at level 1,

and at level 2, and so on. The names of the variables used to hold the
contents of a node will be formed from the node name and the level: , ,

, and so on. This solves the problem because the node for Quebec province
will be a branch node by virtue of the variable , but the node for Quebec city
will be a leaf node because there will be no variable.

As it turns out, though, I have to change the program quite a bit to make this work.
Several procedures must be modified to take the level number as an additional input.
Also, since the variable that holds the information about a place is no longer exactly
named with the place’s name, has some extra work to do, just to find the node
whose cities we want to know. It can almost use for this purpose, but with a
slight wrinkle: If we ask for the cities in Quebec, we mean Quebec province, not Quebec
city. So we need a variant of that finds the node highest up in the tree with the
desired place name. I gave subprocedure an extra input, named ,
that’s if we want the highest matching tree node (when called from) or

if we want a matching leaf node (when called from).

Improving the Data Representation 135

to worldtree
make "world1 [France China Canada]
make "France2 [Paris Dijon Avignon]
make "China2 [Beijing Shanghai Guangzhou Suzhou]
make "Canada2 [Ontario Quebec Manitoba]
make "Ontario3 [Toronto Ottawa Windsor]
make "Quebec3 [Montreal Quebec Lachine]
make "Manitoba3 [Winnipeg]
end

to locate :city
output locate1 :city "world 1 "false
end

to locate1 :city :subtree :level :highest
localmake "name (word :subtree :level)
if and :highest equalp :city :subtree [output (list :city)]
if not namep :name

[ifelse equalp :city :subtree
[output (list :city)]
[output []]]

localmake "lower locate.in.forest :city (thing :name) :level+1 :highest
if emptyp :lower [output []]
output fput :subtree :lower
end

to locate.in.forest :city :forest :level :highest
if emptyp :forest [output []]
localmake "child locate1 :city first :forest :level :highest
if not emptyp :child [output :child]
output locate.in.forest :city butfirst :forest :level :highest
end

to cities :tree
localmake "path locate1 :tree "world 1 "true
if emptyp :path [output []]
output cities1 :tree count :path
end

to cities1 :tree :level
localmake "name (word :tree :level)
if not namep :name [output (list :tree)]
output map.se [(cities1 ? :level+1)] thing :name
end

Trees as an Abstract Data Type

show locate "Quebec

show cities "Canada

tree

selector

136 Chapter 3 Algorithms and Data Structures

[United States]

first
butfirst

locate cities
leafp

first
butfirst

?
[world Canada Quebec Quebec]
?
[Toronto Ottawa Windsor Montreal Quebec Lachine Winnipeg]

[world [France ...] [[United States] ...] [China ...] [Canada ...]]

to datum :node
output first :node
end

to children :node
output butfirst :node
end

This new version solves the Quebec problem. But I’m still not satisfied. I’d like to
add the United States to the data base. This is a country whose name is more than one
word. How can I represent it in the tree structure? The most natural thing would be to
use a list: . Unfortunately, a list can’t be the name of a variable in
Logo. Besides, now that I’ve actually written the program using this representation I see
what a kludge it is!

My next idea for representing a tree is to abandon the use of a separate variable for each
node; instead I’ll put the entire tree in one big list. A node will be a list whose
is the datum at that node and whose is a list of children of the node. So the
entire tree will be represented by a list like this:

The datum at each node can be either a word or a list.

But this time I’m going to be smarter than before. I’m going to recognize that
the program I’m writing should logically be separated into two parts: the part that
implements the data type, and the part that uses a tree to implement the data base
of cities. If I write procedures like and in terms of general-purpose
tree subprocedures like , a predicate that tells whether its input node is a leaf
node, then I can change my mind about the implementation of trees (as I’ve done twice
already) without changing that part of the program at all.

I’ll start by implementing the abstract data type. I’ve decided that a tree will be
represented as a list with the datum of the root node as its and the subtrees in the

. To make this work I need procedures:

leafp

constructor

Trees as an Abstract Data Type 137

and a procedure to build a node out of its pieces:

Selectors and constructors are the main procedures needed to define any data
structure, but there are usually some others that can be useful. For the tree, the main
missing one is .

