
Appendices

341

Bibliography

This book is a little like the previews of coming attractions at the movies; it’s meant to
whet your appetite in several directions, without giving you the complete story about
anything. To find out more, you’ll have to consult more specialized books on each topic.

There are a lot of books on computer programming and computer science, and
whichever I chose to list here would be out of date by the time you read this. Instead of
trying to give current references in every area, in this edition I’m listing only the few most
important and timeless books, plus an indication of the sources I used for each chapter.

Computer science is a fast-changing field; if you want to know what the current hot
issues are, you have to read the journals. The way to start is to join the Association
for Computing Machinery, 1515 Broadway, New York, NY 10036. If you are a full-time
student you are eligible for a special rate for dues, which as I write this is $25 per year. (But
you should write for a membership application with the current rates.) The Association
publishes about 20 monthly or quarterly periodicals, plus the newsletters of about 40
Special Interest Groups in particular fields.

Read These!

Chapter 1: Automata Theory

Structure and Interpretation
of Computer Programs,

Gödel, Escher, Bach: an Eternal Golden Braid,

Computation: Finite and Infinite Machines,

342 Bibliography

If you read no other books about computer science, you must read these two. One is
an introductory text for college computer science students; the other is intended for a
nonspecialist audience.

Abelson, Harold, and Gerald Jay Sussman with Julie Sussman,
MIT Press, Second Edition, 1996.

The introductory computer science text at MIT, this book uses Lisp
as the vehicle for an intense study of everything from data structures
to machine architecture. Although it’s not a book about artificial
intelligence as such, this is the definitive presentation of the artificial
intelligence view of what computer science in general is about, and the
best computer science book ever written.

Hofstadter, Douglas R., Basic Books, 1979.

This book won the Pulitzer Prize for its success in explaining to readers
who aren’t computer scientists some of the deepest ideas of computer
science, and it makes a strong case for the view that those ideas also have
a lot to teach us about human intelligence.

The reference I used in thinking about this chapter was

Minsky, Marvin, Prentice-Hall, 1967.

Part of the interest of this particular text is that its author is a leading
figure in artificial intelligence research, and so the question of whether
the insights of automata theory apply also to human intelligence is always
visible as a motivating force in the presentation of the theory. Minsky’s
bibliography will refer you to the original papers by Turing, Kleene,
Church, and so on as well as some left-field references to biological
information processing from people like Lettvin and McCulloch.

Chapter 2: Discrete Mathematics

Elements of Discrete Mathematics,

What Is the Name of This Book?
The Lady or the Tiger?
5000 B.C. and Other Philosophical Fantasies,
Alice in Puzzle-Land,

Chapter 2: Discrete Mathematics 343

This chapter touches on several topics. An overall introduction for computer scientists is

Liu, Chung Laung, McGraw-Hill, Second Edition, 1985.

This book requires no advanced mathematical background, but it does
require that the reader feel comfortable with mathematical notation and
the notion of formal proof. The topics include both purely mathematical
ones, like set theory, combinatorics, and modern algebra, and related
computer science ones like computability, formal languages, automata
theory, analysis of algorithms, and recursion. This list is not unlike the
one in the book you’re reading now, and in fact Professor Liu expresses
a goal similar to mine: to show computer science undergraduates the
relevance of mathematics to their work. The difference is that I use
actual programs to illustrate the ideas whenever possible, whereas his is
a “straight” math book. (Of course another difference is that he treats
all these topics in much more depth. But don’t be scared away; he starts
simply.)

On the topic of mathematical logic, there is a range of books that vary in accessibility.
Among the most pleasant are

Smullyan, Raymond, Prentice-Hall, 1978
—, Knopf, 1982
—, St. Martin’s, 1984
—, Penguin, 1984.

These are books of puzzles based on logic, but they go beyond the simple
propositional inference puzzles like the one in the text. Smullyan starts
with some of the classic puzzle categories, like the Liars and Truth-
Tellers puzzle, and builds up to an exposition in puzzle form of topics
like self-reference, modal logic, and Gödel’s Theorem.

“Logic programming” is the use of mathematical logic formalisms as a programming
language. It is also called “declarative programming” because instead of issuing com-
mands to the computer, the programmer makes statements about things known to be
true. The algorithm by which the programming system makes inferences from these
statements is not explicitly provided by the programmer, but is built into the language.

