
name
value:

137

8 Property Lists

print thing "book

french

Butfirst

thing

[[book livre] [computer ordinateur] [window fenetre]]

make "paper "papier
make "chair "chaise
make "computer "ordinateur
make "book "livre
make "window "fenetre

?
livre

In the first volume of this series, I wrote a procedure named that translates words
from English to French using a dictionary list like this:

This technique works fine with a short word list. But suppose we wanted to undertake a
serious translation project, and suppose we wanted to be able to translate English words
into several foreign languages. (You can buy hand-held machines these days with little
keyboards and display panels that do exactly that.) ing through a list of tens of
thousands of words would be pretty slow, and setting up the lists in the first place would
be very difficult and error-prone.

If we were just dealing with English and French, one solution would be to set up
many variables, with each an English word as its and the corresponding French
word as its

Once we’ve done this, the procedure to translate from English to French is just :



Naming Properties

property list.
names, values.

138 Chapter 8 Property Lists

make "book.french "livre
make "book.spanish "libro

to spanish :word
output thing word :word ".spanish
end

make "book [livre libro buch libro liber]

to spanish :word
output item 2 thing :word
end

[French livre Spanish libro German buch Italian libro Latin liber]

The advantage of this technique is that it’s easy to correct a mistake in the translation;
you just have to assign a new value to the variable for the one word that is in error, instead
of trying to edit a huge list.

But we can’t quite use this technique for more than one language. We could create
variables whose names contained both the English word and the target language:

This is a perfectly workable technique but a little messy. Many variables will be needed.
A compromise might be to collect all the translations for a single English word into one
list:

The only thing wrong with this technique is that we have to remember the correct order
of the foreign languages. This can be particularly tricky because some of the words are
the same, or almost the same, from one language to another. And if we happen not to
know the translation of a particular word in a particular language, we have to take some
pains to leave a gap in the list. Instead we could use a list that tells us the languages as
well as the translated words:

A list in this form is called a The odd-numbered members of the list are
property and the even-numbered members are the corresponding property

You can see that this solution is a very flexible one. We can add a new language to
the list later, without confusing old procedures that expect a particular length of list. If
we don’t know the translation for a particular word in a particular language, we can just
leave it out. The order of the properties in the list doesn’t matter, so we don’t have to



print gprop "book "German

Writing Property List Procedures in Logo

Writing Property List Procedures in Logo 139

book part.of.speech
noun

pprop

pprop

remprop

remprop
gprop

gprop
gprop

?
buch

to pprop :list :name :value
if not namep :list [make :list []]
make :list pprop1 :name :value thing :list
end

to pprop1 :name :value :oldlist
if emptyp :oldlist [output list :name :value]
if equalp :name first :oldlist ~

[output fput :name (fput :value (butfirst butfirst :oldlist))]
output fput (first :oldlist) ~

(fput (first butfirst :oldlist)
(pprop1 :name :value (butfirst butfirst :oldlist)))

end

remember it. The properties need not all be uniform in their significance; we could,
for example, give a property whose name is and whose value is

.

To make this work, Berkeley Logo (along with several other dialects) has procedures
to create, remove, and examine properties. The command (Put PROPerty) takes
three inputs; the first two must be words, and the third can be any datum. The first input
is the name of a property list; the second is the name of a property; the third is the value
of that property. The effect of is to add the new property to the named list. (If
there was already a property with the given name, its old value is replaced by the new
value.) The command (REMove PROPerty) takes two inputs, which must be
words: the name of a property list and the name of a property in the list. The effect
of is to remove the property (name and value) from the list. The operation

(Get PROPerty) also takes two words as inputs, the name of a property list and
the name of a property in the list. The output from is the value of the named
property. (If there is no such property in the list, outputs the empty list.)