Now I can use these tools to write the data base procedures.

to tree :datum :children
output fput :datum :children
end

to leafp :node
output emptyp children :node
end

to locate :city
output locate1 :city :world "false
end

to locate1 :city :subtree :wanttree
if and :wanttree (equalp :city datum :subtree) [output :subtree]
if leafp :subtree ~

[ifelse equalp :city datum :subtree
[output (list :city)]
[output []]]

localmake "lower locate.in.forest :city (children :subtree) :wanttree
if emptyp :lower [output []]
output ifelse :wanttree [:lower] [fput (datum :subtree) :lower]
end

to locate.in.forest :city :forest :wanttree
if emptyp :forest [output []]
localmake "child locate1 :city first :forest :wanttree
if not emptyp :child [output :child]
output locate.in.forest :city butfirst :forest :wanttree
end

to cities :name
output cities1 (finddatum :name :world)
end

to cities1 :subtree
if leafp :subtree [output (list datum :subtree)]
output map.se [cities1 ?] children :subtree
end

138 Chapter 3 Algorithms and Data Structures

cities locate
locate

world cities locate1
finddatum

cities1

:subtree

cities

:subtree

tree

to finddatum :datum :tree
output locate1 :name :tree "true
end

(list datum :subtree)

to worldtree
make "world tree "world

(list (tree "France
(list (tree "Paris [])

(tree "Dijon [])
(tree "Avignon [])))

(tree "China
(list ...

to leaf :datum
output tree :datum []
end

to leaves :leaves
output map [leaf ?] :leaves
end

Once again, depends on a variant of that outputs the subtree below
a given name, instead of the usual output, which is a list of the names on the
path from down to a city. But instead of having call directly, I
decided that it would be more elegant to provide a procedure that takes a
datum and a tree as inputs, whose output is the subtree below that datum.

In , the expression

turns out to be equivalent to just for the case of a leaf node. (It is only for leaf
nodes that the expression is evaluated.) By adhering to the principle of data abstraction
I’m making the program work a little harder than it really has to. The advantage, again,
is that this version of will continue working even if we change the underlying
representation of trees. The efficiency cost is quite low; changing the expression to

is a local optimization comparable to the common subexpression elimination
we considered early in the chapter.

I also have to revise the procedure to set up the tree. It’s going to involve many
nested invocations of , like this:

and so on. I can shorten this procedure somewhat by inventing an abbreviation for
making a subtree all of whose children are leaves.

worldtree

Tree Modification

Tree Modification 139

worldtree
show cities [United States]

show locate [Palo Alto]

So far, so good. But the procedure just above is very error-prone because of
its high degree of nesting. In the earlier versions I could create the tree a piece at a time
instead of all at once. In a practical data base system, people should be able to add new
information at any time, not just ask questions about the initial information. That is, I’d
like to be able to say

to worldtree
make "world

tree "world
(list (tree "France leaves [Paris Dijon Avignon])

(tree "China leaves [Beijing Shanghai Guangzhou Suzhou])
(tree [United States]

(list (tree [New York]
leaves [[New York] Albany Rochester

Armonk])
(tree "Massachusetts

leaves [Boston Cambridge Sudbury
Maynard])

(tree "California
leaves [[San Francisco] Berkeley

[Palo Alto] Pasadena])
(tree "Washington

leaves [Seattle Olympia])))
(tree "Canada

(list (tree "Ontario
leaves [Toronto Ottawa Windsor])

(tree "Quebec
leaves [Montreal Quebec Lachine])

(tree "Manitoba leaves [Winnipeg]))))
end

?
?
[[New York] Albany Rochester Armonk Boston Cambridge Sudbury Maynard
[San Francisco] Berkeley [Palo Alto] Pasadena Seattle Olympia]
?
[world [United States] California [Palo Alto]]

addchild :world (tree "Spain leaves [Madrid Barcelona Orense])

140 Chapter 3 Algorithms and Data Structures

addchild

world

:Canada
:world locate :Canada :world

:world
:Canada addchild

addchild

addchild

addchild (finddatum "Canada :world) (tree [Nova Scotia] leaves [Halifax])

make "world newcopy :world ...

?
?
?
[world Canada [Nova Scotia] Halifax]

to addchild :tree :child
.setbf :tree (fput :child butfirst :tree)
end

?
?
?
?
?
?
[world [Great Britain] Scotland Glasgow]

make "Canada finddatum "Canada :world
addchild :Canada (tree [Nova Scotia] leaves [Halifax])
show locate "Halifax

make "GB leaf [Great Britain]
addchild :world :GB
addchild :GB tree "England leaves [London Liverpool Oxford]
addchild :GB tree "Scotland leaves [Edinburgh Glasgow]
addchild :GB tree "Wales leaves [Abergavenny]
show locate "Glasgow

to add a subtree to the world tree. New nodes should be possible not only at the top of
the tree but anywhere within it:

Most versions of Logo do not provide tools to add a new member to an existing list.
We could write a program that would make a new copy of the entire tree, adding the new
node at the right place in the copy, so that would take the form

but there are two objections to that. First, it would be quite slow, especially for a large
tree. Second, it would work only if I refrain from assigning subtrees as the values of
variables other than . That is, I’d like to be able to say

Even though I’ve added the new node to the tree , it should also be part
of (which is where looks) because is a subtree of .
Similarly, I’d like to be able to add a node to the Canadian subtree of and have
it also be part of . That wouldn’t be true if makes a copy of its tree
input instead of modifying the existing tree.