Chapter 3: Algorithms and Data Structures

Beginning Micro-Prolog,

Programming Pearls,

Com-
munications

344 Bibliography

The most widely known logic programming language, although not the only one, is
Prolog. An accessible introductory text is

Ennals, Richard, Harper & Row, Second Edition, 1984.

I list this book here because it’s a Prolog text and therefore relevant
to mathematical logic, but for me the main interest of the book is that
it argues for the use of Prolog in teaching kids, as an alternative to
Logo. The book gives examples of logic programming at work in various
curriculum areas.

To a software engineer, the issues in this chapter are among the central ones in computer
science. That’s not my own way of thinking, so it’s possible that my presentation doesn’t
give the field all the pizazz that an enthusiast would manage. To compensate for that,
you should read

Bentley, Jon, Addison-Wesley, 1986.

This is a collection of monthly articles written by Bentley for the
of the Association for Computing Machinery. It requires

virtually no formal mathematics and is extremely readable. If the book
has a moral, it’s “Think first, program later.” It makes its case with a
number of true-to-life examples of projects in which orders of magni-
tude were saved in the execution time of a program by rethinking its
fundamental structure.

Chapter 4: Programming Language Design

Chapter 5: Programming Language Implementation

Chapter 6: Artificial Intelligence

Structure and Interpretation of
Computer Programs,

Pascal User Manual and Report,

should

Essentials of Programming
Languages,

Language as a Cognitive Process, Volume 1: Syntax,

Chapter 6: Artificial Intelligence 345

There are textbooks in “comparative programming languages,” but I’m going to stick to
the strategy of the chapter by using Pascal as the example.

one of my must-reads, will be useful as a contrast here, giving the Lisp
point of view.

Jensen, Kathleen, and Niklaus Wirth, Springer-Verlag,
Third Edition, 1985.

This is the official report of the international committee responsible for
the design of the language. The book has two parts, a reference manual
and the committee report itself. The latter includes some explicit
discussion of the design decisions in the language.

I really didn’t have a reference for this chapter; I just sort of forged ahead on my own!
But here’s the book I have read first:

Friedman, Daniel P., Mitchell Wand, and Christopher T. Haynes,
MIT Press, 1992.

This book uses the Scheme dialect of Lisp as the basis for a study of
programming language interpreters. It’s harder reading than most of
the books in this bibliography, but it encourages the reader to think very
deeply about how programming languages work.

I’ll list two references here; one on language understanding in general and one that
contains a paper about the Student program specifically.

Winograd, Terry, Addison-Wesley, 1983.

A planned second volume on semantics was not published. This is a
technically meaty book, but considering its depth it is quite readable.

Computers and People

Semantic Information Processing,

The Second Self: Computers and the Human Spirit,

Computer Power and Human Reason: From Judgment to Calculation,

346 Bibliography

The book strikes a good balance among technical programming issues,
psychological issues, and the ideas of mainstream linguistics. It includes
an extensive bibliography. When I attended Terry’s course at Stanford
in which he first presented the material that became this book, it was the
first time I experienced a course that ended with a standing ovation for
the instructor. The book shows the same clarity of explanation and the
same enthusiasm.

Minsky, Marvin L., MIT Press, 1969.

This is a collection of early research reports. I include it here because
one of its chapters is a paper by Bobrow on STUDENT, and you won’t
be able to find the more complete description in Bobrow’s unpublished
thesis. Other chapters describe similar microworld-strategy projects of
the same vintage.

Last but far from least, some of the most fascinating reading connected with computer
science is found outside of the technical literature, in the reactions of psychologists,
philosophers, and sociologists to the computer as a social force. You owe it to yourself to
understand the human context of your work; you owe it to everyone else to be strongly
aware of the social implications of what you do.

Turkle, Sherry, Simon and Schuster, 1984.

A sociologist’s view of the computer culture, this book explores both the
psychology of computer experts and the ways in which a computer-rich
environment has changed the thinking of non-experts not only about
technology but about what it means to be human.

Weizenbaum, Joseph, W.
H. Freeman, 1976.