It would be possible to write Logo procedures that would use ordinary variables to hold
property lists, which would work just like the ones I’ve described. Since Berkeley Logo
provides property lists as a primitive capability, you won’t need to load these into your
computer, but later parts of the discussion will make more sense if you understand how
they work. Here they are:











Abraham Ann Albert Amelia

Bill Betty Bob Barbara Brian Boris

Colin Cathy Chris CecilCharlie Carol

An Example: Family Trees

144 Chapter 8 Property Lists

gprop

mother
father kids sex kids

sex male female

to family :mom :dad :girls :boys
catch "error [pprop :mom "sex "female]
catch "error [pprop :dad "sex "male]
foreach :girls [pprop ? "sex "female]
foreach :boys [pprop ? "sex "male]
localmake "kids sentence :girls :boys
catch "error [pprop :mom "kids :kids]
catch "error [pprop :dad "kids :kids]
foreach :kids [pprop ? "mother :mom pprop ? "father :dad]
end

family "Ann "Abraham [Betty] [Bill Bob]
family "Amelia "Albert [Barbara] [Brian Boris]
family "Betty [] [Cathy] [Colin]
family "Barbara "Bob [Carol] [Charlie]
family [] "Boris [] [Chris Cecil]

So why is permissive when all other Logo primitives are not? Well, the others
were designed early in the history of the language when teachers were in charge at the
design meetings. Property lists were added to Logo more recently; the implementors
showed up one day and said, “Guess what? We’ve put in property lists.” So they did it
their way!

Here is an example program using property lists. My goal is to represent this family tree:

Each person will be represented as a property list, containing the properties ,
, , and . The first two will have words (names) as their values, will

be a list of names, and will be or . Note that this is only a partial family
tree; we don’t know the name of Betty’s husband or Boris’s wife. Here’s how I’ll enter all
this information:



father

An Example: Family Trees 145

The instructions that catch errors do so in case a family has an unknown mother or
father, which is the case for two of the ones in our family tree.

Now the idea is to be able to get information out of the tree. The easy part is to get
out the information that is there explicitly:

Of course several more such procedures can be written along similar lines.

The more interesting challenge is to deduce information that is not explicitly in the
property lists. The following procedures make use of the ones just defined and other
obvious ones like .

to mother :person
output gprop :person "mother
end

to kids :person
output gprop :person "kids
end

to sons :person
output filter [equalp (gprop ? "sex) "male] kids :person
end

to grandfathers :person
output sentence (father father :person) (father mother :person)
end

to grandchildren :person
output map.se [gprop ? "kids] (kids :person)
end

to granddaughters :person
output justgirls grandchildren :person
end

to justgirls :people
output filter [equalp (gprop ? "sex) "female] :people
end

to aunts :person
output justgirls sentence (siblings mother :person) ~

(siblings father :person)
end



or

146 Chapter 8 Property Lists

siblings
aunts cousins siblings

grandfathers

father

sentence grandfathers

cousins
sentence

person26
familyname givenname name

father cousins
person26

realnames

to cousins :person
output map.se [gprop ? "kids] sentence (siblings mother :person) ~

(siblings father :person)
end

to siblings :person
local "parent
if emptyp :person [output []]
make "parent mother :person
if emptyp :parent [make "parent father :person]
output remove :person kids :parent
end

to father :person
if emptyp :person [output []]
output gprop :person "father
end

In writing , I’ve been careful to have it output an empty list if its input is empty.
That’s because and may invoke with an empty input if we’re
looking for the cousins of someone whose father or mother is unknown.

You’ll find, if you try out these procedures, that similar care needs to be exercised
in some of the “easy” procedures previously written. For example, will
give an error message if applied to a person whose mother father is unknown, even if
the other parent is known. One solution would be a more careful version of :

The reason for choosing an empty list as output for a nonexistent person rather than
an empty word is that the former just disappears when combined with other things
using , but an empty word stays in the resulting list. So , for
example, will output a list of length 1 if only one grandfather is known rather than a list
with an empty word in addition to the known grandfather. Procedures like also
rely heavily on the flattening effect of .

This is rather an artificial family tree because I’ve paid no attention to family names,
and all the given names are unique. In practice, you wouldn’t be able to assume that.
Instead, each property list representing a person would have a name like and
would include properties and or perhaps just a property
whose value would be a list. All the procedures like and would
output lists of these funny -type names, and you’d need another procedure

that would extract the real names from the property lists of people in a list.
But I thought it would be clearer to avoid that extra level of naming confusion here.