I’m going to solve this problem two ways. In the Doctor project in Volume 2 of
this series, you learned that Berkeley Logo does include primitive procedures that allow
the modification of an existing list structure. I think the most elegant solution to the

problem is the one that takes advantage of that feature. But I’ll also show
a solution that works in any version of Logo, to make the point that list mutation isn’t
absolutely necessary; we can achieve the same goals, with the same efficiency, by other
means. First here’s the list mutation version of :

mutator

generated symbol,

Tree Modification 141

tree children
addchild :GB

addchild

.setbf
addchild

.setbf

Leafp finddatum locate cities worldtree

:world

to tree :datum :children
localmake "node gensym
make :node fput :datum :children
output :node
end

to datum :node
output first thing :node
end

to children :node
output butfirst thing :node
end

to addchild :tree :child
make :tree lput :child thing :tree
end

Just as is a constructor for the tree data type, and is a selector,
is called a for this data type. Notice, by the way, that , which was

originally built as a leaf node, can be turned into a branch node by adding children to it;
is not limited to nodes that already have children.

The solution using is elegant because I didn’t have to change any of the
procedures I had already written; this version of works with the same tree
implementation I had already set up. But suppose we didn’t have or didn’t want
to use it. (As we’ll see shortly, using list mutators does open up some possible pitfalls.)
We can write a mutator for the tree abstract data type even if we don’t have mutators for
the underlying Logo lists! The secret is to take advantage of variables, whose values can
be changed—mutated—in any version of Logo.

To make this work I’m going to go back to a tree representation somewhat like the
one I started with, in which each node is represented by a separate variable. But to avoid
the problems I had earlier about Quebec and San Francisco, the variable name won’t be
the datum it contains. Instead I’ll use a an arbitrary name made up by
the program. (This should sound familiar. I used the same trick in the Doctor project,
and there too it was an alternative to list mutation.)

This is where my use of data abstraction pays off. Look how little I have to change:

That’s it! , , , , and all work perfectly
without modification, even though I’ve made a profound change in the actual represen-
tation of trees. (Try printing in each version.)

print listcity 415

Addchild

locate Cambridge

Searching Algorithms and Trees

hierarchy part of
ordering

searching

142 Chapter 3 Algorithms and Data Structures

?
San Francisco

make "codelist [[202 Washington] [206 Seattle] [212 New York]
[213 Los Angeles] [215 Philadelphia] [303 Denver] [305 Miami]
[313 Detroit] [314 St. Louis] [401 Providence] [404 Atlanta]
[408 Sunnyvale] [414 Milwaukee] [415 San Francisco] [504 New Orleans]
[608 Madison] [612 St. Paul] [613 Kingston] [614 Columbus]
[615 Nashville] [617 Boston] [702 Las Vegas] [704 Charlotte]
[712 Sioux City] [714 Anaheim] [716 Rochester] [717 Scranton]
[801 Salt Lake City] [804 Newport News] [805 Ventura] [808 Honolulu]]

is only one of the possible ways in which I might want to modify a tree
structure. If we were studying trees more fully, I’d create tool procedures to delete a
node, to move a subtree from one location in the tree to another, to insert a new node
between a parent and its children, and so on. There are also many more questions one
might want to ask about a tree. How many nodes does it have? What is its maximum
depth?

I’ve mentioned general tree manipulation tools. There are also still some unresolved
issues about the particular use of trees in the city data base. For example, although the
problem of Quebec city and Quebec province is under control, what if I want the data
base to include Cambridge, England as well as Cambridge, Massachusetts? What should

do if given as input?

But instead of pursuing this example further I want to develop another example, in
which trees are used for a very different purpose. In the city data base, the tree represents
a (Sudbury is Massachusetts); in the example below, a tree is used to
represent an of data, as in the sorting algorithms discussed earlier.

Forget about trees for a moment and consider the general problem of through
a data base for some piece of information. For example, suppose you want a program
to find the city corresponding to a particular telephone area code. That is, I want to be
able to say

The most straightforward way to do this is to have a list containing code-city pairs, like
this:

linear

O n

binary

Searching Algorithms and Trees 143

butfirst last

find

equalp

:codelist

Listcity
listcity

to areacode :pair
output first :pair
end

to city :pair
output butfirst :pair
end

to listcity :code
output city find [equalp :code areacode ?] :codelist
end

This is a list of lists. Each sublist contains one pairing of an area code with a city. We
can search for a particular area code by going through the list member by member,
comparing the first word with the desired area code. (By the way, in reality a single area
code can contain more than one city, and vice versa, but never mind that; I’m trying
to keep this simple.) In accordance with the idea of data abstraction, we’ll start with
procedures to extract the area code and city from a pair.