Weizenbaum is a computer scientist, and this book is in part a technical
argument about the limitations of what computers can do. But it is more
importantly a call to computer scientists to take responsibility for the
uses to which their inventions are put. Weizenbaum argues that there

shouldn’t can

What Computers Still Can’t Do: A Critique of Artificial Reason,

The Psychology of Computer Programming,

Computers and People 347

are things we do with computers, even if we learn how to
overcome the technical obstacles. Computer-based weapons of war are
an obvious example, but Weizenbaum is also worried about things like
automated psychotherapy, which was just a daydream when the book
appeared but has since become a reality to a limited extent. Many
computer scientists find this book offensive, and it is certainly possible
to find flaws in the details. But the critics rarely present an alternative
with an equally strong social conscience.

Dreyfus, Hubert L., MIT Press,
1992.

Dreyfus is a philosopher who uses the phenomenological ideas of Hei-
degger and others to suggest a fundamental flaw in the assumptions AI
researchers make about human intelligence. To try to sum it up in one
sentence, the sort of thinking that people do in solving a puzzle is very
different from the much more profound intelligence we use in carrying
out our more customary activities. AI programs mimic the former but
not the latter. This is a revision of an earlier book, taking into account
more recent developments in AI research.

Weinberg, Gerald M., Van Nostrand Reinholt,
1971.

This book studies programming as a social activity, programming as an
individual activity, and the programming environment. In my opin-
ion, its main contribution is the idea of “egoless programming,” which
means more or less that when your friend finds that impossible bug in
your program for you, you should feel happy rather than threatened.
Weinberg offers several good ideas for how to act as part of a program-
ming community. On the other hand, I’m less enthusiastic about his
manager’s-eye view of the programmer as a cog in the machine, rather
than as a creative artist. But overall I think this book is well worth
reading; it’s also entertainingly written.













Credits

The Second Self: Computers and the Human Spirit

Mind Benders B–2

The Dell Book of Logic Problems #4.

Natural Language Input for a Computer Problem
Solving Program

Mindstorms: Children, Computers, and Powerful Ideas

Language as a Cognitive Process, Volume 1: Syntax

349

Material on page xiv quoted from by
Sherry Turkle. Copyright 1984 by Sherry Turkle. Reprinted by permission of Simon
& Schuster, Inc.

Material on page 48 quoted from by Anita Harnadek. Copyright
1978 by Midwest Publications (now called Critical Thinking Press, Box 448, Pacific Grove,
CA 93950). Reprinted by permission of the publisher.

Material on page 53 by Diane C. Baldwin quoted from
Copyright 1989 by Dell Publishing, a division of Bantam Doubleday Dell Publishing
Group, Inc., reprinted by permission of Dell Magazines.

Material on pages 279 and 294 quoted from
by Daniel G. Bobrow (unpublished Ph.D. thesis). Copyright 1964 by

Daniel G. Bobrow. Reprinted by permission of the author.

Material on page 295 quoted from
by Seymour Papert. Copyright 1984 by Basic Books, Inc., publishers. Reprinted by
permission of the publisher.

The illustration on page 313 quoted from
by Terry Winograd. Copyright 1983 by Addison-Wesley Publishing Company, Inc.
Reprinted by permission of the publisher.

A B

C

351

Index of Defined Procedures

This index lists example procedures whose definitions are in the text. The general index
lists technical terms and primitive procedures.

335
335

335
335
336

336
336

336

331
36

36
140, 141, 155

193
318

317
318

318
318

336
336

336
143, 157

257
42

256
255

43
37

39
37
37

332

144, 158
158

317
36

257
316

333
181

99
43

316
315

316

#gather
#test
#test2
&test
@test
@test2
@try.pred
^test

abs
accept
acceptpart
addchild
addnumbers
ageify
ageprob
agepron
agesen
agewhen
always
anyof
anyof1
areacode
arglist
array.save

arraysize
arraytype
arrow.stub
arrowhead
arrows.from.start
arrowtail
arrowtext
article