The city is the rather than the to accommodate cities with names of
more than one word.

The iteration tool does exactly what’s needed, going through a list member by
member until it finds one that matches some criterion:

Time for a little analysis of algorithms. What is the time behavior of this search
algorithm as the data base gets bigger? As for the case of the sorting algorithms, I’ll
concentrate on the number of comparisons. How many times is invoked? The
best case is if we’re looking for the first code in the list, 202. In this case only one
comparison is made. The worst case is if we’re looking for the last code in the list,
808, or if we’re looking for an area code that isn’t in the list at all. This requires 31
comparisons. (That’s how many code-city pairs happen to be in this particular data base.)
On the average this algorithm requires a number of comparisons half way between these
extremes, or 16. As we increase the size of the data base, the number of comparisons
required grows proportionally; this algorithm is ().

The area codes in are in ascending order. If you were looking through
the list yourself, you wouldn’t look at every entry one after another; you’d take advantage
of the orderingby starting around the middle and moving forward or backward depending
on whether the area code you found was too low or too high. That’s called a search
algorithm. , though, doesn’t take advantage of the ordering in the list; the
pairs could just as well be jumbled up and would be equally happy.

202 212 215 305 314 404 414 504 612 614 617 704 714 717 804 808

206 303 401 415 613 702 716 805

213 408 615 801

313 712

608

tree leaves

:out fput lput
reverse

144 Chapter 3 Algorithms and Data Structures

to balance :list
if emptyp :list [output []]
if emptyp butfirst :list [output leaf first :list]
output balance1 (int (count :list)/2) :list []
end

to balance1 :count :in :out
if equalp :count 0 ~

[output tree (first :in) (list balance reverse :out
balance butfirst :in)]

output balance1 (:count-1) (butfirst :in) (fput first :in :out)
end

Binary search works by starting with the median-value area code in the data base.
If that’s the one we want, we’re finished; otherwise we take the higher or lower half of
the remaining codes and examine the median value of that subset. One way we could
implement that algorithm would be to use a binary tree to represent the code-city pairs:

(In this picture I’ve just shown the area codes, but of course the actual data structure will
have a code-city pair at each node.)

We could construct the tree from scratch, using and as I did earlier,
but since we already have the pairs in the correct sorted order it’s easier to let the
computer do it for us:

In this program I’m using the trick of building using instead of and then
using to get the left branch back in ascending order, to make the construction
a little faster.

print treecity 415

O n

Searching Algorithms and Trees 145

treecity
listcity

Treecity listcity

listcity

listcity treecity

make "codetree balance :codelist

to treecity :code
output city treecity1 :code :codetree
end

to treecity1 :code :tree
if emptyp :tree [output [000 no city]]
localmake "datum datum :tree
if :code = areacode :datum [output :datum]
if :code < areacode :datum [output treecity1 :code lowbranch :tree]
output treecity1 :code highbranch :tree
end

to lowbranch :tree
if leafp :tree [output []]
output first children :tree
end

to highbranch :tree
if leafp :tree [output []]
output last children :tree
end

?
San Francisco

will generate the tree.

Now we’re ready to write , the tree-based search program analogous to
for the linear list.

gives the same output as , but it’s faster. At worst it makes two
comparisons (for equal and less than) at each level of the tree. This tree is five levels
deep, so if the input area code is in the tree at all we’ll make at most 9 comparisons,
compared to 31 for . The average number is less. (How much less?) The
difference is even more striking for larger data bases; if the number of pairs is 1000, the
worst-case times are 1000 for and 19 for .

In general the depth of the tree is the number of times you can divide the number
of pairs by two. This is like the situation we met in analyzing the partition sort algorithm;
the depth of the tree is the log base two of the number of pairs. This is an (log)
algorithm.

Logo’s Underlying Data Structures

lowbranch highbranch
first children :tree treecity1

highbranch lowbranch highbranch

balanced.

hierarchy
part of ordering before

are

146 Chapter 3 Algorithms and Data Structures

The procedures and are data abstraction at work. I
could have used directly in , but this way I can
change my mind about the representation of the tree if necessary. In fact, in a practical
program I would want to use a representation that allows a node to have a right child
(a) without having a left child. Also, and are
written robustly; they give an output, instead of causing an error, if applied to a leaf
node. (That happens if you ask for the city of an area code that’s not in the data base.) I
haven’t consistently been writing robust programs in this chapter, but I thought I’d give
an example here.

The efficiency of the tree searching procedure depends on the fact that the tree is
In other words, the left branch of each node is the same size as its right branch.

I cheated slightly by starting with 31 area codes, a number that allows for a perfectly
balanced tree. Suppose I had started with 35 area codes. How should I have built the
tree? What would happen to the efficiency of the program? What is the maximum
possible number of trials necessary to find a node in that tree? What other numbers of
nodes allow for perfect balance?

There are two important ideas to take away from this example. The first is that the
choice of data representation can have a substantial effect on the efficiency of a program.
The second, as I mentioned at the beginning of this section, is that we have used the same
kind of data structure, a tree, for two very different purposes: first to represent a
(Sudbury is Massachusetts) and then to represent an (313 is 608).

An abstract data type, such as the tree type we’ve been discussing, must be implemented
using some lower-level means for data aggregation, that is, for grouping separate things
into a combined whole. In Berkeley Logo, there are two main built-in means for
aggregation: lists and arrays. (Every dialect of Logo has lists, but not all have arrays.)
Words can be thought of as a third data aggregate, in which the grouped elements are
letters, digits, and punctuation characters, but we don’t ordinarily use words as the basis
for abstract data types.

Logo was designed to be used primarily by people whose main interest is in something
other than computer programming, and so a design goal was to keep to a minimum the
extent to which the Logo programmer must know about how Logo itself works internally.
Even in these books, which focused on computing itself, we’ve gotten this far without
looking very deeply into how Logo’s data structures actually work. But for the purposes
of this chapter it will be useful to take that step.

#1 #2 #3 #4 #5array
address

byte
word

load

store

processor memory.

address,

consecutive

pointer

pair

Logo’s Underlying Data Structures 147

* I’m being vague about what a “value” is, and in fact most computer memories can be divided
into pieces of different sizes. In most current computers, a is a piece that can hold any of 256
different values, while a is a piece that can hold any of about four billion different values. But
these details aren’t important for my present purposes, and I’m going to ignore them. I’ll talk as if
memories were simply word-addressable.

Essentially all computers today are divided into a and a (The
exceptions are experimental “parallel processing” machines in which many small sub-
processors and sub-memories are interconnected, sometimes combining both capabilities
within a single intergrated circuit.) Roughly speaking, the processor contains the circuitry
that implements hardware primitive procedures such as arithmetic operations. (Not every
Logo primitive is a hardware primitive.) The memory holds the information used in
carrying out a program, including the program itself and whatever data it uses. The
memory is divided into millions of small pieces, each of which can hold a single value
(a number, a letter, and so on).* Each small piece has an which is a number
used to select a particular piece; the metaphor is the street address of each house on a
long street. The hardware primitive procedures include a operation that takes a
memory address as its input and finds the value in the specified piece of memory, and
a command that takes an address and a value as inputs and puts the given value
into the chosen piece of memory.

With this background we can understand how lists and arrays differ. To be specific,
suppose that we have a collection of five numbers to store in memory. If we use an array,
that means that Logo finds five pieces of memory to hold the five values, like
this:

If instead we use a list, Logo finds the memory for each of the five values as that
value is computed. The five memory slots might not be consecutive, so each memory slot
must contain not only the desired value but also a to the next slot. That is, each
slot must contain an additional number, the address of the next slot. (What I’m calling
a “slot” must therefore be big enough to hold two numbers, and in fact Logo uses what
we call a for each, essentially an array of length two.) Since we don’t care about the
actual numeric values of the addresses, but only about the pairs to which they point, we
generally use arrows to represent pointers pictorially:

#1

#3 #5

#2

#4

list
address

load

load
load

null pointer,

random access.

n
n

O

n n

n O n

dynamic allocation.

148 Chapter 3 Algorithms and Data Structures

The last pair of the list has a a special value to indicate that there is no next
pair following it, indicated by the diagonal line.

Why do we bother to provide two aggregation mechanisms? Why don’t language
designers just pick the best one? Clearly the answer will be that each is “the best” for
different purposes. In the following paragraphs I’ll compare several characteristics of
lists and arrays.

One advantage of arrays that should be obvious from these pictures is that a list uses
twice as much memory to hold the same number of values. But this is not generally an
important difference for modern computers; unless your problem is really enormous,
you don’t have to worry about running out of memory.

The most important advantage of arrays is that they are This means
that each member of an array can be found just as quickly as any other member, regardless
of its position within the array. If the program knows the address at which the array
begins, and it wants to find the th member of the array, only two operations are needed:
First add to the array’s address, then the value from the resulting address. This
takes a constant (and very short) amount of time, (1). By contrast, in a list there is
no simple arithmetic relationship between the address of the list’s first member and the
address of its th member. To find the th member, the program must the pointer
from the first pair, then use that address to the pointer from the second pair, and
so on, times. The number of operations needed is ().