balance
balance1
bkt1
blank
blockbody
bracket

cap
cards
category
change.head
changeone
changes
changes1

D

E

F

G

H

352 Index of Defined Procedures

316
316
41

263
136, 141, 155

93, 104
133, 135, 137, 157

157
143, 157

102
270

265
249, 265

75, 76, 104
270

258
40

266
57, 102

136, 141, 155
182

325
315

40
58, 100

100
36

325
326

326
332

64, 101
206
276

273
273

273
78, 104

224

320

93, 105, 164
79, 104, 162, 163

162
326

326
326

100
59, 99

63, 103
138, 157
316

316
100

315
100

43
62, 103

274
274

274
274

35
35

35
36

241, 256

35
101

215, 272
331

273
273

120

34
170

changes2
changes3
check.nd
check.type
children
choose
cities
cities1
city
cleanup
code
codeload
codestore
combs
commalist
compound
copy.to.accepts
copyarray
cub.reporter

datum
deck
denom
depunct
determine
differ
differ1
display
distribtimes
distribx
divterm
dlm

equiv
exch
exit
exp.mode
exp.type
exp.value
expand
expression

expt

f
fact
fact.seq
factor
factor1
factor2
falses
falsify
female
finddatum
finddelim
finddelim1
findfalse
findkey
findtrue
fix.arrows
foote.family
frame.outerframe
frame.prevframe
frame.retaddr
frame.save.newfp
fsm
fsm1
fsmnext
fsmtest
function

game
get
getchar
geteqns
getid
gettype
guess.middle.value

haltp
hanoi

I

J

L

M

N

Index of Defined Procedures 353

112
145, 159

116, 155

255
273

273
273

315
222

222
47, 61, 101

101
336

197
41

194

276
276

275
276
275

63, 100
101

315
138, 156

137, 156
138, 156

116, 155
42

272
264

265
143, 158

333
272

133, 135, 137, 156

133, 135, 137, 157
157

88, 105
105
105

145, 159

37
37

36
43

63, 103
333

335
335
335
335
336
336

326
327

206
265

266
327

170
36

195
221, 270

40
38
38

39
39

257
276

272
270

40
40

haspair
highbranch
howmany

id
id.lname
id.pointer
id.type
idioms
ifbe
ifbeelse
implies
implies1
in
increment
insert
IntSquare

jal
jr
jump
jumpf
jumpt
justbefore
justbefore1

last2
leaf
leafp
leaves
lessthanp
letter.join
letterp
lindex
lindex1
listcity
lsay
lname
locate

locate.in.forest
locate1
lock
lock1
lock2
lowbranch

machine
make.arrow
make.machine
make.stub
male
match
match!
match#
match&
match?
match@
match^
maybeadd
maybemul
median
memaddr
memsetup
minusin
movedisk
movepart
multi
mustbe

nd.traverse
ndconcat
ndletter
ndmany
ndor
newarg
newline
newlname
newregister
newstate
newtail

O

P

354 Index of Defined Procedures

256
265

115, 154, 164
322

316
246, 263

22, 38
272

269

327
265

273
273

332
332
333

320
333

320
320

253
320

42
43

39

264
334

248, 262
248, 263
246, 263

263
269

269
229, 267

269
100
79, 104

332
228, 267

267
229, 267

259
269

262
268

267
220, 222, 245, 258

263
254

333
268

229, 267
332

229, 268
259

260
330

330
263

334
258

241, 257
260

260
261

241, 256
261

254
254

332
274

275
120, 121, 123, 154, 205

155
264

264
276

276
276

276
276

259
261

261

newvar
nextindex
nextrow
nmtest
nocap
noimmediate
nondet
number
numtype

occvar
offset
op.instr
op.nargs
op0
op1
op2
opdiff
operatorp
opform
oprem
opsetup
optest
optimize
optimize.state
or.splice

parrayassign
parse.special
passign
passign1
pboolean
pchar
pchardata
pchecktype
pclose
pdata
peers
perms
personp
pexpr

pexpr1
pexprop
pfor
pfuncall
pfunset
pgetbinary
pgetunary
pif
pinteger
plibrary
plural
pnewtype
popen
posspro
ppopop
pproccall
pproccall1
prans
pranswers
preal
prematch
prepeat
proc1
procarg
procargs
procarrayarg
procedure
procvararg
program
program1
pronoun
prun
prun1
psort
psort1
pstringassign
pstringassign1
putch
putint
putreal
putstr
puttf
pwhile
pwrite
pwrite1