On the other hand, the most important advantage of lists is This
means that the programmer does not have to decide ahead of time on how big the data
aggregate will become. (We saw an example recently when we wanted to add a child
to a node of an existing tree.) Consider the five-member aggregates shown earlier, and
suppose we want to add a sixth member. If we’ve used a list, we can say, for example,

#1

#3

#2

#4

#5

A

oldlistnewlist

foreach

make "newlist fput "A :oldlist

Logo’s Underlying Data Structures 149

and all Logo has to do is find one new pair:

By contrast, once an array has been created we can’t expand it, because the new address
would have to be adjacent to the old addresses, and that piece of memory might already
be used for something else. To make an array bigger, you have to allocate a complete
new array and copy the old values into it.

Remember that arrays sacrifice efficient expansion in order to get efficient random
access. From the standpoint of program speed, one is not absolutely better than the
other; it depends on the nature of the problem you’re trying to solve. That’s why it’s best
if a language offers both structures, as Berkeley Logo does. For the very common case
of -like iteration through an aggregate, neither random access nor dynamic
allocation is really necessary. For a data base that can grow during the running of a
program, the flexibility of dynamic allocation is valuable. For many sorting algorithms,
on the other hand, it’s important to be able to jump around in the aggregate and so
random access is useful. (A programmer using arrays can partially overcome the lack
of dynamic allocation by preallocating a too-large array and leaving some of it empty at
first. But if the order of members in the array matters, it may turn out that the “holes”
in the array aren’t where they’re needed, and so the program still has to copy blocks
of members to make room. Also, such programs have occasional embarrassing failures
because what the programmer thought was an extravagantly large array turns out not
quite large enough for some special use of the program, or because a malicious user
deliberately “overruns” the length of the array in order to evade a program restriction.)

delicious.Ice iscreamone

Spinachtwo

deal

:oldlist :newlist

fput
first butfirst

Lput last butlast

make "pile fput (first :hand) :pile
make "hand butfirst :hand

?
?

hand pile,

shuffling

sharable

O

O n

150 Chapter 3 Algorithms and Data Structures

make "one [Ice cream is delicious.]
make "two fput "Spinach butfirst butfirst :one

The solitaire program in Volume 2 of this series illustrates the different advantages
of lists and arrays. As in any card game, a solitaire player distributes the cards into several
small groups, each of which varies in size as the play continues. For example, a typical
step is to deal a card from the onto the each of which is represented as a list:

(The actual solitaire program uses somewhat different instructions to accomplish the
same effect, with a procedure that outputs the next available card after removing it
from the hand.)

On the other hand (no pun intended), the deck is easier when an array is
used to hold the card values, because the shuffling algorithm requires random jumping
around in the deck, but does not change the total number of cards, so that random
access is more important than dynamic allocation. Therefore, the program starts each
round of play with the deck in the form of an array of 52 cards. It shuffles the deck in
array form, and then copies the members of the array into a list, which is used for the
rest of that round. The advantage of an array for shuffling, and the advantage of a list for
dealing cards, together outweigh the time spent copying the array into the list.

An important consequence of dynamic allocation is that lists are data
structures. In the example above, contains five pairs and contains
six, but the total number of pairs used is six, not 11, because most of the same pairs
are part of both lists. That’s why the operation takes (1) time, unaffected by
the length of the list, as do and . (Now that you know how lists are
constructed using pairs and pointers, you should be able to understand something I’ve
mentioned earlier without explanation: , , and require () time.
It’s much faster to operate near the beginning of a list than near the end.) Arrays are
not sharable; each array occupies its own block of consecutive memory addresses.

When a data structure is both sharable and mutable, it’s possible to get into some
very mysterious, hard-to-detect bugs. Suppose we do this:

Ice iscream delicious.one

Spinachtwo

disgusting.

copy

:one :two

setitem

.setfirst .setbf

do

Logo’s Underlying Data Structures 151

?
?
Spinach is disgusting.

?
Ice cream is disgusting.

plist

.setfirst butfirst butfirst :two "disgusting.
print :two

print :one

* Also, this helps to explain the importance of property lists in Logo. Property lists are a safe
form of mutable list, because they are not sharable; that’s why the primitive outputs a
newly-allocated of the property list.

Then suppose you decide you don’t like spinach. You might say

But you haven’t taken into account that and share memory, so this instruction
has an unintended result:

This is definitely a bug!