Q

R

S

Index of Defined Procedures 355

262
262

262

319
108, 109, 153

336
332

255
256

272
193
194

113, 153, 195
274

274
274

274
270

36
327

327
327

118
271

110
275

334
331
275

333
60, 103

318
319

334
334

264

333
59, 99

100
205
181

182
328
328

93, 106
93, 105, 115, 154, 164, 166

165
328

328
329
329

329
333

271
127

76, 77, 104
84, 105
102

322
323

102, 323
324

325
325

325
325

324
324

324
324

324
324

323
41, 206

276
334

39
194, 321

118, 154
154

36

pwrite2
pwrite3
pwriteln

qset
quadratic
quoted
qword

range
range1
rc1
readnumber
RealSquare
realt
reg.globalptr
reg.retaddr
reg.stackptr
reg.zero
regfree
reject
remfactor
remfactor1
remop
remove.once
reservedp
reverse
rload
rmatch
roundoff
runsetup

say
says
senform
senform1
set.in
set.special
setindex

setminus
settruth
settruth1
showdata
showdeck
shuffle
simdiv
simone
simp
simplex
simplex.seq
simplus
simplus1
simplus2
simtimes
simtimes1
singular
skipcomment
slowsort
socks
socktest
solution
solve
solve.reduce
solve1
solveq
solveq.minus
solveq.product
solveq.product1
solveq.quotient
solveq.rplus
solveq.sum
solveq.sum1
solveq.sum2
solveq1
solveqboth
solver
sort
spaces
special
splice
square
ssort
ssort1
startpart

T

U

V

W

X

356 Index of Defined Procedures

220, 258
101, 275

38, 271
38

264
42

44
44
43

314
314

329
329
330
330

115, 154, 164

97, 106, 112, 113, 153, 195
265

322
275

216, 271
272

170
137, 141, 155

145, 158
158

34
336
332

256
322

321
320

320
321

321
320

320
321
322

321
321

321
321

321
322

320
217, 271

89, 105
256

331

332
255

331
255

330
331

331
332

58, 99

132, 135, 138, 139, 156

60, 101

statement
store
string
stringa
stringlose
stub.add
stub.arrow
stub.head
stub.text
student1
student2
subord
subord1
substop
subterm
sumprods

t
targetaddr
this
tobool
token
token1
tower
tree
treecity
treecity1
try
try.pred
tryidiom
tryprocpart
trysolve
tst.difference
tst.divby
tst.lessthan
tst.minus
tst.minuss
tst.numof
tst.per
tst.percent
tst.perless
tst.plus
tst.pluss

tst.square
tst.squared
tst.sum
tst.times
tst.tothepower
twochar
twoto
typecheck

unitstring

varequal
vargroup
varkey
varpart
varterms
vartest
vartest1
verb
verify

worldtree

xor

A

B

357

begin

∀
∧
¬
∨
⊗
Σ
→

General Index

This index lists technical terms and primitive procedures. There is also an index of
defined procedures, which lists procedures whose definitions are in the text.

67
46
46
46
68
91
46

Abelson, Harold ix, xvii, 342
accepting state 4
access, random 148
actual argument 176
adder 71
adder, finite-state 25
address 147, 231
age problem 281, 290
aggregate type 187
algebra word problems 278
algorithm 15, 107, 294
algorithm, two-stack 225
algorithms, analysis of 107
allocation, dynamic 148
alphabet rule 11, 16
alternatives rule 11, 19
ambiguous 217

analysis of algorithms 107
analysis, lexical 215
Anderson, Chris xvii
APL 224
apprenticeship xi
argument, actual 176
array 181, 187, 199
array, packed 188, 189
artificial intelligence 277
assembly language 231
assignment statement 178, 180, 195
Association for Computing Machinery 341
association list 287
ATN 312
augmented transition network 312
automata theory 1, 309

background 300
backtracking 65
balanced tree 146
balancing parentheses 13, 28
Baldwin, Diane C. 53
BASIC 196
Beatles 46

(Pascal) 175

C

D

Boolean

char

358 General Index

Bentley, Jon 344
bibliography 341
binary computer 69
binary number 25, 88
binary operator 223
binary search algorithm 143
binary tree 132, 144
binding, call by 199
binomial coefficient 82
bit 26, 28, 71
block structure 166, 177
Bobrow, Daniel G. xvii, 278

(Pascal) 187
bottom-up 175
bound reference 184
branch node 132
byte 147, 188

C 225
CAI, intelligent 294
call by binding 199
call by reference 197, 198
call by value 197, 198
call, procedure 178
category 49

(Pascal) 187
checking, compile-time 223
Chinese food 46
circuit, integrated 230
Clancy, Michael xvii
closed form definition 80, 98
code generation 211, 245
coefficient, binomial 82
coefficient, multinomial 94
cognitive science 278
Colby, Kenneth 31
combination 74, 79
combination lock 74, 86
combinatorics 72
common subexpression elimination 109
community xv
compile-time checking 223
compiler 172

compiler compiler 219, 224
compiler, incremental 174
compiler, optimizing 109
compiler, Pascal 209
complexity ix
composition of functions 162
compound proposition 46
compound statement 177
computer assisted instruction 294
computer center xv
computer hardware 69
computer logic 71
computer science ix
computer, binary 69
concatenation rule 11, 17
conditional statement 177
constant string 189
constructor 137
context, limited 278
context-free language 310
continuous function 45
contradiction, proof by 34
contrapositive rule 61
correctness 107
correspondence, one-to-one 89
counting problem 45

data structure 107, 129
data type 187
Davis, Jim xvii
declaration part 176
declarative knowledge 16
declarative programming 168
declarative programming languages 16
declarative representation x
definition, closed form 80, 98
definition, formal 211
definition, inductive 80, 91, 94, 112
definition, recursive 12
descent, recursive 220
deterministic grammar 219
directed graph 22
discrete mathematics 45

E

F

G

H

General Index 359

end

first

for

function

Dreyfus, Hubert L. 347
dyadic 224
dynamic allocation 148
dynamic environment 184, 241
dynamic programming 115
dynamic scope 184, 185, 197, 198, 242

economics xiv
editor, text 9, 169
education 294
effective procedure 31
efficiency 107
elementary function 80
elimination rule 50
embedding 310

(Pascal) 175
engineering, knowledge 278
English 278
Ennals, Richard 344
enumerated type 191
environment, dynamic 184, 241
environment, lexical 184, 198, 241
equation 281, 285
equivalence relation 68
ethics xiv
exclusive or 68
expansion, multinomial 112
experimental method 83
expert system 278
exponential 129
expression 223
expression, regular 11, 15, 211
extensibility 181
external memory 30

factorial 79
fence 205
Fermat, Pierre de 82
finite-state adder 25
finite-state machine 3, 15, 213, 309

110

food, Chinese 46
forest 133
formal definition 211
formal parameter 176
formal thinking ix

(Pascal) 178, 181, 183
frame pointer 236
frame, stack 235
free reference 184, 185
Friedman, Daniel P. 345
function, continuous 45
function, elementary 80
function, generating 81, 98
function, predicate 67
function, sine 81
function, truth-valued 46, 67
functional programming 162
functions, composition of 162

(Pascal) 194

gate 69
general knowledge 300
generated symbol 141, 239, 293, 304
generating function 81, 98
generation, code 211, 245
global optimization 111
global pointer 235
Goldenberg, Paul xvii
grammar, deterministic 219
grammar, predictive 219
graph 22
graph, directed 22
graphics xiii

half-adder 70
halting state 31
halting theorem 32
Hanoi, Tower of 169
hardware, computer 69
Harnadek, Anita xvii, 48
hash table 130

I

J

K

L

360 General Index

if

integer

last

load

Haynes, Christopher T. 345
heap 131
heapsort 131
heuristic 294, 298
hierarchy 131, 146
hierarchy, syntactic 213
Hilfinger, Paul xvii
Hoare, C. A. R. 125
Hofstadter, Douglas R. 342

(Pascal) 221
immediate 232
implication rule 60
incremental compiler 174
independent 72
index register 235
index variable 205
individual 49
induction, mathematical x
inductive definition 80, 91, 94, 112
inference system 47
inference, rules of 47
infinite loop 32
infinite set 89
insertion sort 119
instruction, computer assisted 294
integers, sum of the 119