It’s the combination of mutation and sharing that causes trouble. Arrays are mutable
but not sharable; the result of using to change a member of an array is easily
predictable. The trouble with list mutation is that you may change other lists besides the
one you think you’re changing. That’s why Berkeley Logo’s and
primitives have names starting with periods, the Logo convention for “experts only!” It’s
also why many other Logo dialects don’t allow list mutation at all.*

In order to explain to you about how something like this might happen, I’ve had to
tell you more about Logo’s storage allocation techniques than is ordinarily taught. One
of the design goals of Logo was that the programmer shouldn’t have to think in terms
of boxes and arrows as we’re doing now. But if you mutate sharable lists, you’d better
understand the boxes and arrows. It’s not entirely obvious, you see, when two lists
share storage. Suppose the example had been backwards:

i ce

t hat ' s

cr eam.

Del i c i ous,

one

spi nach.t wo

lput
fput

:one :two
:world :Canada

world
G47

:world
G47 world

not
not

into leave

name

by
accident;

152 Chapter 3 Algorithms and Data Structures

?
?
?
Delicious, that’s spinach.
?
?
Disgusting, that’s spinach.
?
Delicious, that’s ice cream.

make "one [Delicious, that’s ice cream.]
make "two lput "spinach. butlast butlast :one
print :two

.setfirst :two "Disgusting,
print :two

print :one

In this case the other list is mysteriously modified because when is used,
rather than as in the previous example, the two lists do share memory. That’s
a consequence of the front-to-back direction of the arrows connecting the boxes; it’s
possible to have two arrows pointing a box, but only one arrow can a box. You
can’t do this:

The combination of mutation and sharing, although tricky, is not all bad. The same
mutual dependence that made a mess of and in the example above was
desirable and helpful in the case of and earlier. That’s why Lisp has
always included mutable lists, and why versions of Logo intended for more expert users
have also chosen to allow list mutation.

Don’t think that without mutable lists you are completely safe from mutual depen-
dence. Any language in which it’s possible to give a datum a allows the programmer
to set up the equivalent of sharable data, just as I did in the final version of the tree of
cities. As far as the Logo interpreter is concerned, the value of the variable is some
generated symbol like . That value is immune to changes in other data structures.
But if we think of as containing, effectively, the entire tree whose root node is
called , then changes to other variables do, in effect, change the value of .
What is true is that without mutable lists you can’t easily set up a mutual dependence

you have to intend it.

By the way, by drawing the box and pointer diagrams with the actual data inside the
boxes, I may have given you the impression that each member of a list or array must be a
single number or letter, so that the value will fit in one memory address. Actually, each

D

A B C

E F

array

Program Listing

Program Listing 153

member can be a pointer to anything. For example, here’s a picture of an array that
includes lists,

{[A B C] D [E F]}

;;; Algorithms and Data Structures

;; Local optimization of quadratic formula

to quadratic :a :b :c
localmake "root sqrt (:b * :b-4 * :a * :c)
localmake "x1 (-:b+:root)/(2 * :a)
localmake "x2 (-:b-:root)/(2 * :a)
print (sentence [The solutions are] :x1 "and :x2)
end

;; Memoization of T function

to t :n :k
localmake "result gprop :n :k
if not emptyp :result [output :result]
make "result realt :n :k
pprop :n :k :result
output :result
end

to realt :n :k
if equalp :k 0 [output 1]
if equalp :n 0 [output 0]
output (t :n :k-1) + (t :n-1 :k)
end

154 Chapter 3 Algorithms and Data Structures

;; Speedup of Simplex function

to simplex :buttons
output 2 * first (cascade :buttons

[fput (sumprods butfirst ?2 ?1) ?1] [1]
[fput 1 nextrow ?2] [1 1])

end

to sumprods :a :b
output reduce "sum (map "product :a :b)
end

to nextrow :combs
if emptyp butfirst :combs [output :combs]
output fput (sum first :combs first butfirst :combs) ~

nextrow butfirst :combs
end

;; Sorting -- selection sort

to ssort :list
if emptyp :list [output []]
output ssort1 (first :list) (butfirst :list) []
end

to ssort1 :min :in :out
if emptyp :in [output fput :min ssort :out]
if lessthanp :min (first :in) ~

[output ssort1 :min (butfirst :in) (fput first :in :out)]
output ssort1 (first :in) (butfirst :in) (fput :min :out)
end

;; Sorting -- partition sort

to psort :list
if emptyp :list [output []]
if emptyp butfirst :list [output :list]
localmake "split ((first :list) + (last :list)) / 2
if lessthanp first :list :split ~

[output psort1 :split (butfirst :list) (list first :list) []]
output psort1 :split (butlast :list) (list last :list) []
end