(Pascal) 187
integrated circuit 230
intellectual property xv
intelligence, artificial 277
intelligent CAI 294
interactive language 169
intermediate language 173
internal state 30
interpreter 172
intractable 129
inverter 69
Iverson, Kenneth E. 224

Jensen, Kathleen 345

joke 112

keyword 219
Kleene, Stephen C. 16
knowledge engineering 278
knowledge representation 309
knowledge, declarative 16
knowledge, general 300
knowledge, procedural 16
Knuth, Donald E. 129

label 234
language, context-free 310
language, interactive 169
language, intermediate 173
language, machine 172, 209
language, non-interactive 169

110
leaf node 132
lexical analysis 215
lexical environment 184, 198, 241
lexical scope 183
limited context 278
linear 129, 286
linear search algorithm 143
Lisp 185, 196, 282
list, association 287
list, property 301
list, sorted 130
Liu, Chung Laung 343

147
local optimization 110
local procedure 176
lock, combination 74, 86
lock, Simplex 85, 114
logarithm 129
logic problem 45, 48
logic programming 168
logic, computer 71
logic, predicate 67
logic, propositional 46

M

N

O

P

numof

General Index 361

logic, ternary 73
Logo 169, 294
Logo pattern matcher 283
Logo variable 199
lookahead 215
lookahead, one-character 216
loop, infinite 32

machine language 172, 209
machine, finite-state 3, 15, 213, 309
machine, nondeterministic 6, 22
machine, theoretical 1
mandatory substitution 280
matching, pattern 282, 308
mathematical induction x
mathematical model 1
mathematics, discrete 45
memoization 112, 312
memory 147, 230
memory, computer 28
memory, external 30
mergesort 126
Meteor 282
microworld 278, 297
Minsky, Marvin 342, 346
model, mathematical 1
modification, tree 139
monadic 224
multinomial coefficient 94
multinomial expansion 112
multiplication rule 72
mutator 141

nand 70
network, augmented transition 312
network, recursive transition 213
Newell, Allen 277
node, branch 132
node, leaf 132
node, root 132
non-interactive language 169

nondeterministic machine 6, 22
nor 70
null pointer 148
number, binary 25, 88
number, random 83
numerical analysis xiii

281, 286

object-oriented programming 167
offset 235
one-character lookahead 216
one-to-one correspondence 89
operating systems xiii
operator precedence 223
operator, binary 223
operator, relational 224
operator, unary 223
optimization, global 111
optimization, local 110
optimizing compiler 109
optional substitution 304
ordered subset 74
ordering 146
ordering relation 68
ordinal type 188
overflow signal 71

P-code 173
packed array 188, 189
pair 147
Papert, Seymour x, 295
paradigm, programming 162
parameter, formal 176
parameter, value 197
parameter, variable 197
parentheses 227
parentheses, balancing 13, 28
Parry 31
parser 211, 212, 217
parser generator 217
partition sort 120, 204

Q

R

362 General Index

procedure

program

real

repeat

Pascal 161, 310, 345
Pascal compiler 209
Pascal program 172
Pascal variable 199
Pascal’s Triangle 82, 94
Pascal, Blaise 82
pattern matcher, Logo 283
pattern matching 282, 308
periodic 81
Perlis, Alan J. xi
permutation 74, 79
philosophy xiv
Piaget, Jean x
piracy, software xv
pointer 147, 190
pointer, frame 236
pointer, global 235
pointer, null 148
pointer, stack 236
portable 173
precedence 225, 285
precedence, operator 223
predicate function 67
predicate logic 67
predictive grammar 219
probability 73
problem, logic 48
procedural knowledge 16
procedural representation x
procedure call 178
procedure, effective 31
procedure, local 176
procedure, recursive 75, 80