Program Listing 155

to psort1 :split :in :low :high
if emptyp :in [output sentence (psort :low) (psort :high)]
if lessthanp first :in :split ~

[output psort1 :split (butfirst :in) (fput first :in :low) :high]
output psort1 :split (butfirst :in) :low (fput first :in :high)
end

;; Sorting -- count comparisons

to lessthanp :a :b
if not namep "comparisons [make "comparisons 0]
make "comparisons :comparisons+1
output :a < :b
end

to howmany
print :comparisons
ern "comparisons
end

;; Abstract Data Type for Trees: Constructor

to tree :datum :children
output fput :datum :children
end

;; Tree ADT: Selectors

to datum :node
output first :node
end

to children :node
output butfirst :node
end

;; Tree ADT: Mutator

to addchild :tree :child
.setbf :tree (fput :child butfirst :tree)
end

156 Chapter 3 Algorithms and Data Structures

;; Tree ADT: other procedures

to leaf :datum
output tree :datum []
end

to leaves :leaves
output map [leaf ?] :leaves
end

to leafp :node
output emptyp children :node
end

;; The World tree

to worldtree
make "world ~

tree "world ~
(list (tree "France leaves [Paris Dijon Avignon])

(tree "China leaves [Beijing Shanghai Guangzhou Suzhou])
(tree [United States]

(list (tree [New York]
leaves [[New York] Albany Rochester

Armonk])
(tree "Massachusetts

leaves [Boston Cambridge Sudbury
Maynard])

(tree "California
leaves [[San Francisco] Berkeley

[Palo Alto] Pasadena])
(tree "Washington

leaves [Seattle Olympia])))
(tree "Canada

(list (tree "Ontario
leaves [Toronto Ottawa Windsor])

(tree "Quebec
leaves [Montreal Quebec Lachine])

(tree "Manitoba leaves [Winnipeg]))))
end

to locate :city
output locate1 :city :world "false
end

Program Listing 157

to locate1 :city :subtree :wanttree
if and :wanttree (equalp :city datum :subtree) [output :subtree]
if leafp :subtree ~

[ifelse equalp :city datum :subtree
[output (list :city)]
[output []]]

localmake "lower locate.in.forest :city (children :subtree) :wanttree
if emptyp :lower [output []]
output ifelse :wanttree [:lower] [fput (datum :subtree) :lower]
end

to locate.in.forest :city :forest :wanttree
if emptyp :forest [output []]
localmake "child locate1 :city first :forest :wanttree
if not emptyp :child [output :child]
output locate.in.forest :city butfirst :forest :wanttree
end

to cities :name
output cities1 (finddatum :name :world)
end

to cities1 :subtree
if leafp :subtree [output (list datum :subtree)]
output map.se [cities1 ?] children :subtree
end

to finddatum :datum :tree
output locate1 :name :tree "true
end

;; Area code/city pairs ADT

to areacode :pair
output first :pair
end

to city :pair
output butfirst :pair
end

158 Chapter 3 Algorithms and Data Structures

;; Area code linear search

make "codelist [[202 Washington] [206 Seattle] [212 New York]
[213 Los Angeles] [215 Philadelphia] [303 Denver]
[305 Miami] [313 Detroit] [314 St. Louis]
[401 Providence] [404 Atlanta] [408 Sunnyvale]
[414 Milwaukee] [415 San Francisco] [504 New Orleans]
[608 Madison] [612 St. Paul] [613 Kingston]
[614 Columbus] [615 Nashville] [617 Boston]
[702 Las Vegas] [704 Charlotte]
[712 Sioux City] [714 Anaheim] [716 Rochester]
[717 Scranton] [801 Salt Lake City] [804 Newport News]
[805 Ventura] [808 Honolulu]]

to listcity :code
output city find [equalp :code areacode ?] :codelist
end

;; Area code binary tree search

to balance :list
if emptyp :list [output []]
if emptyp butfirst :list [output leaf first :list]
output balance1 (int (count :list)/2) :list []
end

to balance1 :count :in :out
if equalp :count 0 ~

[output tree (first :in) (list balance reverse :out
balance butfirst :in)]

output balance1 (:count-1) (butfirst :in) (fput first :in :out)
end

to treecity :code
output city treecity1 :code :codetree
end

to treecity1 :code :tree
if emptyp :tree [output [0 no city]]
localmake "datum datum :tree
if :code = areacode :datum [output :datum]
if :code < areacode :datum [output treecity1 :code lowbranch :tree]
output treecity1 :code highbranch :tree
end

Program Listing 159

to lowbranch :tree
if leafp :tree [output []]
output first children :tree
end

to highbranch :tree
if leafp :tree [output []]
output last children :tree
end