(Pascal) 176, 194
process ix
processor 147, 230
production rule 13, 212, 310
program verification 107
program, Pascal 172
programming languages, declarative 16
programming paradigm 162
programming, declarative 168
programming, dynamic 115
programming, functional 162
programming, logic 168

programming, object-oriented 167
programming, sequential 162

(Pascal) 171, 172
Prolog 16, 68, 344
proof by contradiction 34
property list 55, 301
property, intellectual xv
proposition, compound 46
proposition, simple 46
propositional logic 46
psychology xiv, 277

quadratic 129
quadratic formula 108
quantifier 283
quicksort 125

random access 148
random number 83
range 188

(Pascal) 187
record 190
recursive definition 12
recursive descent 220
recursive procedure 75, 80
recursive transition network 213
reference, bound 184
reference, call by 197, 198
reference, free 184, 185
Reggini, Horacio xvii
register 230
register, index 235
regular expression 11, 15, 211
reject state 4
relation 67
relation, equivalence 68
relation, ordering 68
relational operator 224

(Pascal) 178
repetition rule 11, 21
reserved word 183

S

T

round

store

General Index 363

retrieval time 131
robust 109, 146, 193
root node 132

(Pascal) 190
RTN 213, 310
rule, production 13, 212
rules of inference 47

scalar type 187
science, cognitive 278
scope 239, 241
scope, dynamic 184, 185, 197, 198, 242
scope, lexical 183
search algorithm, binary 143
search algorithm, linear 143
searching 142
selection sort 117
selector 136
self-reference 32
semantics 180
sentence, simple 281
sentinel 205
sequential programming 162
set theory 89
set, infinite 89
sharable 150
sigma 91
Simon, Herbert A. 277
simple proposition 46
simple sentence 281
simple statement 177, 178
Simplex lock 85, 114
simulation 83
sine function 81
Smullyan, Raymond 343
sociology xiv
software engineering x, 174
software piracy xv
Somos, Michael xvii
sort, insertion 119
sort, partition 120, 204
sort, selection 117
sorted list 130

sorting 115
source file 171
space, time and 130
Spock, Mr. 72
spreadsheet 16
stack frame 235
stack pointer 236
start state 5
state 3
state, accepting 4
state, halting 31
state, internal 30
statement part 175
statement, assignment 178, 180, 195
statement, compound 177
statement, conditional 177
statement, simple 177, 178
statement, structured 178
storage time 130

147
string, constant 189
structure, block 177
structured statement 178
Student 278
subrange type 191
subset, ordered 74
substitution technique 285
substitution, mandator y 280
substitution, optional 304
sum of several terms 91
sum of the integers 119
Sussman, Gerald Jay ix, 342
Sussman, Julie 342
symbol, generated 141, 239, 293, 304
symmetric 68
syntactic hierarchy 213
syntax 179
system, expert 278
system, inference 47

table of values 81
table, hash 130
ternary logic 73

U

V

W

Y

364 General Index

trunc

type

var

while

writeln
write

text editor 9, 169
theoretical machine 1
thinking, formal ix
time and space 130
time, retrieval 131
time, storage 130
timesharing systems xvi
token 214
tokenization 211, 214
top-down 174
Tower of Hanoi 169
tractable 129
tradeoff 130
transition network, augmented 312
transition network, recursive 213
transitive 68
transitive rules 51
tree 131
tree modification 139
tree, balanced 146
tree, binary 132, 144

(Pascal) 190
truth-valued function 46, 67
Turing machine 30, 311
Turing machine, universal 33
Turing’s thesis 31
Turing, Alan M. 30
Turkle, Sherry xiv, xvii, 346
two-stack algorithm 225
type, aggregate 187
type, data 187
type, enumerated 191
type, ordinal 188
type, scalar 187
type, subrange 191
type, user-defined 191
typed variable 187

(Pascal) 191

unambiguous 217
unary operator 223
uniqueness rule 50, 67
unit 286

universal Turing machine 33
Unix xiii, xvi, 9
user-defined type 191

value parameter 197
value, call by 197, 198
variable parameter 197
variable, index 205
variable, Logo 199
variable, Pascal 199
variable, typed 187

(Pascal) 176, 178, 197
verification, program 107

Wand, Mitchell 345
Weinberg, Gerald M. 347
Weizenbaum, Joseph 346

(Pascal) 178
White, Dick xvii
Winograd, Terry xvii, 312, 345
Wirth, Niklaus 345
word 147, 189
word problems, algebra 278
word, reserved 183
workspace 171
workstations xvi

(Pascal) 178
(Pascal) 178

YACC 219

